

Understanding speech in noise in adults with listening concerns

<u>Shivali A Konganda^{1,2}</u>, Mridula Sharma^{1,2}, Jessica JM Monaghan¹, Joaquin Valderrama^{1,2,3}, John Newall¹, Gitte Keidser^{2,3}, Elizabeth Beach^{2,3}

¹ Department of Linguistics, Macquarie University,² HEARing Co-operative Research Centre, ³ National Acoustic Laboratories, Australia

www.hearingcrc.org

creating sound valueTM

Why is it important?

Listening concern: Why have we used the term listening concern?

In previous literature people with difficulty understanding speech in noise have been categorized as having:

- 1) Central Auditory Processing Disorder (ASHA, 2005)
- 2) Auditory Processing Disorder (APD; British Society of Audiology APD Special Interest Group, 2011)
- 3) Hidden Hearing loss (Schaette & McAlpine, 2011)

How did we evaluate Listening concern

- Speech, Spatial and Qualities of Hearing Scale (SSQ12): Comprises 12 questions assessing different Speech in noise scenarios
- Noise exposure Questionnaire (National Acoustics laboratories)

Why noise exposure questionnaire?

Evidence from literature indicates, individuals exposed to noise exhibit speech understanding in noise difficulty (Kumar et al., 2012; Hope et al., 2013)

DIFFICULT LISTENING SITUATIONS	LCG (N=20) (PARTICIPANTS WITH LISTENING DIFFICULTY)
Face to face conversation in presence of background noise	90% (n=18)
Face to face conversation in presence of background music	85% (n=17)
Conversation in rooms with poor acoustics	70% (n=14)
Conversation in car/train	55% (n=11)
Understand actors speech in background noise	65% (n=13)

Aim

The aim of the present study was to determine the differences on auditory, cognitive and linguistic factors in adults with listening concerns

Hypothesis

Individuals with listening concerns will show poor performance on auditory, cognitive and linguistic skills, more pronounced difference in noise condition

Method

Participant Candidacy: LCG

Participants: age range of 18 to 70 years were recruited

Screening tests:

1) Montreal Cognitive Assessment (MoCA)

2) Pure-tone audiometry

Study population: 1) Individuals with reported Listening concerns and normal hearing

creating sound valueTM

Method

creating Sound vare

Participant Candidacy: Normal hearing

Participants: age range of 18 to 50 years were recruited Screening tests:

 Montreal Cognitive Assessment (MoCA)
 Pure-tone audiometry Study population: 1) Individuals with normal hearing **Test battery**

Cognitive tasks

Speech recognition threshold assessed Beautifully Efficient Speech Test (BEST sentences) (SRT)

Audiogram, n=20 (LCG) and n=22 (Control)

Auditory tests	Description
Iterated ripple noise (IRN)	Temporal pitch processing ability
Spectral-temporally modulated ripple test (SMRT)	Spectral resolution
Modulation detection threshold (MDT)	The temporal envelop information
Pitch discrimination (PD)	Spectral resolution
N400 (event related potential)	Speech understanding

Cognitive tests	Description
Digit span test (Forward and backward)	Short term and working memory
Auditory & visual (aSL & vSL)	Ability to identify statistical regularities implicitly
Cognitive spare capacity test (CSCT)	Uptake, inhibition control, memory, when listening to series of numbers in noise
Attention	Selective attention and attention switching

Linguistic tests	Description
Auditory rhyme judgement test	Phonological processing
Visual rhyme judgement test	Phonological processing

All behavioral tests

Number of Participants

Control group: 22, age 18-50 years (15 females) Experimental group (LC): 22, age 18-70 years (12 females) (two were not included in LC as they showed high frequency SN hearing loss)

Across group effects

No significant differences on Multivariate analysis of variance between groups (p>0.05), when age used as covariate Results

Objective measure: N400

N400 magnitude was estimated as the area under the curve between the ERPs elicited by incongruent and congruent sentences in the time frame [0.4-0.8] seconds following the onset of the critical word

64 channel EEG recording was carried out

At present, results
 obtained from Cz and FCz
 will be discussed

- 640 sentences with a reasonable amount of complexity, homogeneity and sentence length
- Chosen based on a survey that was given to native English speakers
- Each sentence was rated based on a scale of 1 to 6
- For example: "the uncle spills the tiger from the mug" indicates a meaningless sentence. "The pilots judge the distance from the map" indicates a meaningful sentence

> 320 congruent and incongruent sentences were chosen creating sound value™

- The + [2 syllables substantive] + [monosyllable verb] + the + [Keyword: 2 syllables substantive starting with occlusive consonant – e.g. d, t, p, k, etc. (we avoided vowels and 'w', 'y', etc. to facilitate splitting)] + [3 syllables ending]
- Sentences were presented in a randomised order
- The test also consisted of questions and fillers
- Test was carried out in two scenarios Quiet and Noise (8dB SNR)
- > The Noise stimuli was later removed from testing

To focus on the sentences presented & respond to only the questions asked in between the test

N400 Analysis

N400 magnitude was estimated as the area under the curve between the ERPs elicited by incongruent and congruent sentences in the time frame [0.4-0.8] seconds following the onset of the critical word

WITHIN GROUP EFFECTS

- ➤ Control group: Within group comparison when compared congruent & incongruent sentences → t-test (p=0.02) showed significant difference at 400ms after the onset of the incongruent response
- Listening concern group: Within group comparison when compared congruent & incongruent sentences, t-test (p>0.05) indicating absent N400.

Results

Results

ACROSS GROUP EFFECTS

No significant differences on Multivariate analysis of variance between groups (p>0.05), when age used as covariate

Individual analysis: Standardization was carried out for all the tasks

N400

Why we did we not see an evident difference?

1) Amount of noise exposure

(Kumar, Ameenudin, & Sangamanatha, 2012; Alvord, 1983; Kujala et al., 2004; Hope, Luxon, & Bamiou, 2013)

2) Type of Noise exposure: recreational V/s occupational (Le prell et al., 2016 & Yeend et al 2017)

3) Questionnaire information: over-estimate/ underestimate their difficulties

ARIE

- Implement more realistic based scenario tests that could possibly answer this question
- For N400: Further analyses including clusters (groups of EEG channels) may clarify the potential of the N400 as an objective measure of speech understanding

References

- Moore, D. R. (2006). Auditory processing disorder (APD): Definition, diagnosis, neural basis, and intervention. *Audiological Medicine*, *4*(1), 4-11.
- Kutas, M. and Hillyard, S.A. Reading senseless sentences: brainpotentials reflect semantic incongruity. *Science*, 1980, 207: 203-205.
- Kutas, M. and Hillyard, S.A. Contextual effects in language comprehension: studies using eventrelated brain potentials. In: F. Plum(Ed.), *Language, Communication and the Brain*. Raven Press,New York, 1988: 87-100.
- Le Prell, C. G., & Brungart, D. S. (2016). Speech-in-noise tests and supra-threshold auditory evoked potentials as metrics for noise damage and clinical trial outcome measures. *Otology & Neurotology*, *37*(8), e295-e302.
- Plack, C. J., Barker, D., & Prendergast, G. (2014). Perceptual consequences of "hidden" hearing loss. *Trends in hearing*, *18*, 2331216514550621.
- Yeend, I., Beach, E. F., Sharma, M., & Dillon, H. (2017). The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. *Hearing Research*, *353*, 224-236.
- Kumar, U. A., Ameenudin, S., & Sangamanatha, A. V. (2012). Temporal and speech processing skills in normal hearing individuals exposed to occupational noise. *Noise and Health*, *14*(58), 100.
- American Speech-Language-Hearing Association. (2005). (Central) auditory processing disorders.

I thank all my participants for their time and patience and all my supervisors for their support and guidance