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Abstract
This paper describes a potential method to detect changes in cerebral blood flow (CBF) using electrocardiography (ECG) 
signals, measured across scalp electrodes with reference to the same signal across the chest—a metric we term the Electro-
cardiography Brain Perfusion index (EBPi). We investigated the feasibility of EBPi to monitor CBF changes in response to 
specific tasks. Twenty healthy volunteers wore a head-mounted device to monitor EBPi and electroencephalography (EEG) 
during tasks known to alter CBF. Transcranial Doppler (TCD) ultrasound measurements provided ground-truth estimates 
of CBF. Statistical analyses were applied to EBPi, TCD right middle cerebral artery blood flow velocity (rMCAv) and EEG 
relative Alpha (rAlpha) data to detect significant task-induced changes and correlations. Breath-holding and aerobic exer-
cise induced highly significant increases in EBPi and TCD rMCAv (p < 0.01). Verbal fluency also increased both measures, 
however the increase was only significant for EBPi (p < 0.05). Hyperventilation induced a highly significant decrease in TCD 
rMCAv (p < 0.01) but EBPi was unchanged. Combining all tasks, EBPi exhibited a highly significant, weak positive correla-
tion with TCD rMCAv (r = 0.27, p < 0.01) and the Pearson coefficient between EBPi and rAlpha was r = − 0.09 (p = 0.05). 
EBPi appears to be responsive to dynamic changes in CBF and, can enable practical, continuous monitoring. CBF is a key 
parameter of brain health and function but is not easily measured in a practical, continuous, non-invasive fashion. EBPi may 
have important clinical implications in this context for stroke monitoring and management. Additional studies are required 
to support this claim.

Keywords  Cerebral blood flow · Continuous monitoring · Electrocardiography · Electroencephalography · Quantitative 
electroencephalography · Stroke

1  Introduction

Convenient and reliable continuous monitoring of cerebral 
blood flow (CBF) is challenging. Adequate CBF, nominally 
50 mL/100 g/min [1], is vital for brain health and functions 
and is a key parameter for diagnosing and treating cerebro-
vascular diseases like acute ischaemic stroke (AIS). Com-
puted tomography perfusion (CTP) imaging provides robust 
voxel-wise maps of CBF, however only at sparse time points 
that are typically days or weeks apart. More frequent CTP 
imaging is not practical because of the radiation dose asso-
ciated with each acquisition. Thus, CTP imaging provides 
valuable ‘snapshots’ of CBF but does not provide continuous 
monitoring that could support real-time treatment monitor-
ing and the detection of new stroke events.

Transcranial Doppler (TCD) ultrasound, functional near 
infrared spectroscopy (fNIRS), and rheoencephalography 
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(REG) are non-invasive methods to continuously monitor 
CBF [2–4]. However, none have widespread clinical use in 
the context of stroke. TCD measures CBF velocity (CBFv) 
rather than flow rate. A linear relationship between the 
two is dependent on a constant vessel diameter [5]. TCD 
can be inaccurate in 5–20% of patients due to inadequate 
acoustic transtemporal bone windows and suffers from high 
intra-individual variability [3, 6]. The accuracy of fNIRS is 
influenced by spatial resolution, signal artefacts and lack of 
standardisation [7] thus is chiefly used as a research tool. 
REG monitors CBF by measuring the electrical conductivity 
between two scalp electrodes. It is inexpensive and can be 
wearable. However, REG is rarely used for clinical applica-
tion due to the current lack of pathological and physiological 
correlations [2].

Electroencephalography (EEG) is a non-invasive method 
for the continuous monitoring of brain electrical activity. 
EEG is used to detect and describe both healthy brain func-
tion and neuropathology [8]. Although not a direct meas-
ure, EEG is also sensitive to changes in CBF due to related 
changes in metabolic and neural activity [1]. Currently, 
however, there are no reliable, wearable measurement sys-
tems for practical, continuous monitoring of CBF in stroke 
patients.

The heart generates the largest electrical signal in the 
body, typically measured using the electrocardiogram 
(ECG). And, as one of the most electrically conductive 
components of the body, blood provides a major pathway 
for the propagation of this electrical signal [9]. Given that 
a change in blood flow changes the electrical conductivity 
of the blood [10], we hypothesise that changes in CBF will 
manifest in the amplitude of the ECG signal recorded across 
scalp electrodes, with respect to the same signal recorded 
across the chest.

The aim of this study was to investigate the feasibility 
of this ECG-based measurement—termed the Electrocardi-
ography Brain Perfusion index (EBPi)—to detect changes 
in CBF during tasks known to impact CBF, to characterise 
its sensitivity and performance, and to validate the findings 
against gold standard CBF measures.

2 � Methods

2.1 � Device construction, setup, and principle 
of operation

An EEG headset (Fig. 1) was constructed with an elastic 
fabric headband, an 8-channel 250 Hz sampling OpenBCI 
Cyton Board (Cyton Biosensing Board, OpenBCI), six EEG 
leads terminating in plastic Ag–AgCl coated electrodes, two 
ECG chest leads terminating in snap ECG electrodes, two 
ground/reference ear clip electrodes and a small lithium-ion 

battery (3.7 V, 400 mA). Electrode placement is shown in 
Fig. 2. The scalp electrodes (Fp1, Fp2, F7, F8, T3 and T4) 
were positioned according to the international 10–20 system, 
adjacent the frontal lobe, allowing access to the transtempo-
ral bone window for TCD measurements of the middle cer-
ebral artery (MCA). Two ECG chest leads (LA, RA Fig. 2) 
were attached below each clavicle using adhesive ECG 
electrodes. The ground/reference electrodes were placed on 
each ear lobe (Fig. 1b). The OpenBCI Cyton Board and bat-
tery were secured in a pocket on the back of the headband 
(Fig. 1a). Continuous EEG and ECG data were streamed 
wirelessly (OpenBCI RF USB dongle) to a nearby laptop 
during the experimental trials.

2.2 � Task choice

Breath-holding, hyperventilation, verbal fluency, and aero-
bic exercise were identified as tasks that induce changes in 
CBFv, which can be measured using TCD [11–14]. Breath-
holding increases the partial pressure of CO2 (PaCO2) in 
the brain, leading to vasodilation of cerebral arterioles, 
increasing CBFv [13]. Hyperventilation decreases PaCO2 
in the brain, leading to vasoconstriction of cerebral arteri-
oles, decreasing CBFv [12]. Verbal fluency tasks involve 
letter-specific word retrieval, causing increased neural 
activation in the frontal and temporal lobes and a concomi-
tant increase in CBFv [14]. Low and moderate intensity 
aerobic exercise increases CBFv, however this effect is 
reduced during vigorous exercise [11].

2.3 � Participants

Twenty healthy adult volunteers (mean age 32 yr, range 
18–60 yr, SD 13.1 yr) participated in the study. Before test-
ing, participants fasted for two hours and refrained from 
caffeine and vigorous exercise for 6 and 12 h, respectively 
[11]. Participants were to be 18 years or older. Participants 

Fig. 1   Prototype headset for ECG and EEG monitoring. A wearable 
EEG recording device (a, b) containing the OpenBCI Cyton Board 
(c) and adapted for ECG signal processing across the scalp and chest 
(d)
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with any history of epilepsy (n = 1) were excluded from the 
hyperventilation task. There were no other exclusion criteria.

2.4 � Experimental protocol

All experimental procedures were conducted in accord-
ance with an approved human ethics protocol (USyd 
2019/1008). After the headset was fitted, data were col-
lected according to Fig. 3. Each trial consisted of a 3-min 
baseline phase, where participants were at rest and relaxed, 
a time-on-task phase, and a recovery phase. The recov-
ery phase was 3-min following the breath-holding, verbal 
fluency and hyperventilation tasks, and 10-min follow-
ing aerobic exercise. All phases except for the aerobic 
exercise task were performed with eyes closed to avoid 
EEG eye-blink artefacts. After each phase, the right MCA 
(rMCA) was insonated to measure rMCA blood flow veloc-
ity (rMCAv) using a 1–5 MHz phased array transducer 
on a Philips iU22 ultrasound machine (Philips Ultrasound, 
Bothell, WA, USA) at an angle of 30 degrees and a depth 
of approximately 5 cm. This was repeated 3 times in quick 
succession (within 30-s) to provide a reliable average TCD 
rMCAv measurement.

Prior to every baseline phase, electrode contact, and 
data streaming were checked, and the ultrasound probe was 
placed over the right transtemporal bone window to locate 
the rMCA.

For the breath-holding task participants held their breath 
for 30-s [13]. For the hyperventilation task, participants 
breathed in and out at normal tidal volume for 3-min, in time 
with a metronome set to 30 beats per minute [12]. The verbal 
fluency task required participants to say as many words start-
ing with the letter ‘t’ (excluding proper nouns) as possible 

in 1-min [14]. They were instructed to avoid words with 
the same prefix, e.g., ‘try’, ‘trying’. Audio recordings of the 
participants’ answers were used for scoring. For the aerobic 
exercise task, participants wore a chest strap (TICKR Heart 
Rate Monitor, Wahoo) to obtain a resting heart rate (rHR) 
and to monitor heart rate (HR). One participant wore a wrist-
based HR monitor (Fenix 6x, Garmin). Moderate intensity 
exercise was defined as 50% of the heart rate reserve (HRR) 
calculated using the Karvonen formula and age-predicted 
maximum HR [11]:

Participants were seated on an exercise bike (Monark 
Ergomedic 828 E, Monark Sports and Medical) and 
instructed to pedal at 60 revolutions per minute (RPM). 
The RPM was displayed on a screen to provide feedback. 
Resistance started at 5 N and increased by 5 N each min-
ute until the target HR (50% HRR) was reached. If the 
target HR was exceeded, the resistance was decreased 
by 2.5 N. All participants reached the target HR after 
4–8 min. Post-exercise, participants recovered in a chair 
for 10-min. Preliminary testing indicated that this longer 
recovery time was necessary for CBF to return to base-
line levels.

Participants chose which of the four tasks to perform. 
The same order of tasks was followed by all participants 
(breath-holding, hyperventilation, verbal fluency, aerobic 
exercise), skipping tasks that were not chosen (not all par-
ticipants performed all tasks). Participants performing more 
than one task had a 10-min resting break between tasks to 
ensure CBF returned to baseline [15].

(1)50%HRR =
(220 − age + rHR)

2

Fig. 2   Device electrode layout

Fig. 3   Study design. For each task (breath-holding, hyperventila-
tion, verbal fluency, and aerobic exercise), ECG and EEG data were 
collected during baseline, task, and recovery for the times indicated. 
Triplicate TCD measurements were obtained immediately after each 
of these phases
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2.5 � Electrode contact

In several participants, good contact at T3 and T4 was not 
possible due to interference from hair, thus T3 and T4 were 
excluded from analysis in all participants.

2.6 � Data processing and analysis

2.6.1 � Electrocardiography brain perfusion index (EBPi)

EBPi was implemented by capturing ECG data at each scalp 
electrode re-referenced to chest electrode LA (heart adja-
cent) (online supplementary information Fig. S1b). ECG 
data were also captured across the chest by re-referencing 
chest electrode RA to chest electrode LA (online supplemen-
tary information Fig. S1c).

EBPi was processed using a custom MATLAB (Math-
Works Inc.) script. First, a fourth-order bandpass filter from 
5–60 Hz was applied to the re-referenced data to filter noise. 
R-wave peaks and S-wave troughs of ECG QRS-complexes 
appearing in all of the re-referenced data (scalp electrodes 
and across the chest) were then detected using the MATLAB 
‘findpeaks’ function. Non-outlier R-wave peaks and S-wave 
troughs were identified using the MATLAB ‘rmoutliers’ 
function. The amplitude difference between each R-wave 
peak and S-wave trough of every ECG QRS-complex at each 
scalp electrode was then computed relative to the amplitude 
difference between the R-wave peak and S-wave trough of 
the corresponding ECG QRS-complex across the chest. For 
each scalp electrode, EBPi was computed for a given time 
window Δt according to:

where k indexes the electrode, Δtj denotes the j-th time inter-
val which contains Nj non-outlier QRS-complexes indexed 
by i , Ak,i is the amplitude difference between the R-wave 
peak and S-wave trough of the i-th QRS-complex for scalp 
electrode k measured with respect to chest electrode LA, and 
A

′

i
 is the amplitude difference between the R-wave peak and 

S-wave trough of the i-th QRS-complex for chest electrode 
RA measured with respect to chest electrode LA. Task-based 
Δt values are shown in Table 1 and were chosen to ensure 
several ECG QRS-complexes were found in each window. 
For each experimental trial, EBPi values were normalised 
(offset) to the mean baseline value of the scalp electrode. 
We then computed mean EBPi during baseline, task, and 
recovery for each electrode. For each task grand average 
EBPi values for a specific scalp electrode were obtained 
by averaging the baseline-corrected values in (2) across all 

(2)EBPik,Δtj =

∑Nj

i

Ak,i

A�
i

Nj

participants. In two participants the ECG data captured at 
RA was inverted, most likely due to the orientation of the 
heart axis. To process data consistently, RA data from these 
two participants were first inverted.

2.6.2 � EEG processing

EEG data were also processed using MATLAB. The data 
processing pipeline consisted of:

(1)	 Noise filtering of the raw EEG data (fourth-order band-
pass, 0.5–30 Hz);

(2)	 Segmenting the data into 4-s epochs with 50% overlap, 
excluding any epochs containing values outside the 
range [− 100 µV, 100 µV];

(3)	 Performing a Fast Fourier Transform on the epochs to 
extract the absolute power in the delta (1.5–3.5 Hz), 
theta (3.5–7.5 Hz), alpha (7.5–12.5 Hz) and beta (12.5–
25 Hz) frequency bands;

(4)	 Computing the relative power (%) of each frequency 
band with respect to the total absolute power across the 
four bands;

(5)	 Computing continuous qEEG metrics for each scalp 
electrode using a 30-s window with 50% overlap for 
the duration of each trial;

(6)	 Computing mean qEEG metrics for each scalp elec-
trode based on the measures in (5), for each phase 
(baseline, task, and recovery) of each trial.

No eye-blink artefact suppression was applied since all 
EEG data were collected with eyes closed.

Decreased EEG alpha activity has been demonstrated 
during breath-holding, hyperventilation, and verbal flu-
ency tasks, and following aerobic exercise [12, 14, 16, 17]. 
Therefore, relative alpha (rAlpha) was chosen as the qEEG 
measure to compare with EBPi.

Participants with any history of epilepsy (n = 1) were 
excluded from EEG processing.

A sample of EEG data captured during the study is pre-
sented in the online supplementary information Fig. S1a.

Table 1   Task-based time windows (Δt) for EBPi calculation

Task Time window (Δt) (s)

Breath-holding 15
Hyperventilation 20
Verbal fluency 20

Aerobic exercise 30
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2.6.3 � TCD data processing

For each trial, TCD rMCAv (cm.s−1) was calculated auto-
matically according to:

where Vpsv and Vedv denote peak systolic velocity and end 
diastolic velocity, respectively.

The three repeat measurements of TCD rMCAv captured 
at each phase (baseline, task, recovery) were averaged to 
produce mean TCD rMCAv for each experimental trial. 
Grand averages were also calculated by averaging mean 
baseline, task, and recovery TCD rMCAv across all partici-
pants for each task.

2.6.4 � Statistical analysis

The Student’s paired t-test (two-tailed) was used to assess 
differences in baseline, task, and recovery phases for each 
of mean EBPi, TCD rMCAv and rAlpha separately, for all 
experimental trials and grand averages for all tasks. For 
EBPi and rAlpha this was computed for all electrodes. The 
Pearson r coefficient and the Student’s two-tailed t-test were 
used to assess the correlation between mean EBPi, TCD 
rMCAv and rAlpha for the task and recovery phase, using 
data from all 74 trials. Baseline-corrected values were used 
in all correlation analyses, and significance was taken to be 
p < 0.05.

3 � Results

3.1 � Participant demographics

Demographic and task participation data for the 20 volun-
teers (12 males, 8 females) are shown in Table 2. Seventy-
four trials were completed in total.

(3)rMCAv =
Vpsv + 2Vedv

3

3.2 � Task‑based data analysis

3.2.1 � Breath‑holding

During the breath-holding task (Fig. 4a), grand average EBPi 
sharply increased from an electrode mean baseline value of 0 
(± 1.8) to a mean task value of 7.4 (± 3.2). During the recov-
ery phase grand average EBPi decreased to an electrode 
mean value of 0.6 (± 1.7). The increase from baseline-to-
task and the decrease from task-to-recovery were both highly 
significant for all electrodes (p < 0.01). Mean TCD rMCAv 
also showed a highly significant increase following breath-
holding and decrease following recovery (p < 0.01). Mean 
rAlpha significantly decreased following breath-holding and 
significantly increased following recovery in all electrodes 
(p < 0.05). The Pearson coefficient between EBPi and TCD 
rMCAv was r = 0.14 (p = 0.08) and EBPi was negatively cor-
related to rAlpha (r = − 0.47, p < 0.01) (Fig. 5a).

3.2.2 � Hyperventilation

During the hyperventilation task (Fig. 4b), grand average 
EBPi was unchanged from an electrode mean baseline value 
of 0 (± 1.8) to a mean task value of 0.2 (± 2.0). During the 
recovery phase grand average EBPi remained unchanged 
at an electrode mean value of 0.6 (± 2.1). However, mean 
TCD rMCAv showed a highly significant decrease with 
hyperventilation and a highly significant increase following 
recovery (p < 0.01). Hyperventilation and recovery resulted 
in non-significant changes in mean rAlpha in all electrodes 
except for a significant increase for Fp2 alone post-recovery 
(p < 0.05). EBPi was positively correlated with TCD rMCAv 
(r = 0.24, p < 0.01). The Pearson coefficient between EBPi 
and rAlpha was r = 0.11 (p = 0.22) (Fig. 5b).

3.2.3 � Verbal fluency

During the verbal fluency task, participants named on aver-
age 14 words (range 5–28). During this task (Fig. 4c), grand 
average EBPi increased from an electrode mean baseline 
value of 0 (± 1.7) to a mean task value of 3.3 (± 1.9). Dur-
ing the recovery phase grand average EBPi decreased to an 
electrode mean value of 1.6 (± 1.5). The increase in mean 
EBPi from baseline-to-task was statistically significant in all 
electrodes (p < 0.05) but the decrease from task-to-recovery 
was not. Mean TCD rMCAv also increased following the 
task and decreased following the recovery phase, but neither 
was significant. The verbal fluency task caused a significant 
decrease in mean rAlpha in all electrodes (p < 0.05). Follow-
ing the recovery phase there was a highly significant increase 

Table 2   Volunteer demographics and task participation

n: Number of participants; yr: Years; SD: Standard deviation

Task Male n (mean 
age (yr), SD)

Female n 
(mean age (yr), 
SD)

Combined n 
(mean age (yr), 
SD)

Breath-holding 12 (36.6, 14.3) 7 (24.6, 6.6) 19 (32.2, 13.2)
Hyperventilation 12 (36.6, 14.3) 7 (23.0, 6.1) 19 (31.6, 13.5)
Verbal fluency 11 (37.1, 14.8) 7 (24.6, 6.6) 18 (32.2, 13.6)
Aerobic exercise 12 (36.6, 14.3) 6 (23.0, 5.6) 18 (32.1, 13.6)
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Fig. 4   a-d Grand average EBPi and TCD rMCAv during a breath-hold-
ing, b hyperventilation, c verbal fluency and d aerobic exercise. Lines 
represent grand average EBPi recorded at scalp electrodes Fp1, Fp2, F7 
and F8. Bars represent grand average TCD rMCAv. Error bars show ± 1 
standard deviation. Streaming of the EEG and ECG data were interrupted 
during one breath-holding trial, resulting in a shortened baseline phase, 
and five aerobic exercise trials, resulting in a shortened task and recovery 
phase in one trial and a shortened recovery phase in four trials

Fig. 5   a-d Correlation between baseline-corrected mean EBPi, TCD 
rMCAv and rAlpha for the task and recovery phase of a breath-hold-
ing, b hyperventilation, c verbal fluency and d aerobic exercise. Out-
liers are circled in red
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in mean rAlpha in all electrodes (p < 0.01). The Pearson 
coefficient between EBPi and TCD rMCAv was r = 0.06 
(p = 0.46) and between EBPi and rAlpha was r = − 0.02 
(p = 0.87) (Fig. 5c). For illustrative purposes, grand aver-
age EBPi and rAlpha during verbal fluency are displayed 
in Fig. 6. Verbal fluency induced a maximum decrease in 
rAlpha that preceded maximum EBPi by 20-s. During the 
recovery phase, EBPi and rAlpha decreased and increased, 
respectively, back towards baseline levels.

3.2.4 � Aerobic exercise

During the aerobic exercise task, chest motion resulted in 
frequent corruption of the ECG QRS-complex reference 
signal. The benefit of applying a bandpass filter to extract 
reliable ECG QRS-complex signals was marginal. There-
fore, the task phase was removed from analysis and instead 
mean EBPi and rAlpha estimates were computed for the task 
phase using the first 30-s of the recovery phase, and for the 
recovery phase using the last 30-s.

Following the aerobic exercise task (Fig. 4d), grand aver-
age EBPi increased from an electrode mean baseline value 
of 0 (± 2.0) to a mean task value of 3.9 (± 2.5). During the 
recovery phase grand average EBPi decreased to an elec-
trode mean value of 1.4 (± 2.5). The increase in mean EBPi 
from baseline-to-task was highly significant in Fp2 and F7 
(p < 0.01) and significant in Fp1 and F8 (p < 0.05), but the 
decrease from task-to-recovery was not significant in any 
electrode. Mean TCD rMCAv showed a highly significant 
increase from baseline-to-task and decrease from task-to-
recovery (p < 0.01). Mean rAlpha exhibited non-significant 
changes in all electrodes from baseline-to-task and task-to 
recovery. EBPi was positively correlated to TCD rMCAv 
(r = 0.36, p < 0.01). The Pearson coefficient between EBPi 
and rAlpha was r = − 0.03 (p = 0.74) (Fig. 5d).

3.2.5 � Tasks combined

Combining data from all four tasks (74 trials) revealed a 
highly significant, weak positive correlation between EBPi 
and TCD rMCAv (r = 0.27, p < 0.01). The Pearson coeffi-
cient between EBPi and rAlpha was r = − 0.09 (p = 0.05).

4 � Discussion

There is a long history of utilising ECG signals to assess car-
diac haemodynamics [18]. However, utilising the ECG sig-
nal to infer blood flow in other parts of the body such as the 
brain has attracted much less attention. We investigated the 
feasibility of an ECG-based metric (EBPi) to detect changes 
in CBF. We developed a headset that provides continuous 
monitoring of EBPi and assessed the sensitivity of EBPi to 

detect changes in CBF during different tasks by validating 
against TCD measurements of CBFv.

By performing signal averaging over several minutes, 
low-amplitude (~ 10 μV) ECG signals can be detected 
at EEG scalp electrodes [19]. We are interested in real-
time, continuous analysis of ECG signals at EEG scalp 
electrodes, thus averaging across lengthy timescales 
is not desirable. To reliably detect ECG signals across 
the scalp for real-time processing, we re-positioned the 
reference electrode to chest electrode LA (adjacent the 
heart); this resulted in ECG signals with QRS-complexes 
with R-wave peak—S-wave trough amplitude differences 
of ~ 500–600 μV measured at EEG scalp electrodes (online 
supplementary information Fig. S1b).

We were able to replicate previously reported changes 
in CBFv induced by the four tasks using TCD [11–14]. 
EBPi displayed the same changes as TCD rMCAv during 
breath-holding, verbal fluency and aerobic exercise—that 
is, EBPi and TCD rMCAv both increased during the task 
and decreased during recovery. These findings indicate 
that EBPi and TCD may be monitoring a similar under-
lying physiology. EBPi measures were recorded at scalp 
electrodes adjacent to the frontal lobe whereas TCD meas-
urements were obtained from the rMCA. Both the frontal 
lobe and rMCA are supplied by the internal carotid artery 
(ICA), thus the tasks performed are expected to have 
induced changes in CBF in the ICA resulting in changes 
in the frontal lobe and rMCA.

Hyperventilation induced a highly significant decrease 
in TCD rMCAv (p < 0.01), although EBPi was unchanged. 
However, when individual trials were assessed (Student’s 
t-test, two-tailed), hyperventilation induced a significant 
decrease in EBPi in 7/19 trials and TCD rMCAv in 9/19 
trials, revealing that these measures have a similar sensi-
tivity to this task. Furthermore, there was a highly signifi-
cant, weak positive correlation between EBPi and TCD 
rMCAv for hyperventilation (r = 0.24, p < 0.01). End tidal 
CO2 was not monitored in this study, thus we were unable 
to determine if all hyperventilation trials involved ade-
quate effort to induce hyperventilation and a subsequent 
decrease in CBF. This may have increased the variability 
in the hyperventilation results.

The correlation strength between EBPi and TCD rMCAv 
varied across the four tasks (Fig. 5). However, following out-
lier removal (red circles Fig. 5), a significant, weak positive 
correlation between EBPi and TCD rMCAv was detected 
in three of the tasks: hyperventilation r = 0.32; verbal flu-
ency r = 0.18; aerobic exercise r = 0.36 (p < 0.05). When all 
four tasks were combined (outliers removed) the correlation 
between EBPi and TCD rMCAv was r = 0.29 (p < 0.01). Out-
liers were detected using the Mahalanobis distance, where 
p < 0.001 [20].
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We were also able to replicate previously reported 
changes in EEG rAlpha induced by the four tasks [12, 14, 
16, 17]. Changes in rAlpha cannot be attributed to eye-blinks 
[21] since all measurements were obtained with eyes closed. 
Although other physiological artefacts (e.g., eye movement 
with eyes closed) may have affected EEG signals, addi-
tional artefact detection and removal methods were not 
implemented.

EBPi did not display any temporal or directional changes 
similar to rAlpha in any of the tasks. For example, during the 
verbal fluency task, rAlpha decreased to a minimum in Fp1, 
Fp2 and F7 20-s into the task phase whereas EBPi reached 
a maximum in all electrodes a further 20-s later (Fig. 6). A 
previous study also reported a sudden drop in alpha power 
that preceded the maximal CBFv measured by TCD dur-
ing verbal fluency [14]. Thus, these findings suggest that 
EBPi is sensitive to a different underlying physiology than 
rAlpha. Future studies will compare EBPi with additional 
EEG frequency bands and qEEG metrics that are implicated 
in specific tasks and/or pathologies.

When data from all four tasks were combined, there was 
a highly significant, weak positive correlation between EBPi 
and TCD rMCAv (r = 0.27, p < 0.01); and the Pearson coef-
ficient between EBPi and rAlpha was r = − 0.09 (p = 0.05). 
These provide further evidence that EBPi is more likely to 
monitor a similar physiological process to TCD (i.e., CBF) 
than rAlpha (i.e. neural electrical activity).

Our data are also suggestive of both localised and global 
changes. Hyperventilation induced changes in rAlpha that 
were not consistent across the four scalp electrodes. This 
could indicate sensitivity to localised changes in neural 
activity. By contrast, EBPi changes were consistent across 
all four scalp electrodes during all tasks, which may indicate 
that EBPi is sensitive to global changes – at least for the 
electrode placement used in this study. Previous studies have 
reported bilateral changes in CBFv during all four tasks [11, 
14, 22], hence consistent changes in EBPi across the four 
scalp electrodes might be expected. The sensitivity of EBPi 
to localised changes will be explored in future work using a 
device with more scalp electrodes.

Although the study provides evidence that EBPi is cor-
related with TCD, there were several limitations that pre-
vent us from concluding categorically that EBPi serves as a 
proxy for CBF. Firstly, without dedicated solutions to limit 
or remove motion-corrupted ECG signals, motion-induced 
artefacts prevented the analysis of EBPi during the aero-
bic exercise task. Adapting front-end signal acquisition to 
reduce artefacts and/or signal processing to remove artefacts 
will be important to reliably sample EBPi during tasks asso-
ciated with increased chest motion.

Secondly, the TCD data were obtained by a single, accred-
ited, experienced sonographer (JLC) for consistency. The 
system involved a conventional handheld probe, meaning 

it was not possible to obtain measurements accurately and 
consistently during tasks involving head movement (hyper-
ventilation, aerobic exercise), and instead the triplicate 
TCD measurements were obtained immediately post-task. 
A Student’s paired t-test (two-tailed) found no significant 
differences between the sequential measures captured fol-
lowing breath-holding, verbal fluency or aerobic exercise. 
Although a significant difference was detected between the 
2nd and 3rd sequential TCD measure following hyperventi-
lation (p = 0.02), there was no significant difference detected 
between the 1st and 2nd (p = 0.66) or 1st and 3rd (p = 0.11) 
measurements. Therefore, none of these measurements were 
removed from the analysis. These results indicate that the 
recovery of CBFv following each task is unlikely to have 
impacted the results. Nevertheless, contemporaneous TCD 
and EBPi measurement should still be preferred to remove 
this potential limitation.

Thirdly, the duration of the tasks may have impacted the 
results. The shortest tasks, breath-holding (30-s) and verbal 
fluency (1-min), exhibited the lowest Pearson coefficient 
between EBPi and TCD rMCAv (r = 0.14, p = 0.08 and 
r = 0.06, p = 0.46, respectively) compared to hyperventilation 
(3-min) and aerobic exercise (10-min) (r = 0.24, p < 0.01 and 
r = 0.36, p < 0.01, respectively). Thus, it is possible that more 
data might lead to significant correlations. Future studies 
will involve monitoring over longer periods of time.

And fourthly, the EBPi and EEG data collected may have 
been impacted by noise resulting from poor connectivity 
and/or electrode movement, since dry, plastic Ag–AgCl 
coated EEG scalp electrodes (OpenBCI) were used without 
any adhesive to keep the electrodes in place. Future device 
iterations will implement small, gel, adhesive EEG scalp 
electrodes to minimise the impedance and prevent electrode 
movement.

There are several physiological variables that may influ-
ence EBPi. Although EBPi is an ECG-based measure and 

Fig. 6   Grand average EBPi and rAlpha during verbal fluency at scalp 
electrodes Fp1, Fp2, F7 and F8. Error bars have been omitted for 
image clarity
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all four tasks induced an increase in heart rate, only three of 
the tasks induced an increase in EBPi. When all four tasks 
were combined, the Pearson coefficient between EBPi and 
heart rate was r = 0.08 (p < 0.01). This suggests that EBPi is 
not simply a proxy for heart rate.

Displacement of the heart can cause large changes in 
the ECG signal recorded across all body surfaces. EBPi is 
deliberately cast as a ratio (Eq. 2) in order for scalp-specific 
variation to be detectable despite intra-subject and inter-
subject variation, such as changes in the position and shape 
of the heart. Nevertheless, further investigation is required 
to understand the impact that factors like displacement of 
the heart may have on EBPi.

We did not measure cardiac blood flow in this study and 
therefore cannot be sure how potential task-induced changes 
in cardiac blood flow may have affected ECG amplitude, 
CBF, and EBPi. However, as mentioned in the Methods 
Sect. (2.2 Task Choice), the tasks performed in this study 
are known to induce changes in CBFv that are independent 
of changes in cardiac blood flow, and which are caused by 
neurovascular coupling. Aerobic exercise is known to cause 
an increase in cardiac blood flow [23] and CBFv, but the 
specific relationship between cardiac blood flow and CBFv 
during aerobic exercise was beyond the scope of our study. 
Importantly, we were able to replicate previously reported 
changes in CBFv during all of the four tasks using TCD. 
Furthermore, the main new finding we emphasise from 
our study is that EBPi displayed the same changes as TCD 
rMCAv during all of the tasks except hyperventilation. This 
is suggestive of a relationship between EBPi and CBF but is 
certainly not conclusive. A more targeted study is required 
to investigate any specific relationship between ECG ampli-
tude, cardiac blood flow, CBF and EBPi.

This study demonstrates that EBPi reflects changes 
related to TCD measures of CBFv. A linear relationship 
between CBF and CBFv is dependent on a constant cer-
ebral blood vessel dimeter [5]. Cerebral blood vessel dim-
eter, which may have changed during specific tasks (via 
neurovascular coupling and/or cerebral autoregulation 
[24]), was not monitored during the study therefore we 
cannot be sure if tasks induced changes in vessel diameter 
and how this may have affected EBPi. An additional study 
is required to investigate the impact of changing cerebral 
blood vessel diameter to determine if EBPi measures CBF 
or CBFv.

In principle EBPi is attempting to measure something 
similar to REG (i.e., CBF via changes in underlying tissue 
conductivity), however it does so by using ECG signals. 
Future work looking at a direct comparison between the 
two methods is required to understand their relative advan-
tages and limitations.

EBPi has potential application in the context of stroke. 
There is currently no device for the continuous monitoring 

of CBF and neural activity between CTP scans. During 
these time periods, standard care relies on neurological 
assessments, which can be subjective [25] and cannot be 
performed if the patient is sedated or unconscious. Ischae-
mic stroke accounts for 85% of all stroke cases [26] and 
is the result of a sudden restriction in CBF caused by a 
blood clot or atherosclerosis (the build-up of fat, choles-
terol and other substances on the arterial wall). The sudden 
interruption of CBF starves neurons of oxygen leading 
to changes in neuronal electrical activity, neuronal cell 
death, loss of neuronal functioning and, consequently, the 
onset of clinical stroke symptoms. Successful AIS treat-
ment involves the restoration of CBF using thrombolytic 
drugs such as tissue plasminogen activator (t-PA) or via 
mechanical thrombectomy [27]. A device that is able 
to continuously monitor stroke could add great value to 
stroke patient management.

In summary, this study provides evidence that EBPi 
is an easily obtained ECG-based measure that may be 
related to CBF, and which is distinct from rAlpha. Addi-
tional testing is required to further validate the feasibil-
ity and clinical utility of this method and device. Future 
studies will involve long term, continuous monitoring of 
stroke patients to determine if EBPi is able to monitor 
treatment outcome and detect significant changes from 
baseline in real time which might be indicative of salient 
clinical events. Previous reports have shown that qEEG 
measures, such as the delta/alpha ratio (DAR), can be used 
to detect stroke and assess stroke treatment [27]. Because 
EBPi uses EEG electrodes, our device is able to monitor 
neural electrical activity simultaneously. EBPi measures 
could therefore be combined with qEEG measures sensi-
tive to stroke, such as DAR [27], to increase sensitivity 
to stroke and the impact of stroke treatment. A wearable 
device that can provide long-term, continuous monitor-
ing of CBF and neural activity between CTP scans could 
aid treatment management and allow for faster detection 
of secondary stroke, leading to faster intervention and 
improved patient outcomes.

5 � Conclusion

This study presents a novel ECG-based metric called EBPi 
to monitor changes in CBF. EBPi had a highly significant, 
weak positive correlation with TCD-based measures of 
blood flow in the rMCA for a variety of tasks and can 
facilitate practical, continuous detection of changes. It 
therefore has potential utility in the long-term monitoring 
of stroke patients. Additional studies are required to sup-
port this claim.
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