

N400 RESPONSES IN INDIVIDUALS WITH NORMAL HEARING WITH AND WITHOUT LISTENING CONCERNS

Shivali Appaiah Konganda^{1,2},

Supervisors: Mridula Sharma^{1,2}, Joaquin Tomas Valderrama Valenzuela ^{1,2,3}, Elizabeth Beach^{2,3}, Jessica Monaghan¹, John Newall¹, Gitte Keidser^{2,3}

¹ Department of Linguistics, Macquarie University, HEARing Co-operative Research Centre, Australia, National Acoustic Laboratories, Australian Hearing, Australia

creating sound value™

Overview

- 1) Background
- > Factors that influence speech comprehension
- ➤N400 and it's significance
- 2) Aim and hypothesis
- 3) Method
- ➤ Participant candidacy
- **>**Stimuli
- 4) Results
- 5) Discussion

Introduction

Communication: Two-way process b/w the listener & the speaker majorly involving the perception of auditory information

(Rice-Johnston, W. 2008; Pichora-Fuller, Singh 2006)

Successful communication: Requires accurate perception and comprehension of the incoming signal (Pichora-Fuller, 2003)

Factors that previous literature found to influence speech comprehension

Auditory

➤ Perception of sound affected → presence of hearing loss

(Abel, Krever, & Alberti, 1990)

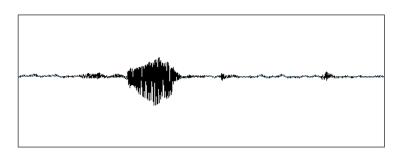
➤ Comprehension →
affected despite
normal percept of
sound (as evaluated
clinically)

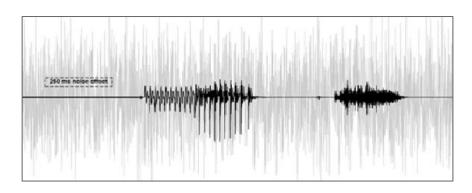
(Kumar, Ameenudin, & Sangamanatha, 2012)

Cognitive

- Attention(Pichora-Fuller, 2003)
- Memory(Caplan, Waters, 2005; Rönnberg et al., 2010)

Linguistic


Lack of language proficiency (Goh, 2000)



Why is it important?

Signal

Signal + Noise

What is N400?

- ➤ Event related potential → study speech understanding
- ➤ Negative deflection → presented with semantically incongruent sentences
- Occurs approximately 400 ms after in-congruency onset (Kutas&Hillyard, 1980; Ousterhout & Houlcomb 1995)

Why is N400 important?

- > It is a measure of speech understanding
- Objective measure

(Kutas & Hillyard, 1988)

Current evidence: N400

- Used to study listening performance in individuals with schizophrenia (Koyoma et al., 1990)
- Genetic pre-disposition of alcohol (Schnidt & Neville, 1985)
- To monitor treatment changes such as repetitive transcranial magnetic stimulation and speech language therapy intervention (Barwood eta al., 2010; Wilson et al., 2012)
- Auditory processing in congenitally blind and sighted people (Roder et al., 2009)

N400-Recording sites

Studies have shown occurrence of N400 mostly in the frontal, central areas (Koyoma et al., 1990; Kuperman et al., 1995; Tamara et al 2002; Roder et al., 2009)

Example: N400

Auditory sentence

Central midline

Congruent

Incongruent

Van Petten et al., 1999

Why listening concern & N400?

- ➤ No studies have been done so far to explore speech understanding in individuals with listening concern
- Objective measure to assess speech understanding

Aim

To evaluate the efficiency of the N400 ERP as a potential objective indicator of speech understanding problems

Hypothesis

Individuals with listening concerns may have a reduced N400 in quiet, more pronounced in noise condition

Method

Participant Candidacy

Participants:
age range of
18 to 70 years
were recruited

Screening tests:

1) Montreal Cognitive Assessment (MoCA)

2) Pure-tone audiometry

Study population:
1) Individuals with reported listening concerns and normal hearing

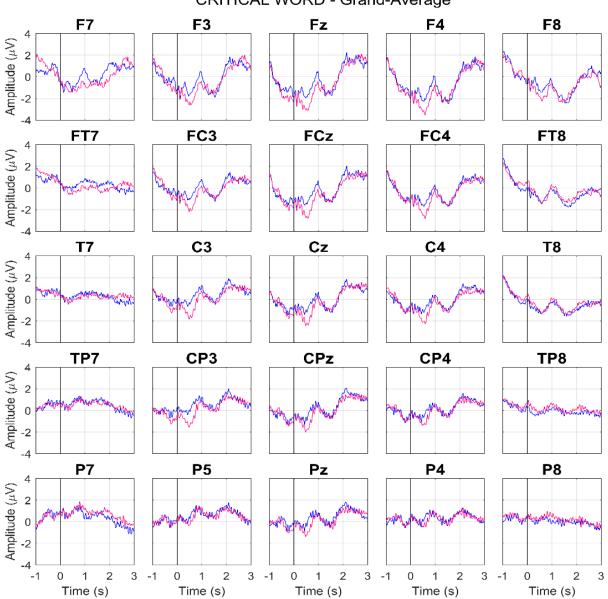
Stimuli for N400

- ➤ 640 sentences with a reasonable amount of complexity, homogeneity and sentence length [320 congruent and incongruent]
- Chosen based on a survey that was given to native English speakers
- > Each sentence was rated based on a scale of 1 to 6
- For example: "the uncle spills the tiger from the mug" indicates a meaningless sentence. "The pilots judge the distance from the map" indicates a meaningful sentence

Sentence structure

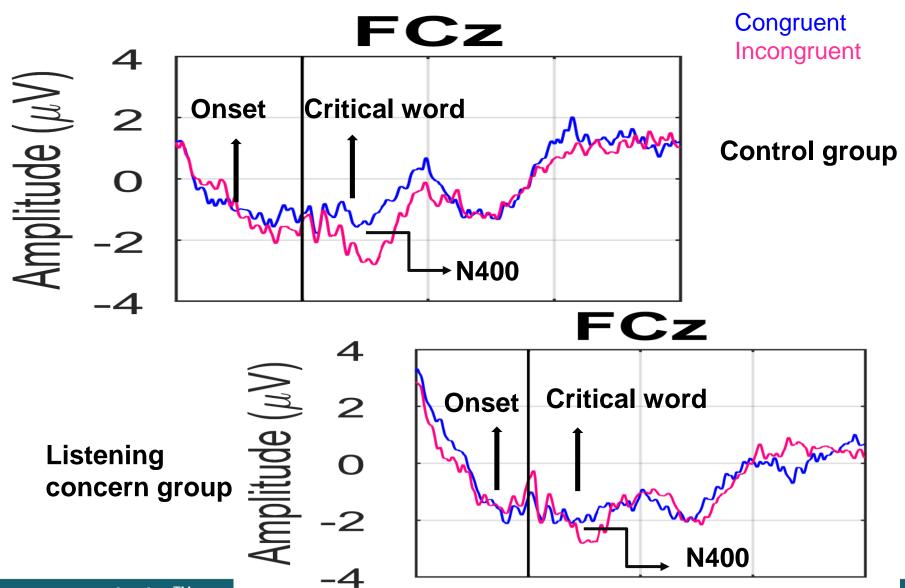
- ➤ The + [2 syllables substantive] + [monosyllable verb] + the + [Keyword: 2 syllables substantive starting with occlusive consonant e.g. d, t, p, k, etc. (we avoided vowels and 'w', 'y', etc. to facilitate splitting)] + [3 syllables ending]
- > Sentences were presented in a randomised order
- > The test also consisted of questions and fillers
- Test was carried out in two scenarios Quiet and Noise (8dB SNR)
- > The Noise stimuli was later removed from testing

To focus on the sentences presented & respond to only the questions asked in between the test

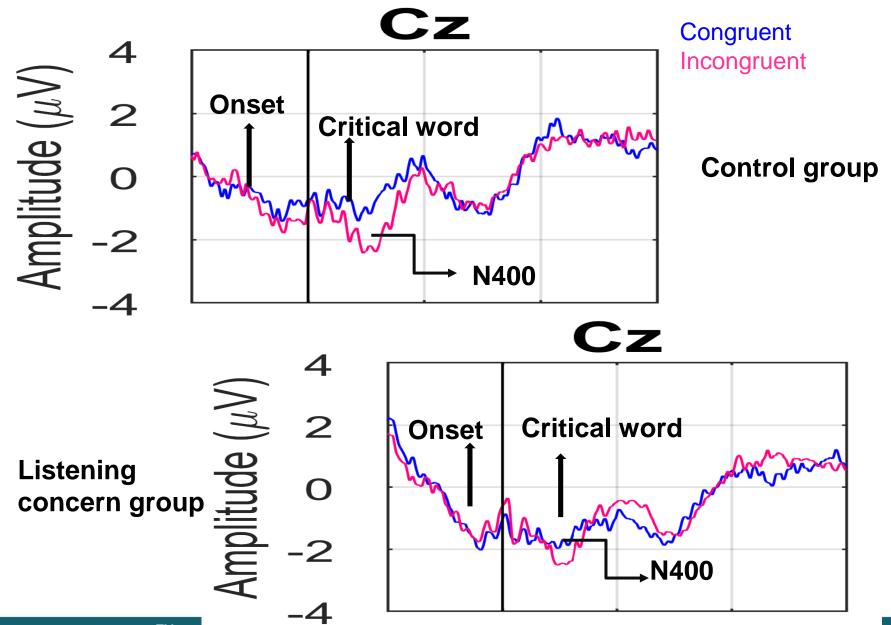

N400 Analysis

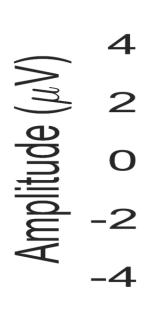
N400 magnitude was estimated as the area under the curve between the ERPs elicited by incongruent and congruent sentences in the time frame [0.4-0.8] seconds following the onset of the critical word

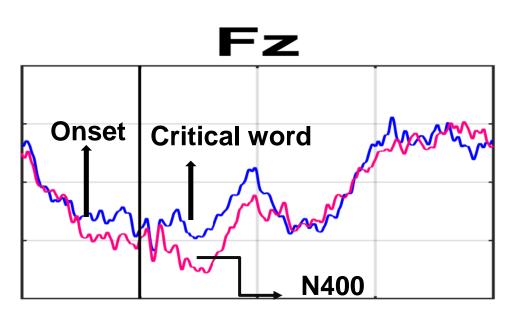
CRITICAL WORD - Grand-Average

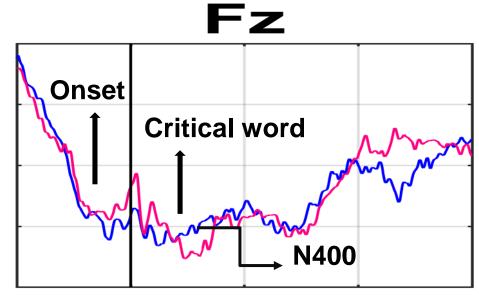


- Control group: Within group comparison when presented congruent & incongruent sentences → N400 present, ttest (p=0.02)
- ➤ Listening concern group: Within group comparison when presented congruent & incongruent sentences → N400 absent, t-test (p>0.05)









Congruent Incongruent

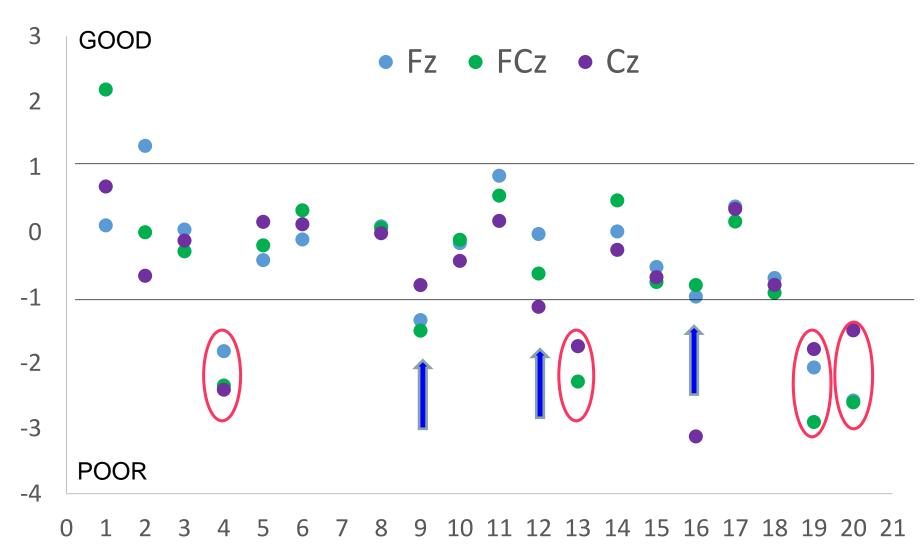
➤ No significant differences on Multivariate analysis of variance between groups (p>0.05), age used as co-variate

Individual analysis: Standardization was carried out

Calculating the Standard Score (Z-Score)

Standard Score,
$$z = \frac{X - \mu}{\sigma}$$

TERMS:


 μ = mean (pronounced 'mu')

X = score

 σ = standard deviation (pronounced 'sigma')

Participants

Discussion

Why we didn't see an evident difference

- 1) Amount of noise exposure
- 2) Type of Noise exposure: recreational V/s occupational (Le prell et al., 2016 & Yeend et al 2017)
- 2) Questionnaire information: over-estimate/ underestimate their difficulties

Future directions

- 1) Further analyses including clusters (groups of EEG channels) may clarify the potential of the N400 as an objective measure of speech understanding
- 2) Time frequency analysis to be carried out

References

- Moore, D. R. (2006). Auditory processing disorder (APD): Definition, diagnosis, neural basis, and intervention. *Audiological Medicine*, *4*(1), 4-11.
- Kutas, M. and Hillyard, S.A. Reading senseless sentences: brainpotentials reflect semantic incongruity. *Science*, 1980, 207: 203-205.
- Kutas, M. and Hillyard, S.A. Contextual effects in language comprehension: studies using event-related brain potentials. In: F. Plum(Ed.), *Language, Communication and the Brain*. Raven Press, New York, 1988: 87-100.
- Le Prell, C. G., & Brungart, D. S. (2016). Speech-in-noise tests and supra-threshold auditory evoked potentials as metrics for noise damage and clinical trial outcome measures. *Otology & Neurotology*, *37*(8), e295-e302.
- Plack, C. J., Barker, D., & Prendergast, G. (2014). Perceptual consequences of "hidden" hearing loss. *Trends in hearing*, *18*, 2331216514550621.
- Yeend, I., Beach, E. F., Sharma, M., & Dillon, H. (2017). The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. *Hearing Research*, 353, 224-236.
- Kumar, U. A., Ameenudin, S., & Sangamanatha, A. V. (2012). Temporal and speech processing skills in normal hearing individuals exposed to occupational noise. *Noise and Health*, *14*(58), 100.
- American Speech-Language-Hearing Association. (2005). (Central) auditory processing disorders.

I thank all my participants for their time and effort and all my supervisors for their support and guidance