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Abstract: 

The recording of auditory evoked potentials (AEPs) at fast rates allows the study 

of neural adaptation, improves accuracy in estimating hearing threshold and may 

help diagnosing certain pathologies. Stimulation sequences used to record AEPs 

at fast rates require to be designed with a certain jitter, i.e., not periodical. Some 

authors believe that stimuli from wide-jittered sequences may evoke auditory 

responses of different morphology, and therefore, the time-invariant assumption 

would not be accomplished. This paper describes a methodology that can be 

used to analyze the time-invariant assumption in jittered stimulation sequences. 

The proposed method [Split-IRSA] is based on an extended version of the 

iterative randomized stimulation and averaging (IRSA) technique, including 

selective processing of sweeps according to a predefined criterion. The 

fundamentals, the mathematical basis and relevant implementation guidelines of 

this technique are presented in this paper. The results of this study show that 

Split-IRSA presents an adequate performance and that both fast and slow 

mechanisms of adaptation influence the evoked-response morphology, thus both 

mechanisms should be considered when time-invariance is assumed. The 

significance of these findings is discussed. 

Keywords: randomized stimulation and averaging (RSA), jitter, deconvolution, 

evoked potentials, time-invariant, ABR, MLR, SOA. 
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Highlights: 

▪ Split-IRSA disentangles overlapping evoked potentials of different 

morphology. 

▪ Split-IRSA allows analysis of time-invariant assumption in jittered stimuli. 

▪ Both fast and slow mechanisms of adaptation influence the time-invariant 

assumption. 
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Text body: 

1. INTRODUCTION 

The conventional auditory evoked potential (AEP) recording method consists in 

the periodical presentation of stimuli and the average of their associated auditory 

neural responses (sweeps) in order to increase the signal-to-noise ratio (SNR) 

(Thornton, 2007). The conventional method presents the limitation that the period 

of stimulation (i.e., the inverse of the stimulation rate) must be greater than the 

averaging window, avoiding sweeps to be overlapped (Wong and Bickford, 

1980); otherwise it would not be mathematically possible to recover the transient 

evoked response (Kjaer, 1980). This rate limitation implies that auditory 

brainstem responses (ABR) and middle latency responses (MLR) cannot be 

recorded with the conventional technique at rates faster than 100 Hz and 10 Hz, 

respectively, considering standard averaging windows of 10 ms in ABR and 

100 ms in MLR signals. However, the recording of these signals at higher rates 

present several advantages, such as the study of neural adaptation (Burkard et 

al., 1990; Lasky, 1997), the diagnosis of certain pathologies (Jiang et al., 2000; 

Yagi and Kaga, 1979) and better performance in hearing threshold estimation 

(Leung et al., 1998). 

The maximum length sequence (MLS) technique was developed by Eysholdt and 

Schreiner (1982) to overcome the rate limitation imposed by the conventional 

technique. This technique was extensively used not only to record AEPs at fast 

stimulation rates, when the responses are overlapped (Burkard and Palmer, 

1997; Eggermont, 1993; Lasky et al., 1995), but also to analyze the linear and 

non-linear interaction components of otoacoustic emissions (de Boer et al., 2007; 
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Hine et al., 1997; Hine et al. 2001; Lineton et al., 2006). Stimulus-onset 

asynchrony (SOA) , i.e. the distribution of time intervals between adjacent stimuli, 

are multiples of a minimum pulse interval in MLS sequences, which leads to 

stimulation sequences of a large jitter (Burkard et al., 1990; Özdamar et al, 2007). 

The jitter of a stimulation sequence determines dispersion of the SOA distribution.  

Several techniques have emerged to deconvolve overlapped AEPs using narrow-

jittered stimulation sequences. Some of the most relevant techniques are quasi-

periodic sequence deconvolution (QSD) (Jewett et al., 2004), continuous loop 

averaging deconvolution (CLAD) (Delgado and Özdamar, 2004; Özdamar and 

Bohórquez, 2006), and least-squares deconvolution (LSD) (Bardy et al., 2014a). 

These techniques have been successfully used in several research applications 

(Bardy et al., 2014b; Bohórquez and Özdamar, 2008; Özdamar et al., 2007). The 

major limitation of these techniques is that obtaining efficient, narrow-jittered 

stimulation sequences may require an extensive search, since they must 

accomplish frequency-domain restrictions to avoid noise amplification in the 

deconvolution process (Jewett et al., 2004; Özdamar and Bohórquez, 2006). 

A recently published paper describes iterative randomized stimulation and 

averaging (IRSA), which allows AEPs to be recorded at fast rates using narrow-

jittered sequences (Valderrama et al., 2014c). This is achieved by the estimate 

and removal of the interference associated with overlapping responses through 

iterations in the time-domain, providing better estimates of the response in 

succeeding iterations. This technique assumes that the AEP morphology is time-

invariant, i.e., all stimuli evoke the same neural response, which may constrain 

the flexibility of this technique in certain applications. 
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Despite the great effort in developing different methodologies to record AEPs at 

fast rates using narrow-jittered sequences, it is still controversial whether or not 

stimulation sequences of a wide jitter are a problem. Some authors believe that 

stimuli in high-jittered sequences may evoke auditory responses of different 

morphology as a consequence of the effects of neural adaptation, contradicting 

therefore the time-invariant assumption (Jewett et al., 2004, Özdamar and 

Bohórquez, 2006; Valderrama et al., 2014b). However, to the best of our 

knowledge, we have not found any technique that allows evaluation of the time-

invariant assumption. 

This paper describes an extended version of IRSA [Split-IRSA] which allows 

selective averaging and processing when AEPs of different morphology are 

recorded. In this study, the performance of this technique is assessed with both 

artificially synthesized and real experiments. The Split-IRSA technique is applied 

to evaluate the time-invariant assumption on ABR and MLR signals recorded with 

16 ms-jittered stimulation sequences. The results of this study show that (a) the 

Split-IRSA technique presents an adequate performance, (b) the time-invariant 

assumption in auditory responses recorded on jittered stimulation sequences can 

be evaluated following a methodology based on Split-IRSA, and (c) the 

morphology of individual sweeps in ABR and MLR signals is influenced by both 

fast and slow mechanisms of adaptation. The potential of this method and the 

significance of the findings obtained in this study are discussed.  
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2. METHODS 

This section presents the basis and the mathematical formulation of the Split-

IRSA technique, the protocols followed in the recording of real 

electroencephalograms (EEGs), and the objectives, hypotheses and procedures 

of the experiments. 

2.1. Split-IRSA 

The fundamentals for the Split-IRSA algorithm are very similar to those of IRSA, 

described in detail in Valderrama et al. (2014c). AEPs are estimated in Split-IRSA 

through an iterative process in the time domain. Each iteration includes 

estimation of the interference associated with overlapping responses, subtraction 

of this interference from the recorded EEG, and re-estimation of the AEPs. Better 

AEPs estimates can be obtained recursively since improved AEPs estimates lead 

to a better interference estimate, which leads to more accurate AEPs estimates. 

The precision of the AEPs estimates increases with the number of iterations. In 

contrast to IRSA, this updated formulation [Split-IRSA] allows selective 

processing of sweeps, and therefore, AEPs of different morphology can be 

separately estimated. 

Stimulation sequences are generated in Split-IRSA as the combination of 

independent sub-sequences, each of them based on randomized stimulation, in 

which the SOA of the stimuli vary randomly according to a predefined probability 

distribution (Valderrama et al., 2012). The Split-IRSA technique retrieves the 

time-invariant component of the AEPs belonging to each sub-sequence, i.e., it is 

assumed that all stimuli from the same sub-sequence evoke the same AEP. 
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The mathematical formulation for the Split-IRSA technique is outlined below. Let 

[𝒔𝟏(𝑛), 𝒔𝟐(𝑛), … , 𝒔𝑻(𝑛)] (𝑛 = 1, … , 𝑁) be 𝑇 sub-sequences, each of them 

composed of [𝐾1, 𝐾2, … , 𝐾𝑇] stimuli that evoke, respectively, 𝑇 AEPs of different 

morphology, represented by [𝒙𝟏(𝑗), 𝒙𝟐(𝑗), … , 𝒙𝑻(𝑗)] (𝑗 = 1, … , 𝐽), where 𝑁 and 𝐽 

represent, respectively, the length in samples of the EEG and the averaging 

window. The recorded EEG 𝒚(𝑛), can be modeled as the summation of the 

convolutions ( ) of each sub-sequence with their corresponding AEP plus noise: 

𝒚(𝑛) = 𝒔𝟏(𝑛) ∗ 𝒙𝟏 + 𝒔𝟐(𝑛) ∗ 𝒙𝟐 + ⋯ +𝒔𝑻(𝑛) ∗ 𝒙𝑻 + 𝑛𝑜𝑖𝑠𝑒.  (1) 

The AEPs corresponding to each sub-sequence (𝜏 = 1, … , 𝑇) in the iteration 𝑖, 

𝒙̂𝝉,𝒊(𝑗 = 1, … , 𝐽), are estimated in Split-IRSA according to 

𝒙̂𝝉,𝒊(𝑗) =
1

𝐾𝜏
· ∑ 𝒚𝝉,𝒌

𝐾𝜏
𝑘=1 (𝑗 + 𝒎𝝉(𝑘)),     (2) 

where 𝒚𝝉,𝒌 represents the EEG in which the auditory responses adjacent to the 

stimulus 𝑘 (from the sub-sequence 𝜏) are suppressed; and 𝒎𝝉 is a trigger vector 

that includes the samples of the EEG in which the stimuli of the sub-sequence 𝜏 

occur (𝑘 = 1, … , 𝐾𝜏). The 𝒚𝝉,𝒌 signals can be obtained for each stimulus 𝑘 at each 

sub-sequence 𝜏 by suppressing from the recorded EEG the AEPs estimated on 

the preceding iteration (𝑖 − 1) corresponding to all sub-sequences (𝑡 = 1, … , 𝑇) 

and by adding the AEP corresponding to the stimulus 𝑘 of the sub-sequence 𝜏: 

𝒚𝝉,𝒌(𝑛) = 𝒚(𝑛) − ∑ [𝒔𝑡(𝑛) ∗ 𝒙̂𝒕,𝒊−𝟏]𝑇
𝑡=1 + 𝒔𝝉,𝒌(𝑛) ∗ 𝒙̂𝝉,𝒊−𝟏,   (3) 

where 𝒔𝝉,𝒌 represents the stimulation sequence for the stimulus 𝑘 of the sub-

sequence 𝜏. Considering 𝒛𝒊(𝑛) as the EEG on the iteration 𝑖 with all AEPs 

estimated on the preceding iteration suppressed: 𝒛𝒊(𝑛) = 𝒚(𝑛) − ∑ [𝒔𝑡(𝑛) ∗𝑇
𝑡=1

𝒙̂𝒕,𝒊−𝟏], then equation (3) can be rewritten as 
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𝒚𝝉,𝒌(𝑛) = 𝒛𝒊(𝑛) + 𝒔𝝉,𝒌(𝑛) ∗ 𝒙̂𝝉,𝒊−𝟏.      (4) 

Hence, the sections of 𝒚𝝉,𝒌 corresponding to the averaging window can be 

obtained as 

𝒚𝝉,𝒌(𝑗 + 𝒎𝝉(𝑘)) = 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + 𝒔𝝉,𝒌(𝑗 + 𝒎𝝉(𝑘)) ∗ 𝒙̂𝝉,𝒊−𝟏.  (5) 

The 𝒔𝝉,𝒌(𝑛) signal can be expressed as 𝜹(𝑛 − 𝒎𝝉(𝑘)), where 𝜹(𝑛) represents the 

Dirac delta function, with the value 1 for 𝑛 = 0, and 0 otherwise. Since 𝜹(𝑛) ∗ 𝒇 =

𝒇, for whatever function 𝒇, equation (5) can be expressed as 

𝒚𝝉,𝒌(𝑗 + 𝒎𝝉(𝑘)) = 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + 𝜹(𝑛 − 𝒎𝝉(𝑘) + 𝒎𝝉(𝑘)) ∗ 𝒙̂𝝉,𝒊−𝟏 =

𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + 𝒙̂𝝉,𝒊−𝟏 .       (6) 

Therefore, from equation (2), the AEP estimate on the iteration 𝑖 can be obtained 

as 

𝒙̂𝝉,𝒊(𝑗) =
1

𝐾𝜏
· ∑ [𝒛𝒊(𝑗 + 𝒎𝝉(𝑘)) + 𝒙̂𝝉,𝒊−𝟏] =

𝐾𝜏
𝑘=1 𝒙̂𝝉,𝒊−𝟏 +

1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1 . (7) 

Similar to IRSA, we have found in simulations and real data that Split-IRSA might 

present problems of instability, where succeeding iterations lead to worse AEP 

estimates. Instability might be especially relevant in low-jittered stimulation 

sequences in which the averaged SOA is significantly lower than the averaging 

window, e.g., with a high-degree of overlap. Problems of instability can be solved 

using a correction factor (𝛼) that weights the correction 
1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1  

made on the preceding AEP estimate. Low 𝛼 values ensure convergence, but 

require a greater number of iterations to converge. The greatest 𝛼 that avoids 

instability is optimal. Thus, the inclusion of this correction factor onto equation (7) 

leads to: 

𝒙̂𝝉,𝒊(𝑗) = 𝒙𝝉,𝒊−𝟏 + 𝛼 ·
1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1 .    (8) 
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The number of iterations can be defined either as a fixed value 𝐼 (𝒙̂𝝉 = 𝒙̂𝝉,𝑰 ∀𝜏) or 

automatically considering whether the differences between AEP estimates in 

succeeding iterations are negligible (𝒙̂𝝉 = 𝒙̂𝝉,𝒊 ⇔ 𝒙̂𝝉,𝒊 ≈ 𝒙̂𝝉,𝒊−𝟏 ∀𝜏). 

Figure 1 illustrates an example of the performance of the Split-IRSA technique 

under a simulation framework. In this example, a stimulation sequence 𝒔(𝑛) was 

generated containing 4000 stimuli in which the SOA varied randomly between 20 

and 30 ms [short SOA sub-sequence: 𝒔𝟏(𝑛)] and between 60 to 70 ms [long SOA 

sub-sequence: 𝒔𝟐(𝑛)]. Figure 1.A shows the histogram of the SOA of this 

stimulation sequence, where the sub-sequences 𝒔𝟏(𝑛) and 𝒔𝟐(𝑛) can be 

identified. Figure 1.B shows the configuration settings of this simulation 

experiment. Figure 1.B.1 shows a frame of the first 20.000 samples of 𝒔(𝑛), using 

a sampling frequency of 25 kHz. In this segment, long- and short-SOA stimuli can 

be visually identified. Figures 1.B.2 and 1.B.3 show, respectively, the triggers 

corresponding to each sub-sequence. In these sub-sequences, the first three 

elements of the trigger vectors [𝒎𝟏 and 𝒎𝟐] are labeled as a reference. An 

artificially synthesized EEG was generated as the summation of the convolutions 

of the sub-sequences 𝒔𝟏(𝑛) and 𝒔𝟐(𝑛) with two high-quality real MLR signals of 

different morphology: 𝒙𝟏 and 𝒙𝟐. The 𝒙𝟏 and 𝒙𝟐 signals are shown next to the first 

stimulus in each sub-sequence. These signals were recorded from two normal 

hearing subjects (males, 28 and 26 yr, respectively) using 4800 stimuli presented 

at 70 dB HL at an average rate of 40 Hz and processed by the IRSA technique. 

The artificially synthesized EEG [𝒚(𝑛)], along with the triggers corresponding to 

both sub-sequences, are shown in figure 1.B.4. In this experiment, passband-

filtered noise (Butterworth, 4th order, [30-200] Hz) was added to 𝒚(𝑛) at a SNR of 
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-5 dB (figure 1.B.5). Figure 1.C presents the normalized energy of the averaged 

residual, evaluated as 
1

𝑁
∑ 𝒛𝒊(𝑛)2𝑁

𝑛=1 , at different number of iterations for different 

𝛼 values. This figure shows that the 𝛼 parameter can be used to control 

convergence and avoid instability. In this example, 𝛼 values 1.3 and 1.0 cause 

instability, where the averaged residual increases in succeeding iterations. In 

contrast, the averaged residual for 𝛼 values 0.8 and 0.1 decreases with the 

number of iterations, which means that better estimates of the responses are 

obtained recursively. This figure shows that although both 𝛼 values 0.8 and 0.1 

tend to converge, the convergence for 𝛼 value 0.1 requires a larger number of 

iterations, i.e., it is less efficient. This simulation shows that 𝛼 equal to 0.8 and 5 

iterations are appropriate values to obtain accurate estimates of the signals 𝒙𝟏 

and 𝒙𝟐. Figures 1.D.1 and 1.D.2 show, respectively, the AEP estimates for 𝒙𝟏 and 

𝒙𝟐 at the second, fifth and tenth iteration for 𝛼-value of 1.3. These figures show 

an example of instability, where worse estimates of the responses are obtained 

in succeeding iterations, i.e., the root-mean-square (RMS) error between the 

template and the MLR estimate increases in succeeding iterations. Figures 1.E.1 

and 1.E.2 show, respectively, the first three estimates of the signals 𝒙𝟏 and 𝒙𝟐 for 

an 𝛼 value 0.8. In this example, when the 𝛼 value is selected appropriately, better 

estimates are obtained recursively, i.e., the RMS error decreases with increasing 

iterations [convergence scenario].  

A software routine programmed in MATLAB (The Mathworks, Inc., Natick, MA) 

that implements the Split-IRSA technique is available as supporting information 

in this paper (Appendix A). 
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2.2. EEG recording and processing 

The EEG recording process consisted in the presentation of stimuli to a subject 

and the recording of their associated neural response through surface disposable 

electrodes (Ambu Neuroline 720, Ambu A/S, Denmark) placed on the skin at 

different positions on the head. The positive electrode was placed at the high-

forehead, the negative electrode at the ipsilateral mastoid and the reference 

electrode at the low-forehead. The interelectrode impedance was below 5 kΩ in 

all recordings. Stimuli consisted of 100 µs-duration, monophasic clicks delivered 

in rarefaction polarity at 70 dB HL (corresponding to 103.54 dB peak-to-peak 

equivalent sound pressure level) through the Etymotic ER-3A insert earphones 

(Etymotic Research, Inc., Elk Grove Village, IL). Calibration was carried out 

according to the ISO-389 standard, using an Artificial Ear type 4153 2-cc acoustic 

coupler (Brüel & Kjær Sound & Vibration Measurements A/S, Nærum, Denmark). 

The recording sessions took place in the MRC Institute of Hearing Research 

(Royal South Hants Hospital, Southampton, United Kingdom), in a sound-

shielded screening booth prepared to attenuate electrical and electromagnetic 

interference. Subjects were comfortably seated in order to minimize 

electromyogenic noise. The signal recorded by the electrodes was 86 dB 

amplified (gain x20.000) and bandpass filtered by a 24 dB/Octave slope filter with 

a bandwidth of [0.5-3500] Hz. The amplified EEG was sampled at 25 kHz and 

quantized with a resolution of 16 bits. Digitized EEGs were digitally filtered by a 

4th order Butterworth filter ([200-2000] Hz for ABR and [30-1500] for MLR). Group 

delays introduced by the insert earphones (0.81 ms) (Elberling et al., 2012) and 

by both analog and digital filters were digitally compensated. Data processing 
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was carried out by custom-designed scripts implemented in MATLAB. The 

features of the AEP recording system used in this study are presented in 

Valderrama et al. (2014a). 

Analysis of AEPs consisted in the measurement of their most relevant 

components in terms of latencies and amplitudes. Latencies were measured as 

the time difference in milliseconds from stimulus onset to the occurrence of the 

components. Amplitudes were estimated in ABR as the difference in microvolts 

between the top of the peak and the following trough, whereas in MLR, 

amplitudes were measured as the difference between the positive and negative 

peaks of the wave complex (Burkard and Don, 2007). 

The recording protocols followed in the experiments of this work were in 

accordance with the Code of Ethics of the World Medical Association (Declaration 

of Helsinki) for experiments involving humans, and were approved by the 

Research Ethics Committee established by the Health Research Authority 

(Reference No. RHM ENT0082). 

2.3. Description of the experiments 

2.3.1. Rationale 

Three experiments were carried out with the double purpose of evaluating the 

performance of the Split-IRSA technique and the validity of the time-invariant 

assumption in the recording of ABR and MLR signals with 16 ms-jittered 

randomized stimulation sequences. 
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2.3.2. Subjects 

All subjects tested on the experiments of this study were volunteers, reported no 

history of auditory dysfunction and presented normal hearing sensitivity at octave 

frequencies ([250-8000] Hz). These subjects were paid and gave written consent 

to participate. 

2.3.3. Experiment 1 

The first experiment compares ABR and MLR real signals recorded on one 

subject (male, 30 yr) at different rates in two scenarios. 

In scenario 1, ABR signals were recorded at 16 different rates using 1 ms-jittered 

sequences: SOA15-16 (65 Hz), SOA14-15 (69 Hz), SOA13-14 (74 Hz), SOA12-13 (80 

Hz), SOA11-12 (87 Hz), SOA10-11 (95 Hz), SOA9-10 (105 Hz), SOA8-9 (118 Hz), 

SOA7-8 (133 Hz), SOA6-7 (154 Hz), SOA5-6 (182 Hz), SOA4-5 (222 Hz), SOA3-4 

(286 Hz), SOA2-3 (400 Hz), SOA1-2 (667 Hz), SOA0-1 (2000 Hz); and MLR signals 

were recorded at 4 different rates using 4 ms-jittered sequences: SOA12-16 (71 

Hz), SOA8-12 (100 Hz), SOA4-8 (167 Hz) and SOA0-4 (500 Hz). A large number of 

stimuli were used in each stimulation sequence in order to obtain signals of 

sufficient quality. In ABR signals, sequences SOA15-16 to SOA9-10 included 12,500 

stimuli, while sequences SOA8-9 to SOA0-1 contained 20,000 stimuli. The larger 

number of stimuli in higher-rate sequences was used to accommodate the loss 

of SNR due to the reduction of amplitude of the components as a consequence 

of adaptation (Hine et al., 2001). In MLR signals, all sequences contained 50.000 

stimuli. ABR and MLR signals on this scenario were processed by the IRSA 

technique (Valderrama et al., 2014c). The number of iterations for ABR and MLR 
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signals were, respectively 50 and 500. The value of 𝛼 was 0.8 at all rates for ABR 

signals, except for the sequences SOA5-6, SOA4-5, SOA3-4 and SOA2-3, where 𝛼 

was 0.5. In MLR signals, the 𝛼-value for SOA12-16 and SOA8-12 was 0.3; for SOA4-

8, 𝛼 was 0.5; and for SOA0-4, 𝛼 was 0.8. We tested in simulations that these 

parameters were appropriate to obtain accurate ABR and MLR estimates. 

In scenario 2, ABR and MLR signals were estimated on the same subject and at 

the same stimulation rates as for scenario 1 from a single EEG corresponding to 

a stimulation sequence SOA0-16 (jitter of 16 ms) of 200,000 stimuli. In ABR, each 

stimulus was categorized in 1 ms-jittered sub-sequences according to their 

preceding stimulus: 𝒔𝟏 (SOA0-1: preceding SOA belongs to the interval [0-1]), 

𝒔𝟐 (SOA1-2), 𝒔𝟑 (SOA2-3), …, 𝒔𝟏𝟔 (SOA15-16). Equally, the processing of MLR 

signals included the categorization of the stimuli according to the intervals: 𝒔𝟏 

(SOA0-4: preceding SOA belongs to the interval [0-4]), 𝒔𝟐 (SOA4-8), 𝒔𝟑 (SOA8-12) 

and 𝒔𝟒 (SOA12-16). Since randomized stimulation sequences used in this 

experiment were distributed according to uniform distributions, the number of 

stimuli that belonged to each sub-sequence was approximately 12,500 in ABR 

signals (200,000/16), and 50,000 stimuli in MLR signals (200,000/4). ABR and 

MLR signals were processed with Split-IRSA, as described in section 2.1 of this 

paper. The number of iterations (𝐼) and the 𝛼-value were, respectively, 𝐼 = 50 

and 𝛼 = 0.8 in ABR; and 𝐼 = 500 and 𝛼 = 0.8 in MLR. Experiments in simulations 

validated the value of these parameters. 

The morphology of the ABR and MLR signals obtained in both described 

scenarios was compared in terms of amplitudes and latencies. The morphology 

of the auditory responses obtained at different rates on the two scenarios is 
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expected to be influenced by both fast and slow mechanisms of adaptation. On 

the one hand, the morphology of ABR and MLR signals obtained on scenario 1 

is expected to be in accordance with several previous studies in which ABR and 

MLR signals are recorded at fast rates (Lasky, 1997; Özdamar et al., 2007; Yagi 

and Kaga, 1979). On the other hand, there is not sufficient literature to 

hypothesize the ABR and MLR waveforms on scenario 2. If fast mechanisms of 

adaptation (with a time-constant of a few milliseconds) prevail over slow 

mechanisms (with a time-constant of several tens of milliseconds), the 

morphology of the AEPs in scenario 2 will be similar to those in scenario 1, since 

the morphology of the responses would be strongly influenced by the preceding 

SOA. In contrast, if slow mechanisms of adaptation prevail over fast mechanisms, 

then the AEPs corresponding to different sub-sequences would be similar, since 

the morphology of the response to each stimulus would not be very much 

influenced by its preceding SOA, but by the averaged SOA of several 

milliseconds in advanced. 

2.3.4. Experiment 2 

The objective of experiment 2 is to analyze the performance of the Split-IRSA 

technique in order to validate the experimental results obtained in experiment 1. 

This analysis was carried out through a simulation, in which the acquisition 

settings of experiment 1 were reproduced. This study was performed for ABR 

and MLR signals, both with and without added noise. 

First, a SOA0-16 randomized stimulation sequence of 200.000 stimuli was 

generated. Each stimulus from this sequence was categorized into sub-
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sequences as described in scenario 2 in experiment 1, i.e., in the study with ABR 

signals there were 16 sub-sequences of 1 ms jitter: 𝒔𝟏 (SOA0-1), 𝒔𝟐 (SOA1-2), …, 

𝒔𝟏𝟔 (SOA15-16); and in the study with MLR signals, there were 4 sub-sequences 

of 4 ms jitter: 𝒔𝟏 (SOA0-4), 𝒔𝟐 (SOA4-8), …, 𝒔𝟒 (SOA12-16). Second, two artificially 

synthesized EEGs (one for each scenario) were built as the convolution of the 

stimuli belonging to each sub-sequence with the corresponding ABR/MLR signals 

obtained in experiment 1 on scenarios 1 and 2. These artificially synthesized 

EEGs represent the overlapping evoked potentials without any type of noise or 

artifacts. Finally, the ABR/MLR signals corresponding to each sub-sequence 

were estimated from these synthesized EEGs using the Split-IRSA technique at 

the iterations 𝐼 = [0, 10, 20, 50] in ABR, and 𝐼 = [0, 10, 20, 50, 100, 200, 500] in 

MLR. The 𝛼-value used in these simulations was the same as in experiment 1, 

i.e., 𝛼 = 0.8 in both ABR and MLR signals. The error between the original 

ABR/MLR signals (templates) and the estimated signals was calculated in terms 

of RMS value.  

The same study was repeated including filtered noise (4th order Butterworth, [200-

2000] Hz for ABR and [30-1500] for MLR) added to the synthesized EEGs at a 

RMS value similar to the recorded real EEG. This RMS value was estimated on 

the recorded EEG after digital filtering (4th order Butterworth, [200-2000] Hz for 

ABR and [30-1500] for MLR). The estimated RMS values were 1.7 µV for ABR 

and 3.5 µV for MLR. In ABR signals, the SNRs on the noisy EEGs were -29.2 dB 

in scenario 1 and -30.2 dB in scenario 2. In MLR, the SNR-values were -17.8 dB 

in scenario 1 and -23.4 dB in scenario 2. 
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2.3.5. Experiment 3 

In this experiment, we analyzed the morphology of ABR and MLR signals evoked 

by stimuli that belong to different rate-subsets from stimulation sequences of 

16 ms-jitter in order to evaluate the time-invariant assumption. 

8 subjects (5 males, 27±4 yr) participated in this study. Each subject was 

presented a randomized stimulation sequence SOA0-16 of 60.000 stimuli. A single 

EEG was recorded from each subject. These EEGs were digitally filtered (4th 

order Butterworth) using a bandwidth [200-2000] Hz for the ABR analysis and 

[30-1500] Hz for MLR. Sub-sequences were defined as described in scenario 2 

on experiment 1 of this paper: 𝒔𝟏 (SOA0-1), 𝒔𝟐 (SOA1-2), …, 𝒔𝟏𝟔 (SOA15-16) in ABR; 

and 𝒔𝟏 (SOA0-4), 𝒔𝟐 (SOA4-8), …, 𝒔𝟒 (SOA12-16) in MLR. ABR and MLR signals 

were estimated from each rate-subset using the Split-IRSA technique, as 

described in section 2.1 of this paper, using 𝛼 = 0.8, 𝐼 = 50 in ABR and 𝐼 = 500 

in MLR. In addition, we used as reference the ABR/MLR signal obtained from the 

complete stimulation sequence, assuming that all stimuli from the sequence 

evoked the same response. These signals were obtained using the IRSA 

technique (𝛼 = 0.8, 𝐼 = 50 in ABR and 𝐼 = 500 in MLR) (Valderrama et al., 

2014c). 

The latencies and amplitudes of waves III and V were measured on ABR signals. 

In MLR, we measured the latencies for the Na, Pa, Nb and Pb components and 

the amplitudes for the Na-Pa, Pa-Nb and Nb-Pb wave-complexes. The influence 

of the average rate in each sub-sequence on the morphology of ABR/MLR signals 

was evaluated through linear correlation hypothesis tests, considering the slope 

equal to zero as the null hypothesis of the tests. 
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The inter-subject variability of the fast adaptation was analyzed in each subject 

for each parameter as the difference of latencies and ratio of amplitudes between 

the averaged values corresponding to the intervals [1-8] ms and [8-16] ms, i.e. 

L[1-8]-L[8-16] and A[1-8]/A[8-16], both in ABR and MLR signals. These parameters 

evaluate the changes on the waveform morphology depending solely on the 

previous SOA, thus directly associated with the fast adaptation. The Pb 

component was excluded from this analysis because of insufficient clear 

measures of this component, especially at high rates. 

3. RESULTS 

3.1. Experiment 1 

Figure 2 shows a comparison of the morphology of ABR and MLR signals 

obtained from one subject at different rates in two different recording-scenarios. 

The ABR signals used in this study, along with an analysis of the latency and 

amplitude of the wave V component, are presented in figures 2.A.1, 2.A.2 and 

2.A.3 respectively. Comparison of the morphology of ABR signals in both 

scenarios show remarkable differences. In scenario 1, as rate increases, the 

latency of the ABR components increases and the amplitude decreases, which 

is consistent with several previous studies (Jiang et al., 2009; Stone et al., 2009). 

However in scenario 2, the latency of wave V seems to be unaltered by rate, and 

the slope of the linear regression curve of the wave V amplitude obtained at each 

SOA range is lower than in scenario 1, which suggests that as rate increases, the 

amplitude of wave V decreases more slowly. ABR signals of both scenarios 
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obtained at rates faster than 400 Hz (SOA2-3) showed a high-level of adaptation 

and no wave V component could be identified. 

Figure 2.B.1 shows the MLR signals obtained in this study. The Na, Pa, Nb and 

Pb components are labeled on the SOA8-12 MLR signal on this figure. All 

components could be identified at all rates, except Nb and Pb at 500 Hz (SOA0-

4) in both scenarios. The values of latency and amplitude of the MLR components 

obtained in scenario 1 are consistent with those reported on previous studies, in 

which MLR signals were recorded at fast rates (Özdamar et al., 2007). Figure 

2.B.2 shows the latencies and a linear regression analysis for the Na, Pa, Nb and 

Pb components at different rates. This analysis shows that, while Na latency is 

similar in both scenarios, the latency drift in the rest of the components is more 

accentuated in scenario 1 than in scenario 2. Analysis of amplitudes for the wave 

complexes Na-Pa, Pa-Nb and Nb-Pb is presented on figures 2.B.3, 2.B.4 and 

2.B.5 respectively. These figures show that, although amplitudes decrease as 

rate increases in both scenarios, amplitudes in scenario 1 present a greater value 

and the slope of the linear regression analysis is steeper in scenario 1 than in 

scenario 2. Data shown in this experiment is obtained from a single subject. A 

more robust study of amplitudes and latencies is presented in experiment 3 of 

this paper. 

3.2. Experiment 2 

Figure 3 shows the MLR signals used as reference (templates) and the MLR 

estimates by the Split-IRSA technique at a different number of iterations in a 

simulation study. Figures 3.A.1 and 3.A.2 show, respectively, the results of this 

study when no noise is added to the synthesized EEG in scenarios 1 and 2. These 
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figures show that the accuracy of the MLR estimates increases with the number 

of iterations. The MLR estimates obtained with 500 iterations in both scenarios 

approximate accurately the original templates (errors lower than 0.0002 µVRMS in 

all cases). Figures 3.B.1 and 3.B.2 show the results of a similar study in which 

noise was added to the synthesized EEG at a similar RMS value as in a real 

situation. As in the no-noise case, the accuracy of the MLR estimates increases 

with the number of iterations. Although the MLR estimates obtained with 500 

iterations in panel B present greater error-values than in the case of EEGs without 

added noise (panel A), these MLR estimates approximate the morphology of the 

original templates with sufficient accuracy to estimate correctly the amplitudes 

and latencies of the main components of these signals. 

A similar study was carried out with ABR signals. The results of this study are 

consistent with those obtained in the study with MLR signals. These results 

indicate the ABR estimated by Split-IRSA after 50 iterations in both scenarios fit 

perfectly the templates (error estimates <0.00001 µVRMS) when no noise is added 

to the synthesized EEG. The ABR estimates in both scenarios when noise is 

added to the EEG present a higher level of noise, but the morphology of these 

estimates approximates the original templates. The figures that present the 

morphology of these ABR estimates are available as supplementary material in 

Appendix B. This appendix also includes tables with the RMS errors between the 

templates and the ABR/MLR estimates obtained in each scenario at each 

iteration analyzed in this study. 

The results of this experiment point out that (a) the Split-IRSA technique is able 

to estimate accurately templates of different morphology in different jittering 
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conditions, and (b) the parameters 𝛼-value and number of iterations selected on 

experiment 1 in this paper (𝐼 = 50 in ABR, 𝐼 = 500 in MLR, 𝛼 = 0.8) are 

appropriate. 

3.3. Experiment 3 

Figure 4 shows the grand-average ABR and MLR waveforms from a set of 8 

normal hearing subjects. Subject 2 was not included in the grand-average ABR 

waveforms since no clear components could be identified. Thick lines in the upper 

section on each panel represent the ABR and MLR signals obtained directly from 

the SOA0-16 stimulation sequences, considering that all stimuli evoked the same 

response (time-invariant assumption). The main components of ABR and MLR 

are labeled on these signals. The rest of the lines represent the ABR/MLR 

responses corresponding to different rate-subsets obtained by the Split-IRSA 

technique, e.g., the ABR waveform corresponding to SOA15-16 is obtained from 

the auditory responses corresponding to stimuli whose preceding SOA belonged 

to the interval [15-16] ms. This figure allows an overall study of the morphology 

of these signals across subjects. This figure shows that the morphology of ABR 

signals at different rate-subsets is very similar to the signal obtained from the 

complete stimulation sequence (upper-panel line), except for the ABRs obtained 

at very fast rates, i.e., SOA2-3 and higher rates, where the latencies of the main 

components increase and their amplitude decrease significantly. On MLR 

signals, their morphology vary across different rate-subsets, especially at higher 

rates. The individual ABR and MLR signals obtained in each subject are available 

as supplementary material (appendix C). 
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Figure 5 and table 1 show the results of the linear regression analysis of the 

latencies (L) and amplitudes (A) of the main components of ABR (panel A) and 

MLR (panel B) signals versus the SOA intervals. The linear regression analyses 

in panel A show, on one hand, absence of statistically significant evidence for 

latencies and amplitudes being influenced by rate in the [4-16] ms SOA interval, 

and on the other, statistically significant evidence of variations on the amplitudes 

in the [0-8] ms SOA interval. These results point out that the time-invariant 

assumption is accomplished in ABR along the [4-16] ms SOA interval, but not at 

the fastest rates. The linear regression analyses in panel B show statistically 

significant evidence of variations of the morphology of MLR signals at different 

SOA intervals, thus indicating that the time-invariant assumption is not 

accomplished. 

The inter-subject variability of the fast adaptation is analyzed in figure 6. This 

figure shows a significant variability across subjects. For instance: (a) subjects 

S1, S7 and S8 show a larger fast adaptation on the latency of ABR wave III than 

subjects S4, S5 and S6; (b) subject S4 shows a particular low fast adaptation on 

the amplitude of ABR waves III and V; (c) S4 is also the only subject in which the 

latency of the ABR wave V and the MLR Na components decreased at high rates; 

and, (d) subjects S1 and S2 show a lower fast adaptation than the rest of the 

subjects on the latency of the MLR Pa and Nb components. In addition, this study 

shows a large variability across different parameters within the same subject. For 

example, subject S1 is the subject showing the largest fast adaptation on the Na 

latency, but it is also the subject presenting the lowest fast adaptation on the 

latency of the Pa and Nb components. 
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4. DISCUSSION 

This paper presents a full description of the iterative-randomized stimulation and 

averaging Split (Split-IRSA) technique. The fundamentals of this technique are 

similar to IRSA, described in Valderrama et al. (2014c), with the difference that 

Split-IRSA includes selective processing of responses, i.e., each response can 

be individually processed and categorized according to a predefined criteria. 

Split-IRSA allows, therefore, overlapping auditory evoked responses of different 

morphology to be obtained by an iterative procedure in the time domain. The 

main advantages of the Split-IRSA technique are: (a) stimulation sequences are 

based on randomized stimulation, which allows the amount of jitter to be under 

control; (b) this technique includes a mechanism to control convergence (𝛼-

value); (c) Split-IRSA is easy to implement (programming code attached on 

appendix A of this paper); and (d) it allows selective processing of auditory 

responses. 

The performance of the Split-IRSA technique was validated in this paper through 

experiments with both simulation and real data. The results of these experiments 

point out that this technique presents an adequate performance when the 𝛼-value 

and the number of iterations are correctly defined. The simulation study 

presented in experiment 2 shows that the AEP estimates obtained with Split-IRSA 

on the first iteration (blue signals on figure 3 and in appendix B on this paper) 

were not accurate, i.e., they present a morphology different from the template 

signal. This is consistent with results presented in Valderrama et al. (2014c), 

where we found that interference associated with overlapping responses 

introduces an artifact in the AEP estimate which cannot be reduced by averaging 
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when the amount of jitter of the stimulation sequence is lower than the dominant 

period of the recorded AEPs (i.e., 2 ms in ABR and 25 ms in MLR). Thus, a single 

iteration was not sufficient to obtain accurate AEP estimates. The results of 

experiment 2 show that more accurate ABR/MLR estimates can be obtained 

recursively. The results of experiments 1 and 3 in this paper point out that the 

Split-IRSA technique has allowed real ABR and MLR signals of different 

morphologies to be recorded simultaneously at very rapid rates using narrow-

jittered stimulation sub-sequences. 

The flexible nature of Split-IRSA is appropriate for research purposes. In this 

paper, we have used this technique to analyze the variations in the morphology 

of ABR and MLR signals across different rate-subsets in 16 ms-jittered 

stimulation sequences in order to evaluate the time-invariant assumption all along 

the stimulation sequence. This topic may be of interest as time-invariance is 

assumed in all techniques that process evoked potentials (Bardy et al., 2014a; 

Jewett et al., 2004, Özdamar and Bohórquez, 2006), and secondly, it is still not 

clear whether or not the amount of jitter of a stimulation sequence is a critical 

parameter to be considered when assuming that each stimulus evokes the same 

ABR/MLR response (Jewett et al., 2004, Özdamar and Bohórquez, 2006). As far 

as we are concerned, the methodology presented in this paper is the first attempt 

to analyze the time-invariant assumption in real ABR and MLR signals obtained 

in a specific jittered stimulation sequence. 

Analysis of ABR and MLR waveforms obtained in scenarios 1 and 2 in 

experiment 1 provide evidence that both fast and slow mechanisms of adaptation 

interact when presenting jittered stimuli. These fast and slow mechanisms of 
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adaptation have been observed in a number of animal studies (Chimento and 

Schreiner, 1991; Eggermont, 1985; Javel, 1996; Yates et al., 1985; Westerman 

and Smith, 1984) and in ABR signals recorded with long- and short-SOA 

distributions (Valderrama et al., 2014b). If ABR/MLR waveforms in scenarios 1 

and 2 were similar, it would be suggested that fast mechanisms of adaptation 

prevail over slow mechanisms, since the morphology of the response would be 

mostly influenced by the SOA of the preceding stimulus. In contrast, if ABR and 

MLR waveforms in scenario 2 were similar among themselves (and different to 

those obtained in scenario 1), that would indicate that slow mechanisms of 

adaptation prevail over fast mechanisms, since the morphology of the ABR/MLR 

signal would be determined by an averaged stimulation rate corresponding to 

several preceding stimuli. The results obtained in experiment 1 show that, in ABR 

signals on scenario 2, the latency of wave V remained constant across most of 

the sub-rates and that the amplitude decreased at a lower rate than in scenario 

1. These results highlight the significant role of slow mechanisms of adaptation. 

The morphology of MLR signals in scenario 2 present significant variations 

among themselves, as a consequence of the fast mechanisms of adaptation, 

however in comparison with the MLRs on scenario 1, latencies seem less 

dependent on rate, amplitudes are smaller, and decrease with rate more slowly. 

These results point out the effects of both fast and slow mechanisms of 

adaptation. 

The results obtained in experiment 3 are consistent with those obtained in 

experiment 1. These results show that the MLR waveforms obtained at different 

rate-subsets present significant variations as a consequence of the 
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aforementioned fast and slow mechanisms of adaptation. This variability 

indicates that the time-invariant assumption is not accomplished all along the 

stimulation sequence. A direct consequence of this deviation from the time-

invariant behavior is a degradation of the quality of the recordings, since the 

components are not phase-locked when the sweeps are averaged. The variability 

of the latencies observed in this study suggests that a possible strategy to 

improve the quality of the recordings could be the adjustment of the time-axis in 

each individual sweep in order to average phase-locked auditory responses. 

In contrast to MLR, this study did not show differences in the morphology of ABR 

signals obtained at rate-subsets down to SOA4-5 (equivalent rate of 222 Hz), 

which shows the influence of the slow mechanisms of adaptation and that the 

time-invariant assumption is accomplished in this SOA range ([4-16] ms). The 

amplitudes of the ABR signals obtained at faster sub-rates present a significant 

decrease, indicating the prevalence of fast mechanisms of adaptation. The 

influence of the fast adaptation is particularly relevant at very fast rates, as in the 

SOA1-2 sub-sequence the ABR components could be detected in only a few 

subjects, and no subject showed any clear component at the SOA0-1 sub-

sequence. The strong influence of the fast mechanisms of adaptation at these 

very fast rates could be associated with the refractory period of the neurons of 

the auditory pathway (Alvarez et al., 2011). 

The results obtained in this study contradict the classical approach that claims 

that wide-jittered stimulation sequences can be a problem when assuming time-

invariance of the response, since large SOA variations would evoke responses 

of different morphology. This classical approach only considers the fast 
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mechanisms of adaptation. In contrast, this study highlights that both fast and 

slow mechanisms of adaptation influence the morphology of the evoked 

responses in jittered sequences, and therefore, both mechanisms should be 

considered when evaluating the time-invariant assumption in jittered stimulation 

sequences. 

The mechanisms of adaptation have been attributed different functionalities in the 

auditory system. For example, the adaptive processes at different levels of the 

auditory pathway have been proven to enhance novelty detection (Ulanovsky et 

al., 2009), and to improve the neural coding accuracy by accommodating the rate-

level function of the neurons to the characteristics of the input sound (Dean et al., 

2005; Wen et al., 2009). The evaluation of the time-constants of the fast and slow 

mechanisms of adaptation observed in this study could have a potential clinical 

application in the future. 

Future research could also investigate the manner in which the SOA jitter 

distribution influences the fast and slow adaptation mechanisms. The 

understanding of this relationship could help design stimulation sequences with 

prevalence of the slow mechanisms of adaptation, thus accomplishing the time-

invariance assumption. 

5. CONCLUSIONS 

This paper describes in detail the Split-iterative randomized stimulation and 

averaging (Split-IRSA) technique. This technique allows overlapping AEPs of 

different morphology to be disentangled through an iterative procedure in the 
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time-domain. The results obtained with real and synthesized data indicate that 

the performance of this technique is robust when the parameter that controls 

convergence (𝛼-value) and the number of iterations are adequately selected. A 

new strategy was designed to evaluate the time-invariant assumption on the AEP 

morphology in jittered sequences. The results point out that both fast and slow 

mechanisms of adaptation influence the AEP morphology, and therefore, both 

mechanisms should be taken into account when time-invariance is assumed. 
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Figure Legends 

• Figure 1. Performance and parameters involved on the Split-IRSA technique. 

(A) Histogram of the inter-stimulus interval (SOA) of an example stimulation 

sequence 𝒔(𝑛). The sub-sequences 𝒔𝟏(𝑛) and 𝒔𝟐(𝑛) are marked on the figure. 

(B) Parameter settings of this experiment. (C) Normalized energy (𝜇𝑉2) of the 

averaged residual, 
1

𝐾𝜏
· ∑ 𝒛𝒊(𝑗 + 𝒎𝝉(𝑘))

𝐾𝜏
𝑘=1 , at different iterations and 𝛼-values. 

This figure shows that instability problems (normalized energy increases with 

the number of iterations) can be avoided by selecting an appropriate value of 

𝛼. (D.1 and D.2) Evoked potential estimates at different iterations under 

instability: worse estimates are obtained in succeeding iterations. (E.1 and 

E.2) Evoked potential estimates at different iterations in a convergence 

scenario: better estimates are obtained in succeeding iterations, e.g., error 

between the original template and the estimates decrease as iterations 

increase. 

• Figure 2. Comparison of the morphology of ABR and MLR signals recorded 

from one subject (scenario 1) by narrow-jittered stimulation sequences and 

processed by IRSA and (scenario 2) by a single 16 ms-jittered stimulation 

sequence and processed by the Split-IRSA technique in different subsets of 

stimuli. (A.1) ABR signals obtained at different average SOA (Av SOA) in each 

scenario. (A.2 and A.3) Latency (ms) and amplitude (𝜇𝑉) of wave V and linear 

regression analysis evaluated at different rates in scenarios 1 and 2. (B.1) 

MLR signals obtained in each scenario and rate. (B.2) Latencies (ms) and 

linear regression analysis measured on the components Na, Pa, Nb and Pb 

at different rates in each scenario. (B.3, B.4 and B.5) Amplitudes (𝜇𝑉) and 
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linear regression analysis of the waves complexes Na-Pa, Pa-Nb and Nb-Pb 

at different rates in both scenarios. 

• Figure 3. MLR signals estimated by the Split-IRSA technique at a different 

number of iterations in a simulation study that reproduces the acquisition 

settings of experiment 1 when no noise is added to the synthesized EEG 

(panel A) and when noise is added at a similar RMS value as in a real situation 

(panel B). Errors between the MLR estimates obtained at 500 iterations and 

the original templates are shown in µVRMS. 

• Figure 4. Grand-average ABR (panel A) and MLR (panel B) waveforms from 

a set of 8 normal hearing subjects. Thick lines represent the ABR/MLR signals 

obtained from the complete sequence SOA0-16, and standard lines show the 

responses obtained at each rate-subset by the Split-IRSA technique. 

• Figure 5. Latencies (L) and amplitudes (A) of the main components of ABR 

(panel A) and MLR (panel B) signals obtained at the average SOA (Av SOA) 

of different rate-subsets. In panel A, the black and grey lines represent a linear 

regression analysis between the SOA intervals [4-16] and [0-8] ms, 

respectively. In panel B, the black line shows the linear regression analysis 

for the [0-16] ms SOA interval. The statistical analysis of these hypothesis 

tests are shown in table 1. 

• Figure 6. Inter-subject variability of the fast adaptation. The fast adaptation 

was measured as the difference of latencies (in ms) and ratio of amplitudes 

between the averaged values corresponding to the intervals [1-8] ms and [8-

16] ms, i.e. L[1-8]-L[8-16] and A[1-8]/A[8-16], both in ABR (panel A) and MLR (panel 
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B) signals. Black boxes represent the estimates measured on the Grand-

Average (GA) ABR/MLR waveforms, while the white boxes are the estimates 

for each individual subject. 
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Table  

Table 1. Statistic parameters of the linear regression hypothesis tests presented 

on figure 5. Legend: N, number of observations; r, correlation coefficient; R2, 

coefficient of determination; p-value, probability of rejecting the null hypothesis; 

a, angle slope; b, y-intercept; SE, standard error. * represents p-value < 0.05; # 

represents p-value ≈ 0.05. 

 SOA interval N r R2 p-value  a SE(a) b SE(b) 

Panel A 

LIII [4-16]  71 -0.088 0.008 0.46  -0.003 0.004 3.244 0.047 

LV [4-16]  84 -0.071 0.005 0.52  -0.005 0.008 5.452 0.087 

AIII [4-16]  71 0.196 0.039 0.10  0.007 0.004 0.190 0.048 

AV [4-16]  84 0.036 0.001 0.74  0.001 0.005 0.353 0.050 

LIII [0-8]  40 -0.257 0.066 0.10  -0.016 0.010 3.334 0.054 

LV [0-8]  44 -0.120 0.014 0.44  -0.016 0.022 5.517 0.122 

AIII [0-8]  40 0.448 0.200 0.0038* 0.021 0.007 0.101 0.039 

AV [0-8]  44 0.495 0.245 0.00063* 0.037 0.010 0.128 0.058 

Panel B 

LNa [0-16]  26 -0.121 0.015 0.56  -0.071 0.126 14.700 0.343 

LPa [0-16]  26 0.791 0.626 1.47e-06* 1.333 0.221 21.654 0.659 

LNb [0-16]  25 0.836 0.699 1.97e-07* 1.673 0.242 31.178 0.733 

LPb [0-16]  15 0.809 0.655 0.00026* 2.588 0.575 40.695 1.900 

ANaPa [0-16]  26 0.049 0.002 0.81  0.017 0.073 0.543 0.216 

APaNb [0-16]  25 0.378 0.143 0.062#  0.073 0.040 0.247 0.120 

ANbPb [0-16]  15 0.507 0.257 0.054#  0.064 0.033 0.151 0.111 
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A Split-IRSA Matlab routine

This section presents a Matlab routine that implements the Split-IRSA technique. This function receives as input pa-
rameters the recorded electroencephalogram (EEG) y, a trigger matrix m, the number of iterations I , the length of the
averaging window in samples J , and the convergence-control parameter α. The output parameter of this function is the
matrix hi, which includes the deconvolved auditory evoked potentials.

The format of these parameters is presented below. The EEG y is presented as a column vector

y =


y(1)
y(2)

...
y(N)

 (1)

where N represents the number of samples of the EEG. m is a matrix containing the triggers of each scenario (m1,2,...,T )
in column vectors, completing with zeros. An example of the m matrix is presented below. T is the number of scenarios
and K1,2,...,T the number of stimuli in each scenario.

m =



m1(1) m2(1) . . . mT (1)
m1(2) m2(2) . . . mT (2)

...
... . . .

...

m1(K1)
... . . .

...

0
... . . . mT (KT )

...
... . . . 0

0 m2(K2) . . . 0


(2)
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The deconvolved AEPs (h1,2,...,T ) are presented in columns in the hi matrix, where J represents the length of the
averaging window in samples:

hi =


h1(1) h2(1) . . . hT (1)
h1(2) h2(2) . . . hT (2)

...
...

. . .
...

h1(J) h2(J) . . . hT (J)

 (3)

The Matlab routine that implements the Split-IRSA technique is presented below.

function [hi] = Split_IRSA(y,m,I,J,alpha)
% Input parameters: y (Recorded EEG)
% m (Trigger vectors: [m1;m2;...;mT])
% I (Number of iterations)
% J (Length of the averaging window in samples)
% alpha (Convergence-control parameter)
% Output parameters: hi (AEP estimates)

% Initialization
T = size(m,2); % Number of scenarios
K = sum(m>0); % Number of stimuli per scenario
hi = zeros(J,T); % AEPs initialization

% Iterations
for i=1:I

% Residual model estimate (z)
z = y; % Model "z" initialization
for tau=1:T % Loop in scenarios

for k=1:K(tau) % Loop in stimuli
Sweep = m(k,tau):m(k,tau)+J-1; % Sweep selection
z(Sweep) = z(Sweep)-hi(:,tau); % Removes all AEPs from y(n)

end
end

% Averaged residuals estimate
R = zeros(J,T); % Residual initialization
for tau=1:T % Loop in scenarios

for k=1:K(tau) % Loop in stimuli
Sweep = m(k,tau):m(k,tau)+J-1; % Sweep selection
R(:,tau) = R(:,tau) + z(Sweep)/K(tau); % Average of residuals

end
R(:,tau) = R(:,tau)-mean(R(:,tau)); % Residual demean

end

% AEP estimate on iteration "i"
hi = hi+alpha*R;

end
return;

2



B Experiment 2. Simulations
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A.2 - ABR Scenario 2 (No-Noise)
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B.1 - ABR Scenario 1 (Noise)
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Figure 1: ABR signals estimated by the Split-IRSA technique at a different number of iterations in a simulation study that
reproduces the acquisition settings of experiment 1 when no noise is added to the synthesized EEG (panel A) and when
noise is added at a similar RMS value as in a real situation (panel B).
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Rate 0 it 10 it 20 it 50 it

ISI15−16 0.00248 0.00020 0.00001 <0.00001
ISI14−15 0.00248 0.00020 0.00001 <0.00001
ISI13−14 0.00244 0.00020 0.00001 <0.00001
ISI12−13 0.00244 0.00020 0.00001 <0.00001
ISI11−12 0.00251 0.00020 0.00001 <0.00001
ISI10−11 0.00243 0.00020 0.00001 <0.00001
ISI9−10 0.00274 0.00023 0.00001 <0.00001
ISI8−9 0.00698 0.00031 0.00002 <0.00001
ISI7−8 0.01038 0.00034 0.00002 <0.00001
ISI6−7 0.01053 0.00034 0.00002 <0.00001
ISI5−6 0.01783 0.00035 0.00002 <0.00001
ISI4−5 0.01929 0.00038 0.00002 <0.00001
ISI3−4 0.02060 0.00042 0.00002 <0.00001
ISI2−3 0.02126 0.00043 0.00003 <0.00001
ISI1−2 0.02093 0.00034 0.00002 <0.00001
ISI0−1 0.02139 0.00018 0.00001 <0.00001

Table 1: Errors (µVRMS) between the original template and the ABR estimate obtained at different iterations in Scenario
1 (No-Noise).

Rate 0 it 10 it 20 it 50 it

ISI15−16 0.00285 0.00024 0.00001 <0.00001
ISI14−15 0.00282 0.00024 0.00001 <0.00001
ISI13−14 0.00286 0.00024 0.00001 <0.00001
ISI12−13 0.00278 0.00024 0.00001 <0.00001
ISI11−12 0.00285 0.00024 0.00001 <0.00001
ISI10−11 0.00284 0.00024 0.00001 <0.00001
ISI9−10 0.00345 0.00024 0.00001 <0.00001
ISI8−9 0.00511 0.00027 0.00001 <0.00001
ISI7−8 0.01240 0.00038 0.00002 <0.00001
ISI6−7 0.01586 0.00041 0.00002 <0.00001
ISI5−6 0.02853 0.00042 0.00002 <0.00001
ISI4−5 0.03173 0.00043 0.00002 <0.00001
ISI3−4 0.03187 0.00046 0.00002 <0.00001
ISI2−3 0.03332 0.00052 0.00002 <0.00001
ISI1−2 0.03301 0.00046 0.00002 <0.00001
ISI0−1 0.03406 0.00028 0.00001 <0.00001

Table 2: Errors (µVRMS) between the original template and the ABR estimate obtained at different iterations in Scenario
2 (No-Noise).
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Rate 0 it 10 it 20 it 50 it

ISI15−16 0.03486 0.03519 0.03522 <0.03522
ISI14−15 0.02712 0.02708 0.02705 <0.02705
ISI13−14 0.03467 0.03440 0.03442 <0.03442
ISI12−13 0.03876 0.03788 0.03787 <0.03788
ISI11−12 0.03939 0.03994 0.03994 <0.03994
ISI10−11 0.03651 0.03646 0.03647 <0.03647
ISI9−10 0.03469 0.03498 0.03505 <0.03506
ISI8−9 0.03964 0.03791 0.03785 <0.03784
ISI7−8 0.03623 0.03230 0.03230 <0.03230
ISI6−7 0.03692 0.03639 0.03642 <0.03643
ISI5−6 0.03265 0.03151 0.03155 <0.03155
ISI4−5 0.04177 0.03385 0.03381 <0.03380
ISI3−4 0.04054 0.03423 0.03432 <0.03433
ISI2−3 0.04148 0.04033 0.04046 <0.04047
ISI1−2 0.04186 0.03906 0.03905 <0.03905
ISI0−1 0.04390 0.03924 0.03929 <0.03930

Table 3: Errors (µVRMS) between the original template and the ABR estimate obtained at different iterations in Scenario
1 (Noise).

Rate 0 it 10 it 20 it 50 it

ISI15−16 0.03489 0.03516 0.03522 <0.03522
ISI14−15 0.02758 0.02706 0.02705 <0.02705
ISI13−14 0.03448 0.03440 0.03442 <0.03442
ISI12−13 0.03876 0.03793 0.03788 <0.03788
ISI11−12 0.03991 0.03990 0.03993 <0.03994
ISI10−11 0.03595 0.03645 0.03647 <0.03647
ISI9−10 0.03389 0.03493 0.03505 <0.03506
ISI8−9 0.03772 0.03784 0.03784 <0.03784
ISI7−8 0.03820 0.03230 0.03230 <0.03230
ISI6−7 0.03723 0.03629 0.03642 <0.03643
ISI5−6 0.04106 0.03154 0.03155 <0.03155
ISI4−5 0.05366 0.03395 0.03381 <0.03380
ISI3−4 0.04657 0.03411 0.03431 <0.03433
ISI2−3 0.04621 0.04018 0.04045 <0.04047
ISI1−2 0.04786 0.03897 0.03905 <0.03905
ISI0−1 0.05151 0.03922 0.03929 <0.03930

Table 4: Errors (µVRMS) between the original template and the ABR estimate obtained at different iterations in Scenario
2 (Noise).
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Rate 0 it 10 it 20 it 50 it 100 it 200 it 500 it

ISI12−16 0.07414 0.06445 0.04711 0.01954 0.00559 0.00073 <0.00001
ISI8−12 0.09810 0.06756 0.04822 0.01898 0.00503 0.00061 <0.00001
ISI4−8 0.09740 0.05159 0.03621 0.01384 0.00351 0.00040 <0.00001
ISI0−4 0.07541 0.02057 0.01430 0.00537 0.00132 0.00015 <0.00001

Table 5: Errors (µVRMS) between the original template and the MLR estimate obtained at different iterations in Scenario
1 (No-Noise).

Rate 0 it 10 it 20 it 50 it 100 it 200 it 500 it

ISI12−16 0.14598 0.12331 0.10415 0.06479 0.03096 0.00123 0.00015
ISI8−12 0.12143 0.09927 0.08242 0.04977 0.02329 0.00348 0.00011
ISI4−8 0.08769 0.06534 0.05347 0.03148 0.01448 0.00568 0.00007
ISI0−4 0.04881 0.02413 0.01956 0.01134 0.00516 0.00770 0.00002

Table 6: Errors (µVRMS) between the original template and the MLR estimate obtained at different iterations in Scenario
2 (No-Noise).

Rate 0 it 10 it 20 it 50 it 100 it 200 it 500 it

ISI12−16 0.07356 0.06166 0.04376 0.02297 0.02787 0.03285 0.03354
ISI8−12 0.09586 0.06450 0.04461 0.02145 0.02522 0.02957 0.03015
ISI4−8 0.10565 0.05841 0.04357 0.02523 0.02290 0.02427 0.02453
ISI0−4 0.07952 0.02382 0.01929 0.01578 0.01632 0.01689 0.01696

Table 7: Errors (µVRMS) between the original template and the MLR estimate obtained at different iterations in Scenario
1 (Noise).

Rate 0 it 10 it 20 it 50 it 100 it 200 it 500 it

ISI12−16 0.14664 0.12219 0.10252 0.06497 0.04046 0.03359 0.03354
ISI8−12 0.12051 0.09700 0.07977 0.04957 0.03309 0.02999 0.03015
ISI4−8 0.09263 0.06901 0.05696 0.03651 0.02625 0.02446 0.02453
ISI0−4 0.05168 0.02736 0.02382 0.01873 0.01703 0.01692 0.01696

Table 8: Errors (µVRMS) between the original template and the MLR estimate obtained at different iterations in Scenario
2 (Noise).
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C Experiment 3. Individual ABR & MLR signals
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Figure 2: ABR and MLR signals from subject 1 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).
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Figure 3: ABR and MLR signals from subject 2 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).
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Figure 4: ABR and MLR signals from subject 3 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).
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Figure 5: ABR and MLR signals from subject 4 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).
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Figure 6: ABR and MLR signals from subject 5 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).

Time (ms)
0 2 4 6 8 10

SOA 00-01
SOA 01-02
SOA 02-03
SOA 03-04
SOA 04-05
SOA 05-06
SOA 06-07
SOA 07-08
SOA 08-09
SOA 09-10
SOA 10-11
SOA 11-12
SOA 12-13
SOA 13-14
SOA 14-15
SOA 15-16

SOA 00-16

0.25 µVIII V

A6. ABR

Time (ms)
0 20 40 60 80 100

SOA 00-04

SOA 04-08

SOA 08-12

SOA 12-16

SOA 00-16

0.35 µV

Na

Pa

Nb

Pb

B6. MLR

Figure 7: ABR and MLR signals from subject 6 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).
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Figure 8: ABR and MLR signals from subject 7 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals).
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Figure 9: ABR and MLR signals from subject 8 obtained from the complete sequence (thick signals at the upper section
of the panels) and from different rate-subsets (standard-size signals). PAM: Post-Auricular Muscle.
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