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I Conventional recording of AEPs
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Matrix Deconvolution



I The EEG as a convol/ution model

Stimulus s(t)

y(t) = s(t) * x(t) + n(t)
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Noise n(t)

EEG y(t)




I Matrix formulation

y(t) = s(t) *x(t) + n(t)

l

y=5X+n

N —length of EEG
J —length of AEP
J<<N

(N x1)
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I Matrix Deconvolution - AL’ DEGRANADA

y=S5Xx+n
}', S n yl =Sllx1+512x2+"°+51]x]+n1
' . ' V2 = S21%1 + Sp0% + 0+ Sppx; + 1y N — length of EEG
: J —length of AEP
= +
YN = Sn1X1 + SnaXa + -+ + Syyx; + ny J<<N
N equations, J unknowns
Let’s imagine an AEP of 2 samples (] = 2)
Y S n Y1 = 511X1 + 512X + 1y 4 “
3’2 = 521.7(:1 + Szzxz + n, Xy e .ﬁ
X )
=1+ YN = Sy1X1 + SnaXxy + ny —
Xq \

N equations, 2 unknowns

x=(S')7I(STY)




I Matrix Deconvolution

N —length of EEG
J —length of AEP
J<<N

(/ xN)

&= (") (STy)

($7S)

UxJ)

(N x])
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I Example of Matrix Deconvolution

x=(S'S)7I(STY)

AEP of 200 ms @ 16,384 Hz
J = 3,277 samples > (ST8) 3077, 3077

How long does deconvolution take?

9 seconds

Amplitude (V)
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I Multi-response Deconvolution EGRANADA

60 dB HL
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I Multi-response Deconvolution

For 1 class

— I T T T N T O T O O

y(@) = s(t) * x(t) +n(t)

'

2= (ST STy

S'H™(STy)

X
X

Ux1)  UxJ) (Ux1)
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For K different classes

— I 7 ] 7 T 7 T EEE I T T ———

y(@) = 51(8) * %1 (8) + 55() * x2(t) + -+ 55 (£) * 2 () + (L)

N T -1 T
Rall (SauSau) (Sauy)
X1 SIS, |STS, | == SISy STy

Xy sTs, §Ts, - SIS, STy

xKI SkS1 SgSa -+ SkSk S};y

(K-Jx1) (K-JxK-]J) (K-Jx1)

(de la Torre et al., IERASG 2023)



I Example of Multi-response Deconvolution

= AEPs of 200 ms @ 16,384 Hz >
J = 3,277 samples

_ T
K =10 classes > (SquSau)2770x 32770

(SauSa) 3277032770 > 1,073,872,900 numbers
* 8 bytes > 8,6 GB

Deconvolution takes 1065 s

For K > 10 classes, Out-of-memory!

Amplitude (V)
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Time (ms)



Latency-Dependent
Filtering & Downsampling



' ‘ Y, UNIVERSIDAD
I Representation of evoked potentials - UNIVERS

DE GRANADA

Conventional representation Desired representation

100-3000 Hz 10-300 Hz 1-30 Hz
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I What is a filter like: DE GRANADA
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I Conventional filtering
Xrige(n) = h(n) xx(n) —>  Xpye = HX

Xt H X H(P)

- \

1000 o v"\/\/‘ .

2000 . 4"’\/\/‘

3000 o B “.’\/\/‘V

4000 o : J\/\/\~

5000 » . «\/ Pt

1 10 100 1000 10000

Ux1) U xJ) Ux1) Frecuency (Hz)

The same filter is used in all samples




I Latency-dependent filtering

Conventional filtering

H X
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I Latency-dependent filtering & DOWNSAMPLING

Conventional filtering

Latency-dependent filtering
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I Latency-dependent filtering & downsampling (LDFDS)

CAEP

J = 10,000 |

Amplitude (uV)
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I Latency-dependent filtering & downsampling (LDFDS)
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Amplitude

- O =2 N W
T T T T T

Base of functions

"0 100 200 300 400

Latency (ms)

500

(43 x10,000)

Project the AEP from the time domain
onto the reduced space

X

Xred |74

(43 x1) (43 x10,000)
(10,000 x 1)



I Latency-dependent filtering & downsampling (LDFDS)

5 = Project the AEP from the time domain
4r onto the reduced space
3 X
> 20
S
o) Xred V
© 0k
2 =
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Sl (10,000 x 1)
4 F
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Optimised Deconvolution

(performed in the subspace defined by LDFDS)



I Optimised Matrix Deconvolution

Matrix Deconvolution

%= (ST (STy)

»

S'™H™ Sy

Ux1)

UxJ) Ux1)

4’3 UNIVERSIDAD
s DEGRANADA

Subspace Constrained Matrix Deconvolution

Xred

Jrea x 1)

ﬁred = (Vrea STS Vrgd)_l(vred STY)

Vred STs vt (Vrea S'Y)
(]red X]) Uredxj) (]Xl)
(JxJ) U X Jrea)
ﬁred (Vred STS Vr’I;d)_l (Vred STY)
(Jrea x 1) Urea X Jrea)

Jrea x 1)
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I Example of Multi-response Deconvolution

| = AEPs of 200 ms @ +6,384-Hz 40 functions/decade
> [=23277samples [,.q = 91 samples

| = K=10classes > ) ;00,5072

T
(SreaSred)910x 970

= Deconvolution takes 10655 30 s
1 = For K > 10 classes , Out-ef-memer Deconvolution

is now feasible

Amplitude (V)
S B N O N T S S R SR NS

0° 10" 102
Time (ms)



Research possibilities



I Threshold estimation

. Level (dB)

Time
, Probability of
occurrence
/
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I Binaural hearing

Binaural Interaction Component (BIC)
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Ferber et al. (2016)

Grand -Average (n= 27)
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Deconvolution of multiple overlapping AEPs
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I Neural adaptation DE GRANADA

Individual subject
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I Speech processing

Temporal Response Function
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Deconvolution of multiple overlapping AEPs
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Matrix-based formulation of the iterative randomized
stimulation and averaging method for recording evoked
potentials

Angel de la Torre," Joaquin T. Valderrama,>® Jose C. Segura,’ and Isaac M. Alvarez'

' Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
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(Received 4 June 2019; revised 16 October 2019; accepted 15 November 2019; published online 26
December 2019)

The iterative r and ing (IRSA) method was proposed for recording
evoked ials when the indi are pped. The main i il of IRSA is
its computational cost, ated with a large number of iterations required for recovering the
evoked potentials and the computation required for each iteration [involving the whole electroen-
cephalogram (EEG)]. This article proposes a matrix-based formulation of IRSA, which is mathemati-
cally equivalent and saves computational load (because each iteration involves just a segment with
the length of the response, instead of the whole EEG). Additionally, it presents an analysis of conver-
gence that that IRSA ges 1o the least-squares (LS) ion. Based on the
convergence analysis, some optimizations for the IRSA algorithm are proposed. Experimental results
(configured for obtaining the full-range auditory evoked potentials) show the mathematical equiv.
lence of the different IRSA ions and the LS and compare the respective
costs of these il under different i The proposed optimizati

allow the practical use of IRSA for many clinical and research applications and provide a reduction
of the computational cost, very important with respect to the conventional IRSA, and moderate with
respect to the LS maTLAB/Octave ions of the different methods are pro-
vided as supplementary material. © 2019 Acoustical Society of America

hitps://doi org/10.1121/1.5139639
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Deconvolution in a reduced representation space
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Subspace-constrained deconvolution of auditory
evoked potentials

Angel de la Torre, ") (%) Joaquin T. Valderrama,®® (3 Jose C. Segura,'® (3 Isaac M. Alvarez,*
and Jesus Garcia-Miranda®
"Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain

*National Acoustic Laboratories, Sydney, Australia
*Department of Algebra, University of Granada, Granada, Spain

ABSTRACT:
Auditory evoked potentials can be estimated by synchronous averaging when the responses to the individual stimuli

are not overlapped. However, when the response duration exceeds the inter-stimulus interval, a deconvolution proce:
dure is necessary to obtain the transient response. The iterative randomized stimulation and averaging and the equiv-
alent randomized stimulation with least squares deconvolution have been proven to be flexible and efficient methods

for deconvolving the evoked potentials, with minimum restrictions in the design of stimulation sequences. Recently,
a latency-dependent filtering and down-sampling (LDFDS) methodology was proposed for optimal filtering and
dimensionality reduction, which is particularly useful when the evoked potentials involve the complete auditory
pathway response (i.e., from the cochlea to the auditory cortex). In this case, the number of samples required 0 accu-
rately represent the evoked potentials can be reduced from several thousand (with conventional sampling) to around
120. In this article, we propose to perform the deconvolution in the reduced representation space defined by LDFDS
and present the mathematical foundation of the subspace-constrained deconvolution. Under the assumption that the
evoked response is appropriately represented in the reduced representation space, the proposed deconvolution
provides an optimal least squares estimation of the evoked response. Additionally, the dimensionality reduction
provides a substantial reduction of the computational cost associated with the deconvolution. MaTLAB/Octave code
implementing the proposed procedures is included as supplementary material

© 2022 Acoustical Society of America. hitps://doi.org/10.1121/10.001 1423

(Received 7 November 2 cepted 7 May 24
[Editor: James F. Lynch] Pa

revised 25 April 2( published online 3 June 2
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Latency-dependent filtering and compact representation
of the complete auditory pathway response

Angel de la Torre, " Joaquin T. Valderrama,®"! Jose C. Segura,"® and Isaac M. Alvarez"®
"Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain

*National Acoustic Laboratories, Sydney, Australia

ABSTRACT:

Auditory evoked potentials (AEPs) include the auditory brainstem response (ABR), middle latency response (MLR),
and cortical auditory evoked potentials (CAEPs), each one covering a specific latency range and frequency band. For
this reason, ABR, MLR, and CAEP are usually recorded separately using different protocols. This article proposes a
procedure providing a latency-dependent filtering and do ling of the AEP resp . This way, each AEP
compoenent is appropriately filtered, according to its latency, and the complete auditory pathway response is conve-
niently represented (with the minimum number of samples, i.e., without unnecessary redundancies). The compact
Tepresentation of the complete response facilitates a comprehensive analysis of the evoked potentials (keeping the
natural continuity related to the neural activity transmission along the auditory pathway), which provides a new per-
spective in the design and analysis of AEP experiments. Additionally, the propesed compact representation reduces
the storage or i qui when large d: are manipulated for clinical or research purposes. The
analysis of the AEP responses shows that a compact repi ion with 40 lecade (around 120 samples) is
enough for accurately representing the response of the complete auditory pathway and provides appropriate latency-
dependent filtering. Matl.as/Octave code implementing the proposed procedure is included in the supplementary
materials. @ 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001673

(Received 29 December 2019; revised 6 July 2020; accepted 14 July 2020; published online 4 August 2020)
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Multi-response deconvolution
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I To take-home DE GRANADA

Matrix Deconvolution enables evoked potentials to be recorded at fast rates, increasing flexibility in experimental design.

The compact representation provided by latency-dependent filtering and downsampling (LDFDS) facilitates (1) a comprehensive
representation of evoked potentials along the auditory pathway, and (2) an important dimensionality reduction.

Performing deconvolution in the reduced space defined by LDFDS significantly reduces computational load.

Multi-response deconvolution is appropriate to model multiple neurophysiological processes evoked by complex stimuli.

MATLAB / Octave toolkits with functions and simulations are available to help understand and use these methodologies.
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