

Business Cooperative Research Centres Programme

Determining threshold levels in adult Nucleus cochlear implant users by recording cortical auditory evoked potentials with a two-channel clinical system

Bram Van Dun^{1,2}, Nicky Chong-White^{1,2}, Paola Incerti^{1,2,3}, Joaquín Valderrama^{1,2}, Robert Cowan^{1,3}

¹ The HEARing Cooperative Research Centre, Melbourne ² National Acoustic Laboratories, Sydney ³ Melbourne University, Melbourne

Audiology Australia Conference 2018

creating sound value™

www.hearingcrc.org

Fitting cochlear implants

Source for both images: Cochlear

Objectively determining thresholds on a CI electrode

- Electrically evoked Compound Action Potential (eCAP) ~ ABR Wave I
 - Poor correlations and not always recordable
 - Average eCAP thresholds at 91% of dynamic range (Brown et al., 2000)
 - Meta-analysis of 29 studies: r = 0.58 and 0.61 for T- and C-levels (de Vos et al., 2017)
 - Not extremely reliable for fitting a CI, so caution needed
 - Behavioural component seems to be required. Problematic for infants
 - Only evaluates early part of auditory system
- Why not use CAEPs instead?
 - Visram et al. (2015) found a correlation of r = 0.93
 - But, involves 64 EEG channels and hours of recording

Can we do the same with a clinically usable system?

Problem

creating **sound value**[™]

- Varies in clinical applicability
 - Gilley et al (2006): use of 64 channel electrode cap + fancy processing
 - Friesen et al (2010): different interstimulus intervals
 - Mc Laughlin et al (2013): single channel high-sample + artefact fitting
 - Presacco et al (2017): use longer stimuli

Using a clinical CAEP recording system:

- Can we suppress CI artefacts sufficiently?
- What corrections to apply to CAEP threshold to obtain a threshold T-level?
- What are the correlations between CAEP threshold and T- and C- levels?
- How does this compare with the eCAP?

Methods

, longer stimulus to suppress artefact successfully

- 500 ms burst of pulses
 - 900 pps
 - 25-8-25 µs pulse
 - CI electrodes 20, 11 and 3 4
- Stimulus levels
 - -20 / 15 / 30 / 50 / 70 / 100% of dynamic range
- Other parameters
 - 100 presentations per recording
 - 2 seconds SOA
 - Direct stimulation
 - 0.33 Hz 30 Hz filtering
 - 16 kHz sampling
- 14 adults with Nucleus CI, 10 retest

threshold estimation

Results (1)

Results (2)

Source: Pinterest

9

Before artefact suppression

After artefact suppression

8 out of 72 identifiable artefacts

32 out of 72 identifiable artefacts

Results (4): Determining CI threshold using CAEPs

Not recordable in 2 subjects

Conclusions

- Can we suppress CI artefacts sufficiently?
 - Yes, nice reduction of at least 3/4
- How much to correct a CAEP threshold for to obtain a T-level?
 - Depending on the stimulus, between 35 and 75% of dynamic range (SD 30%)
 - Test-retest reliability is excellent
- What are the correlations?
 - r = 0.86 for T-level
 - r = 0.66 for C-level
- How does this compare with the eCAP?
 - SDs for eCAPs are higher (30-45% DR)
 - r = 0.63 for T-level; r = 0.73 for C-level

This can all be done in a clinical recording device!

Brown, C. J. et al. (2000) "The relationship between EAP and EABR thresholds and levels used to program the Nucleus 24 speech processor: data from adults", <u>Ear and Hearing</u>, **21**(2), 151–163.

de Vos, J. J. et al. (2017) "Use of Electrically Evoked Compound Action Potentials for Cochlear Implant Fitting", <u>Ear</u> and <u>Hearing</u>, doi: 10.1097/AUD.0000000000000495.

Friesen, L. and T. W. Picton (2010) "A method for removing cochlear implant artefact" <u>Hearing Research</u> 259: 95-106.

Gilley, P. M. et al. (2006) "Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials" <u>Clinical Neurophysiology</u> **117**(8): 1772-1782.

Mc Laughlin, M. et al. (2013) "Cochlear implant artifact attenuation in late auditory evoked potentials: A single channel approach" <u>Hearing Research</u> **302**: 84-95.

Presacco, A. et al. (2017) "Effects of stimulus duration on event-related potentials recorded from cochlear-implant users", <u>Ear and Hearing</u>, **38**(6), doi: 10.1097/AUD.000000000000444.

Visram, A. S. et al. (2015) "Cortical auditory evoked potentials as an objective measure of behavioral thresholds in cochlear implant users" <u>Hearing Research</u> **327**: 35-42

- 14 CI participants
- SCIC (Sydney Cochlear Implant Centre): Rachelle Hassarati

Please also visit:

- hearlab.nal.gov.au
- www.hearnetlearning.org.au
- bram.vandun@nal.gov.au

This research was financially supported by the HEARing CRC established and supported under the Australian Government's Cooperative Research Centres Programme. The CRC Programme supports industry led end-user driven research collaborations to address the major challenges facing Australia.

MEMBER ORGANISATIONS

Business Cooperative Research Centres Programme

The CRC Programme supports industry led end-user driven reh research collaborations to address the major challenges facing Australia.

Background

Cortical Auditory Evoked Potential (CAEP) thresholds in adults

