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ABSTRACT:
The estimation of auditory evoked potentials requires deconvolution when the duration of the responses to be

recovered exceeds the inter-stimulus interval. Based on least squares deconvolution, in this article we extend the pro-

cedure to the case of a multi-response convolutional model, that is, a model in which different categories of stimulus

are expected to evoke different responses. The computational cost of the multi-response deconvolution significantly

increases with the number of responses to be deconvolved, which restricts its applicability in practical situations. In

order to alleviate this restriction, we propose to perform the multi-response deconvolution in a reduced representa-

tion space associated with a latency-dependent filtering of auditory responses, which provides a significant dimen-

sionality reduction. We demonstrate the practical viability of the multi-response deconvolution with auditory

responses evoked by clicks presented at different levels and categorized according to their stimulation level. The

multi-response deconvolution applied in a reduced representation space provides the least squares estimation of the

responses with a reasonable computational load. matlab/Octave code implementing the proposed procedure is

included as supplementary material.
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I. INTRODUCTION

Auditory Evoked Potentials (AEPs) are commonly

applied to study the auditory system in the context of both

research and clinical perspectives (Burkard and Don, 2007).

Due to the low amplitude of AEP responses and the pres-

ence of background noise, the estimation of evoked

responses from the electroencephalogram (EEG) usually

includes a repetitive presentation of stimuli and the synchro-

nous averaging of epochs (Thornton, 2007).

Synchronous averaging requires the inter-stimulus

interval (ISI) to be longer than the response duration in order

to avoid overlapping adjacent responses. The conventional

protocols for AEP recording suggest appropriate configura-

tion of the EEG filtering, response duration, and maximum

stimulation rate specific for the estimation of auditory brain-

stem responses (ABR), middle latency responses (MLR), or

cortical auditory evoked potentials (CAEPs) in order to

avoid overlapping of responses (Hall, 2007).

If the response duration is longer than the ISI (because

of the high stimulation rate) a deconvolution-based

estimation (instead of synchronous averaging) is required to

obtain the responses (Bohorquez and Ozdamar, 2006;

Eysholdt and Schreiner, 1982; Valderrama et al., 2014b).

Deconvolution methods for recovering AEP responses

include maximum length sequences (MLS) (Eysholdt and

Schreiner, 1982; Thornton and Slaven, 1993), adjacent-

responses (ADJAR) (Woldorff, 1993), quasi-periodic

sequence deconvolution (QSD) (Jewett et al., 2004), contin-

uous loop averaging deconvolution (CLAD) (Bohorquez

and Ozdamar, 2006; Ozdamar and Bohorquez, 2006), linear

deconvolution for baseline correction (LDBC)

(L€utkenh€oner, 2010), randomized stimulation and averaging

(RSA) (Valderrama et al., 2012), iterative randomized stim-

ulation and averaging (IRSA) (de la Torre et al., 2019;

Valderrama et al., 2014b; Valderrama et al., 2016) and ran-

domized stimulation with least squares deconvolution

(RSLSD) (Bardy et al., 2014a; Bardy et al., 2014b; Bardy

et al., 2014c; de la Torre et al., 2019). Alternatively, the use

of uncorrelated stimulation sequences (i.e., with ISI follow-

ing a Poisson distribution) allows to deconvolve the

responses by synchronous average (Maddox and Lee, 2018;

Polonenko and Maddox, 2019, 2022; Stoll and Maddox,

2023). However, for specific experimental configurations
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and ISI distributions, and because of short- and long-term

adaptation mechanisms (Valderrama et al., 2014a;

Valderrama et al., 2016), the responses associated with dif-

ferent ISI values could be significantly different, which

would lead to an inconsistent convolutional model and to an

inaccurate estimation of the responses. For this reason, the

use of a Poisson ISI distribution (with a large spread in the

ISI values) makes it recommendable to verify that the mag-

nitude of the ISI effect is moderate (as analyzed in Maddox

and Lee, 2018; Polonenko and Maddox, 2019, 2022).

While some deconvolution methods impose constraints

to the stimulation pattern (like MLS or CLAD), others (like

IRSA and RSLSD) provide much more flexibility in the

stimulus design, because they only require the autocorrela-

tion matrix of the stimulation sequence to be invertible

(Bardy et al., 2014a; Bardy et al., 2014c; de la Torre et al.,
2019; de la Torre et al., 2022; Valderrama et al., 2014a;

Valderrama et al., 2016). Thanks to this flexibility, audio-

logical experiments with more ecologically-valid stimuli

(i.e., more closely related to natural stimulation) are possible

(Burkard et al., 2018; de la Torre et al., 2019; Finneran

et al., 2019; Martinez et al., 2021; Valderrama et al., 2014b;

Valderrama et al., 2019; Valderrama et al., 2016).

Deconvolution-based AEP estimation methods allow the

study of neural adaptation mechanisms (Gillespie and

Muller, 2009; Thornton and Coleman, 1975; Thornton and

Slaven, 1993; Valderrama et al., 2014b), estimation of the

response from extensive portions of the auditory pathway

(de la Torre et al., 2020; de la Torre et al., 2022; Holt and

Ozdamar, 2016; Kohl et al., 2019) and the analysis of the

neurophysiological response to complex stimuli more natu-

ral than repetitive sequences of clicks, like natural speech

(Maddox and Lee, 2018; Valderrama et al., 2019) or

responses associated with binaural activity (Martinez et al.,
2021).

The convolutional model assumes the hearing system to

be linear and time invariant (LTI), which is an acceptable

approach only under certain circumstances (L€utkenh€oner,

2016; Valderrama et al., 2014a). Under specific conditions

(for example, if a stimulation pattern is presented repeti-

tively, always at the same stimulation level) the responses

evoked by each stimulus are expected to be identical and the

hearing system can be considered LTI-like. However, if the

expected response is not always the same, the behavior of

the hearing system cannot be considered LTI-like (for exam-

ple, if the stimuli are presented at different levels, the

latency and amplitude of the waves change according to the

stimulation level). Under a multi-response convolutional

model (Bardy et al., 2014a; Bardy et al., 2014b; Valderrama

et al., 2016), different categories of stimuli can be defined,

each category evoking a specific response. An appropriate

categorization of the stimuli (for example, a categorization

based on stimulation level) provides an LTI-like behavior of

the hearing system without the requirement of repetitive

stimulation patterns. This categorization increases the flexi-

bility in the design of audiological experiments (Bardy,

2022; Bardy et al., 2014a; Bardy et al., 2014b; Bardy et al.,

2014c; Martinez et al., 2021; Metzger et al., 2020;

Valderrama et al., 2019; Valderrama et al., 2016). In the

multi-response paradigm, the deconvolution problem con-

sists in the estimation of the response associated with each

category of stimuli (Bardy et al., 2014a; Bardy et al., 2014b;

Bardy et al., 2014c; Dale, 1999).

Convolution can be mathematically described in terms

of matrix formulation. If the response length is J samples,

deconvolution involves the inversion of a J� J matrix.

Multi-response deconvolution can also be described as a

matrix-inversion problem. If the model involves M indepen-

dent responses, each one with a length of J samples, the size

of the matrix to be inverted is ðJ �MÞ � ðJ �MÞ.
Therefore, the computational cost of multi-response decon-

volution increases very fast with the number of responses

(since the complexity of matrix algorithms increases faster

than N2:3
d for Nd � Nd matrices; Davie and Stothers, 2013),

both if the deconvolution is performed as a matrix division

(Bardy et al., 2014a) or via an iterative procedure (Martinez

et al., 2021; Valderrama et al., 2019; Valderrama et al.,
2016).

The size of the matrix to be inverted (and therefore, the

computational cost) can significantly be reduced by the

application of the recently proposed latency-dependent fil-

tering and downsampling (LDFDS) procedure to the AEP

responses (de la Torre et al., 2020). LDFDS is based on the

local bandwidth required to adequately represent each com-

ponent of the AEP, progressively decreasing as the latency

increases. A filtering method that is locally adapted to the

required bandwidth reduces the noise of the responses, and

the locally-adapted downsampling provides a substantial

reduction of the dimensionality required to represent the

evoked responses. This idea is particularly useful for proc-

essing the complete auditory pathway response (i.e., includ-

ing brainstem, middle latency, and cortical components

simultaneously): for example, the complete response usually

requiring around 10 000 samples at a constant sampling-rate

(one second sampled at 10 kHz) can be correctly represented

after LDFDS with around 120 samples (three decades of

latency represented with 40 samples per decade) (de la

Torre et al., 2020). As proposed by L€utkenh€oner (2016) and

de la Torre et al. (2022), the deconvolution problem can be

constrained to a reduced representation space (defined

according to the expected behavior of the responses). The

deconvolution constrained to the reduced representation

space provided by LDFDS provides AEP responses less

affected by noise (thanks to the latency-dependent filtering)

and substantially reduces the computational cost (thanks to

the dimensionality reduction) (de la Torre et al., 2022).

Based on the previous studies about deconvolution

constrained to a reduced representation space and about

multi-response deconvolution, in this work, we combine

both concepts and propose the multi-response deconvolution

constrained to the reduced representation space provided by

LDFDS. As in the case of the single-response deconvolu-

tion, the proposed subspace-constrained deconvolution pro-

vides the least squares estimation of the evoked response
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(de la Torre et al., 2022). Additionally, the dimensionality

reduction, from J (typically several thousands) to Jr (around

one hundred), substantially reduces the size of the matrix to

be inverted, ðJr �MÞ � ðJr �MÞ, which significantly

reduces the computational cost associated with the deconvo-

lution. Therefore, multi-response AEP experiments which

are usually difficult (or even impossible) to be deconvolved

in the complete representation space, can easily be decon-

volved in the reduced representation space.

This article presents the mathematical formulation of

multi-response deconvolution performed in the reduced rep-

resentation space. We demonstrate the viability of the pro-

posed method using auditory responses evoked by clicks

with randomized stimulation levels (Martinez et al., 2023),

in which the stimulus presentation level is uniformly distrib-

uted in the interval 0–80 dB normal hearing level (nHL),

and the multi-response model is defined by categorizing the

stimuli according to their level.

II. SUBSPACE-CONSTRAINED MULTI-RESPONSE
DECONVOLUTION

A. Least-squares deconvolution

In an AEP recording process, the digital EEG signal

y(n) is usually modeled as the convolution of the stimulation

sequence s(n) (consisting of impulses at the beginning of

each stimulation event) and the response signal x(n),

yðnÞ ¼ sðnÞ � xðnÞ þ n0ðnÞ; (1)

where n0ðnÞ is the noise affecting the EEG (de la Torre

et al., 2022; Jewett et al., 2004; Ozdamar and Bohorquez,

2006).

If N is the number of samples in the EEG (at a given sam-

pling rate) and J the length of the evoked response, this convo-

lutional model can be rewritten using matrix notation as

y ¼ Sxþ n0; (2)

where y, Sx and n0 are N-component column vectors (repre-

senting, the EEG signal, the convolution of the stimulation

signal with the response, and the noise, respectively), x is a

J-component column vector (representing the evoked

response) and S is a ðN � JÞ matrix (N rows and J columns)

with Sðn; jÞ ¼ sðn� jÞ providing the convolution sðnÞ � xðnÞ
as a matrix operation (Bardy et al., 2014a; de la Torre et al.,
2019; de la Torre et al., 2022).

The deconvolution of y (i.e., the estimation of x), can

be formulated as an over-determined system of linear equa-

tions (with N equations and J unknowns, being N � J). In

the context of linear algebra, the least squares (LS) criterion

minimizes the squared residual ky� Sxk2
, and provides the

LS deconvolution of the response as

x̂ ¼ STSð Þ�1
ST y; (3)

where ST is the transpose of S (Bardy et al., 2014a; de la Torre

et al., 2022; Gentle, 1998; Hayashi, 2000; Press et al., 2002).

By defining the matrix Sk as S normalized and transpose

(i.e., Sk ¼ ST=K, where K is the number of impulses in the

stimulation sequence), and taking into account that

Rs ¼ Sk S is the normalized ðJ � JÞ autocorrelation matrix

of the stimulation sequence s(n), the LS deconvolution can

be rewritten as

x̂ ¼ R�1
s Sk y ¼ R�1

s z0; (4)

where z0 ¼ Sk y is a J-component vector obtained as the

synchronous average of the EEG.

Therefore, the LS estimation of the evoked response

requires the synchronous averaging of the EEG (z0) and the

inversion of the ðJ � JÞ normalized autocorrelation matrix of

the stimulation sequence (Rs). This LS estimation can be

obtained by matrix division (as proposed in RSLSD; Bardy

et al., 2014a; Bardy et al., 2014b; Bardy et al., 2014c) or by an

iterative procedure (as proposed by IRSA; de la Torre et al.,
2019). It is important to note that, according to Eq. (4), the syn-

chronous average z0 is a biased estimator of the response. The

unbiased estimation of the response requires the application of

the inverse of the autocorrelation matrix R�1
s in order to com-

pensate for the effect of the response overlapping. Additionally,

the application of the inverted matrix could amplify some com-

ponents of the noise in the estimated response, due to low eigen-

values in Rs. The condition number of the matrix (i.e., the ratio

of the largest to the smallest eigenvalues, in absolute value) pro-

vides an approximate evaluation of the magnitude of both

effects (the bias of the synchronous average z0 and the potential

amplification of specific components of the noise).

B. Multi-response deconvolution

Let us suppose that the auditory system is stimulated

with M categories of stimulus, each one evoking a different

response xmðnÞ (with 1 � m � M). Assuming a multi-

response convolutional model, the contribution of each

category of stimulus m to the EEG is the convolution of its

stimulation sequence smðnÞ with the corresponding response

xmðnÞ, and the EEG is described as

yðnÞ ¼ s1ðnÞ � x1ðnÞ þ s2ðnÞ � x2ðnÞ þ � � �
þ sMðnÞ � xMðnÞ þ n0ðnÞ; (5)

which can be rewritten using matrix notation as

y ¼ S1x1 þ S2x2 þ � � � þ SMxM þ n0; (6)

where y, Smxm and n0 are N-component column vectors, xm are

J-component column vectors, and Sm are ðN � JÞ matrices,

providing the convolution of each category of response as a

matrix operation. This matrix equation can be compacted as

y ¼ S1S2 � � � SM½ �

x1

x2

..

.

xM

2
6664

3
7775þ n0 ¼ Sallxall þ n0; (7)

J. Acoust. Soc. Am. 155 (6), June 2024 de la Torre et al. 3641

https://doi.org/10.1121/10.0026228

https://doi.org/10.1121/10.0026228


where Sall is the horizontal concatenation of the matrices Sm

and xall the vertical concatenation of the vectors xm repre-

senting the responses. This matrix equation represents an

over-determined system of linear equations, with N equa-

tions and J�M unknowns, and the formal LS solution is

x̂all ¼ ST
allSall

� ��1
ST

ally: (8)

If we expand the concatenated matrices and vectors, we can

write,

x̂1

x̂2

..

.

x̂M

2
666664

3
777775
¼

ST
1

ST
2

..

.

ST
M

2
666664

3
777775

S1S2 � � � SM½ �

0
BBBBB@

1
CCCCCA

�1
ST

1

ST
2

..

.

ST
M

2
666664

3
777775

y; (9)

or equivalently,

x̂1

x̂2

..

.

x̂M

2
666664

3
777775
¼

Rs 11 Rs 12 � � � Rs 1M

Rs 21 Rs 22 � � � Rs 2M

..

. ..
. . .

. ..
.

RsM1 RsM2 � � � RsMM

2
666664

3
777775

�1
z01

z02

..

.

z0M

2
666664

3
777775
; (10)

where

Rsmn ¼
1

Km
ST

mSn (11)

is the correlation matrix of the mth and nth stimulation

sequences, normalized by the number of stimuli in the mth

sequence, and

z0m ¼
1

Km
ST

my (12)

is the synchronous average of the EEG for the mth stimula-

tion sequence.

Therefore, the multi-response deconvolution procedure

involves the following: (a) from the stimulation sequences

smðnÞ and the cross correlation among them, the estimation

of the correlation matrices Rsmn; (b) from the stimulation

sequences smðnÞ and the EEG y(n), the estimation of the

synchronous average for each sequence z0m; (c) the matrices

Rsmn are concatenated into Rs all and the vectors z0m into

z0all; (d) the concatenation of the responses x̂all is estimated

by applying the inverted matrix R�1
s all to the concatenated

synchronous averaging z0all,

x̂all ¼

x̂1

x̂2

..

.

x̂M

2
666664

3
777775
¼ R�1

s allz0all; (13)

and finally, (e) the responses to each category of stimulus

x̂m can be extracted from the concatenated response x̂all.

This multi-response deconvolution can be obtained by

matrix division (Bardy et al., 2014a), or alternatively, with

an iterative procedure (Valderrama et al., 2016). However,

the numerical algorithms for matrix division (or the pro-

posed iterative alternatives) show a computational complex-

ity growing faster than N2:3
d (being Nd the number of

dimensions, in this case, J�M), which limits the practical

use of multi-response deconvolution if the length of the

response J or the number of responses M are large.

C. Deconvolution in a reduced representation space

The specific bandwidth of the AEPs for each portion

of the response (range 100–3000 Hz for ABR; 10–300 Hz

for MLR; 1–30 Hz for CAEPs) suggests a dimensionality

reduction of the representation, based on a latency depen-

dent filtering and downsampling (LDFDS) of the AEP

responses (de la Torre et al., 2020). The LDFDS opera-

tion reduces the noise of the AEP responses (most of the

energy of the evoked responses is below ten oscillations/

decade and therefore the signal-to-noise ratio (SNR) of

the estimated responses improves by removing those

components out of the band of interest at each latency)

and provides a significant dimensionality reduction (typi-

cally from several thousand of samples to around one

hundred) thanks to the latency-dependent downsampling.

The LDFDS is applied to an AEP response x as a ðJr � JÞ
matrix operator Vr, where J and Jr are, respectively, the

dimensionality of the original representation space and

that of the reduced representation space (i.e., after filter-

ing and downsampling),

xr ¼ Vr x; (14)

where the impulsive response of the filter (implemented in

the rows of Vr) changes from row to row to adapt to the

bandwidth required at each latency, and the non-uniform

downsampling is implemented by selecting appropriate

rows in Vr according to the latency-specific bandwidth.

The LDFDS matrix is proposed as an orthonormal pro-

jector (the rows of the Vr matrix are orthonormal), which

preserves the metrics (i.e., the distances and energies) in

the reduced subspace and allows the recovery of the

latency-dependent filtered response in the original repre-

sentation (at the original uniform sampling rate and with J
components) by applying the transpose of the Vr matrix to

the response in the subspace representation xr (de la Torre

et al., 2020).

If the response to be estimated x is appropriately repre-

sented with a reduced representation xr given by Vr, then we

can write x ¼ VT
r xr and the convolutional model can be

written as

y ¼ S VT
r xr þ n0; (15)

and the formal LS solution of this deconvolution problem is

(de la Torre et al., 2022),
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x̂r ¼ ðS VT
r Þ

TðS VT
r Þ

� ��1

ðS VT
r Þ

T
y

¼ Vr ST S VT
r

� ��1
Vr ST y

¼ Vr Rs VT
r

� ��1
Vr z0 ¼ R�1

sr z0r; (16)

where Rsr and z0r are, respectively, Rs and z0 projected into

the subspace.

In summary, subspace-constrained LS deconvolution of

the EEG can be obtained with the following steps: (a) the

autocorrelation matrix Rs and the synchronous averaging of

the EEG z0 are transformed to the subspace using the transfor-

mation Vr; (b) the autocorrelation matrix in the reduced repre-

sentation is inverted; and (c) the inverted reduced

autocorrelation matrix is applied to the reduced synchronous

averaging. The LS deconvolution in Eq. (16) is similar to that

in Eq. (4), with the difference that the problem is solved in

the reduced representation space, and therefore it involves the

vectors z0r and x̂r of Jr components (instead of J), and the

inversion of the ðJr � JrÞ matrix Rsr [instead of the inversion

of the ðJ � JÞ matrix Rs], which provides a substantial reduc-

tion of computational cost (de la Torre et al., 2022). Again,

this subspace-constrained LS deconvolution can be imple-

mented via matrix division or by an iterative procedure.

D. Multi-response deconvolution in a reduced
representation space

As previously described, multi-response deconvolution is

usually difficult to implement due to the high dimensionality

(J�M) involved in the matrix division. On the other hand,

subspace-constrained deconvolution provides a substantial

dimensionality reduction (from J, typically several thousands, to

Jr, around one hundred). The obvious solution for a practical

implementation of multi-response deconvolution consists in its

formulation in a Jr dimension reduced representation space, i.e.,

involving a Jr �M dimensionality in the matrix division. This

section provides the mathematical formulation of multi-response

deconvolution constrained to the reduced representation space.

Let us suppose a multi-response convolutional problem

where each response xm can be described without informa-

tion loss in a reduced representation space given by an

orthonormal projector Vr. The reduced responses can there-

fore be expressed as xrm ¼ Vrxm (the responses can be

recovered from the reduced responses as xm ¼ VT
r xrm), and

the multi-response convolutional model can be written as

y ¼ S1S2 � � � SM½ �

VT
r xr1

VT
r xr2

..

.

VT
r xrM

2
666664

3
777775
þ n0

¼ S1VT
r S2VT

r � � � SMVT
r

� �
xr1

xr2

..

.

xrM

2
666664

3
777775
þ n0; (17)

which is an over-determined system of linear equations with N
equations and Jr �M unknowns whose formal LS solution is,

x̂r1

x̂r2

..

.

x̂rM

2
6666664

3
7777775
¼

Rsr 11 Rsr 12 � � � Rsr 1M

Rsr 21 Rsr 22 � � � Rsr 2M

..

. ..
. . .

. ..
.

RsrM1 RsrM2 � � � RsrMM

2
6666664

3
7777775

�1
z0r1

z0r2

..

.

z0rM

2
6666664

3
7777775
; (18)

where

Rsrmn ¼
1

Km
VrS

T
mSnVT

r ¼ VrRsmnVT
r (19)

is the correlation matrix of the mth and nth stimulation

sequences, normalized by the number of stimuli in the mth

sequence and projected to the subspace, and

z0rm ¼
1

Km
VrS

T
my ¼ Vrz0m (20)

is the synchronous average of the EEG for the mth stimula-

tion sequence projected to the subspace.

In summary, multi-response deconvolution in the

reduced representation space requires (a) the estimation of

the correlation matrices Rsmn and the synchronous averages

z0m; (b) their projection into the subspace, Rsrmn and z0rm

(using the Vr transformation); (c) the concatenation of the

reduced correlation matrices Rsr all and the reduced synchro-

nous averages z0r all; and (d) the application of the inverted

matrix R�1
sr all to z0r all, providing the concatenated solutions

in the subspace representation,

x̂r all ¼

x̂r1

x̂r2

..

.

x̂rM

2
6666664

3
7777775
¼ R�1

sr all z0r all: (21)

In order to obtain the responses in the original representation

space x̂m, the responses in the reduced representation are

expanded by applying the transposed transformation matrix,

x̂m ¼ VT
r x̂rm: (22)

The supplementary material includes a detailed expla-

nation of the matrix operations involved in single- and

multi-response convolution and deconvolution (supplemen-

tary material Sec. 1); MATLAB/Octave code (scripts and func-

tions) implementing the subspace-constrained multi-

response deconvolution proposed in this manuscript with

some examples and simulations (supplementary material

Sec. 2); and the extension of the subspace-constrained

multi-response deconvolution for the case in which a spe-

cific orthonormal projector Vm is applied to each response

xm (supplementary material Sec. 3).
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III. EXPERIMENTS AND RESULTS

The proposed subspace-constrained multi-response

deconvolution has been evaluated using auditory responses

evoked by clicks presented at different levels and catego-

rized according to the stimulation level. The purpose of the

experiments is to demonstrate the viability of multi-

response deconvolution performed in a reduced representa-

tion and to compare this method with the multi-response

deconvolution performed in the complete representation

space.

A. Experimental design

In these AEP experiments, the stimulation consisted of

rarefaction clicks of 0.1 ms, presented at a randomized stim-

ulation rate with an ISI in the range 15–30 ms (average stim-

ulation rate of 44.44 stim/s), and with a random stimulation

level with continuous uniform distribution in the range

0–80 dB nHL. The 0 dB nHL reference level was estimated

as described in Martinez et al. (2023), i.e., as the mean

threshold level estimated in a sample of ten normal-hearing

adults (five female, 23–38 years) who presented pure-tone

threshold levels within the normal range in the 0.5–8 kHz

frequency range and had no history of any type of auditory

dysfunction. The clicks were presented diotically through

ER-3A insert earphones (providing a flat response in the

range 0.1–4 kHz) with a tube length of around 28 cm.

The EEGs were recorded using surface active electro-

des (MettingVanRijn et al., 1996) located at the forehead

(Fz, active), the two mastoids (Tp9 and Tp10, reference),

and middle forehead (Fp1, common mode sense; Fp2,

driven right-leg), using a Biosemi ActiveTwo AD-box and

the ActiView EEG acquisition software. The EEG was digi-

tized in bipolar mode (recommended configuration for

ABR) at a sampling rate of 16 384 Hz with 24 bits/sample.

The bipolar mode includes a bandpass filtering

(100–3300 Hz bandwidth) which has been extended (with

digital filtering using an appropriate inverse filter) to the

range 20–3300 Hz in order to allow the acquisition of MLR

responses. The EEG to be deconvolved has been obtained as

the signal at the active channel (Fz) minus the average of

both reference channels (Tp9 and Tp10). The EEG database

contains recordings from eight subjects (aged 23–51 years,

two female). All participants met the inclusion criteria

of reporting no hearing difficulties and absence of a history

of auditory dysfunction. Each EEG recording consists of

1890 s (i.e., 31.5 min) and includes the responses to a total

of 84 000 stimuli.

The AEP responses include 200 ms of transient after the

presentation of the stimuli, and therefore the length of the

responses is J¼ 3277 samples. Taking into account that

most of the energy of the evoked responses is below ten

oscillations per decade of latency, the latency-dependent fil-

tering and downsampling are performed using a resolution

of 40 samples/decade (de la Torre et al., 2020), which pre-

serves the frequency components below 3.37 kHz, 628 and

68.8 Hz at latencies of 1, 10, and 100 ms, respectively, and

also reduces the dimensionality of the responses in the sub-

space to Jr¼ 91 components.

In these multi-response deconvolution experiments, in

addition to the deconvolution of the responses, the matrix

involved in the matrix division has been analyzed in terms

of its condition number in order to evaluate potential prob-

lems associated with the matrix inversion or the matrix

division problem [a large condition number reports ill-

conditioned deconvolution with potential amplification of

noise in the estimated responses (Bardy et al., 2014a)].

The multi-response deconvolutions performed in both

the complete and the reduced representation spaces are com-

pared taking into account the deconvolved responses, the

condition number of the matrices involved in the deconvolu-

tion, and the computational cost, which is evaluated in terms

of execution time, measured using a desktop computer with

an Intel-Core i7-3770 CPU, 3.40 GHz, 8.00 GB RAM run-

ning the algorithms in MATLAB.

B. Multi-response deconvolution in the complete
and the reduced representation space

Figure 1 represents the AEP responses obtained with

multi-response deconvolution in subject 1 (the latency axis

is represented in logarithmic scale in order to facilitate the

simultaneous visualization of the ABR and MLR compo-

nents). The figure includes the responses obtained with the

multi-response conventional deconvolution (i.e., in the

complete representation space) and with the subspace-

constrained deconvolution (i.e., in the reduced representa-

tion space). These responses are estimated from the same

EEG. In this example, the multi-response deconvolution has

been performed by categorizing the stimuli into ten groups

according to the stimulation level (in ranges of 8 dB) and

each response has been obtained from approximately 8400

stimuli. In these plots, the expected changes in the responses

(i.e., in the amplitude and latency of the components) can be

observed as a function of the stimulation intensity.

There are several important differences between the

deconvolution performed in the complete or the reduced

representation space. First, the latency-dependent filtering

applied in the second case reduces the high frequency noise

according to the local bandwidth, which is more evident for

later latencies (the noise reduction provided by the latency

dependent filtering looks like a simple low-pass filtering due

to the logarithmic compression of the latency axis in the fig-

ure). Second, there is a substantial reduction of the execu-

tion time when the deconvolution is performed in the

reduced representation space: in this example, with ten cate-

gories, the dimension of the multi-response in the complete

representation space is 32 770, while it is only 910 in the

reduced representation space, and the deconvolution took

1064.2 s in the complete representation space, while only

30.3 s in the reduced representation space. Finally, the

eigenvalues of the matrix to be inverted could not be

computed in the case of the complete representation space

due to a memory overflow error (the allocation of a

32 770� 32 770 matrix requires 8.0 GB of free memory).

3644 J. Acoust. Soc. Am. 155 (6), June 2024 de la Torre et al.

https://doi.org/10.1121/10.0026228

https://doi.org/10.1121/10.0026228


Figure 2 shows the AEP responses for subject 1, for

different categorizations based on the stimulation level,

using between 4 and 32 categories (intervals between 20

and 2.5 dB). All these traces correspond to deconvolutions

performed in the reduced representation space, and have

been obtained from the same EEG (like those in Fig. 1).

The total number of events (84 000 with random stimula-

tion level) are distributed among the different categories

(21 000, 10 500, 5250, and 2625 events per category for 4,

8, 16, and 32 categories, respectively) according to the

stimulation level. Each categorization and multi-response

deconvolution was performed in an independent procedure

after the EEG recording. These figures show that, as the

intensity range decreases (the number of categories

increases), the resolution in intensity improves, but fewer

stimuli are involved in the estimation of each trace, and

therefore the traces are more affected by noise. On the

other hand, the categorization with wide intervals implies

some spread of the latencies and amplitudes for the indi-

vidual responses included in each category, making the

LTI-like assumption weak and causing an amplitude reduc-

tion in the estimated responses, as observed for the inter-

vals of 20 dB. Supplementary material (Sec. 4) includes

similar plots for more categorizations (2, 3, 4, 5, 6, 8, 10,

12, 16, 20, 24, and 32 categories), for the multi-response

deconvolution performed in the reduced representation

space, and in the complete representation space for those

cases in which it could be computed without a memory

overflow error (i.e., ten categories or less).

Table I compares the computational cost when the

deconvolution is performed in the complete or the reduced

representation space. For each categorization of the stimuli

(from 2 to 32 categories), the number of dimensions

involved in the deconvolutions is specified, as well as the

execution time for the estimation of the responses (including

the initialization time, the deconvolution time, and the total

execution time), the computation time devoted to the esti-

mation of the eigenvalues, and the condition number of the

matrix involved in the deconvolution. These results corre-

spond to the deconvolution of the responses for subject 1.

Figure 3 compares the execution times for the multi-

response deconvolution performed in both the complete and

the reduced representation space.

Since the representation of each response requires 3277

samples in the complete representation space but only 91 in

the reduced representation space, there is a substantial

reduction in the computational cost associated with the

multi-response deconvolution, particularly as the number of

categories increases. When the deconvolution is performed

in the complete representation space, most of the computa-

tional cost is dedicated to the matrix division (except for cat-

egories 2 and 3). However, in the reduced representation

space, the matrix division computational cost is ridiculous

compared with that of the initialization (less than 0.2% in

the worst case). The initialization time involves the compu-

tation of the cross-correlations (between the EEG and the

stimulation sequences in order to estimate z0all, and among

the stimulation sequences in order to estimate Rs all).

FIG. 1. AEP responses for subject 1, categorized by stimulation intensity in blocks of 8 dB (ten categories, approximately 8400 events/category). In the left

panel, responses deconvolved in the complete representation space (standard deconvolution). In the right panel, responses deconvolved in the reduced repre-

sentation space (subspace-constrained deconvolution). The main ABR and MLR components are labeled in the top trace. The stimulus level range per cate-

gory is shown in the left panel.
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The initialization time is similar in the complete and

reduced representation spaces, even though it is slightly

smaller in the reduced representation space because the allo-

cation of memory for Rs all requires more resources than that

for Rsr all.

In addition to the unpractical execution time when the

multi-response deconvolution is performed in the complete

representation space, for 12 categories or more the size of

the matrix involved in the deconvolution is too large and

cannot be allocated in memory (leading to a memory over-

flow error).

The time devoted to the computation of the eigenval-

ues is also reported in Table I. While deconvolution

requires a matrix division (which is computationally easier

FIG. 2. AEP responses for subject 1, obtained with the multi-response deconvolution constrained to the reduced representation space, with different catego-

rizations of the stimulation level: from top-left to bottom-right, 4, 8, 16, and 32 categories (intervals of 20, 10, 5, and 2.5 dB, respectively).
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than a matrix inversion), the estimation of the eigenvalues

of this matrix is significantly more expensive in terms of

execution time and memory allocation. In the case of the

complete representation space, the memory overflow error

is reported for six categories or more, and the estimation of

the eigenvalues takes around 2 h 24 min for five categories.

As can be observed in the table, the condition number of

the matrices (i.e., the ratio of the largest to the smallest

eigenvalues) is smaller in the reduced representation space,

meaning the LS deconvolution is better conditioned in the

reduced representation space. This result is expected

according to the Cauchy interlacing theorem (also known

as the Poincar�e separation theorem), which gives upper and

lower bounds of eigenvalues of a real symmetric matrix

obtained as the orthogonal projection of a larger real sym-

metric matrix.

Supplementary material (Sec. 5) includes plots repre-

senting the execution time for the multi-response decon-

volution and the eigenvalues computation (as a function

of both, the number of estimated responses, and the num-

ber of components of the multi-response vector), an anal-

ysis of the memory requirements and an estimation of the

computational cost expected for other computer

architectures.

C. Grand average and individual AEP responses

Figure 4 shows the individual AEP responses, using a

multi-response deconvolution with 16 categories (stimula-

tion intervals of 5 dB) estimated from the 31.5 min of EEG

available for each subject. Each trace is obtained with

approximately 5250 stimuli. The grand average AEP

response (involving 42 000 stimuli per trace) is also

included. The main ABR and MLR components are labeled

in the first trace of each plot. Supplementary material (sec-

tion 6) includes individual and grand average responses,

estimated with several categorizations (intervals of 20, 10,

and 5 dB).

The plots with individual traces (subjects 1 to 8) visu-

ally show that most of the AEP components from wave I (of

the ABR) to the Pb (of the MLR) can be identified at the

higher stimulation levels. The amplitude of the components

decreases with the reduction of the stimulation intensity,

and also an increase in the latencies, particularly in the ABR

components, is observed. The comparison of the grand

average and the individual AEP responses reveals a high

consistency across subjects for most of the components.

TABLE I. Comparison of the computational cost for deconvolution performed in the complete or the reduced representation space. Execution time for (a)

multi-response deconvolution (initialization, deconvolution and total) and (b) estimation of eigenvalues of the matrix, as a function of the number of catego-

ries (the width of the intensity interval and the number of dimensions involved in the deconvolution are also indicated for each experiment). In those cases

where the eigenvalues could be computed, the computation time and the value of the condition number are also included.

Experiment Complete representation space Subspace-constrained deconvolution

Numb. Interval Numb.
Execution time (seconds)

Cond. Numb.
Execution time (seconds)

Cond.

categ. (dB) dimen. init. deconv. total eigenval. number dimen. init. deconv. total eigenval. number

2 40.0 6554 7.80 2.54 10.34 104.05 230.0 182 7.15 0.0004 7.15 0.0085 220.7

3 26.7 9831 9.95 7.28 17.23 318.37 246.8 273 8.87 0.0008 8.87 0.0133 220.7

4 20.0 13 108 12.48 15.97 28.45 723.91 241.0 364 10.70 0.0017 10.70 0.0255 220.7

5 16.0 16 385 15.86 33.01 48.88 8642.96 256.2 455 12.99 0.0024 12.99 0.0547 220.8

6 13.3 19 662 20.60 59.16 79.76 mem. overflow 546 15.98 0.0049 15.99 0.0784 220.8

8 10.0 26 216 31.20 273.21 304.41 mem. overflow 728 22.78 0.0067 22.79 0.2239 220.8

10 8.0 32 770 46.17 1018.04 1064.21 mem. overflow 910 30.29 0.0120 30.30 0.2933 220.9

12 6.7 39 324 memory overflow mem. overflow 1092 38.68 0.0218 38.70 0.5386 220.9

16 5.0 52 432 memory overflow mem. overflow 1456 56.90 0.0531 56.95 1.1333 221.1

20 4.0 65 540 memory overflow mem. overflow 1820 77.56 0.1038 77.67 2.4461 221.1

24 3.3 78 648 memory overflow mem. overflow 2184 97.57 0.1114 97.68 3.6501 221.1

32 2.5 1 04 864 memory overflow mem. overflow 2912 135.48 0.2279 135.71 7.8493 221.5

FIG. 3. (Color online) Execution time required for the estimation of all the

responses with the multi-response deconvolution. Comparison of deconvo-

lution performed in the complete representation space (standard deconvolu-

tion, blue line with triangles) and in the reduced representation space

(subspace-constrained deconvolution, red line with circles). The execution

times required by the initialization and the deconvolution are split in the

case of the complete representation space.
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A post-auricular muscle response (PAMR, an action poten-

tial occurring at approximately 13 ms after the stimulus

onset resulting from the contraction of the post-auricular

muscle) is observed in subject 5 (Sec. 6 of the supplemen-

tary material compares the grand average responses includ-

ing and excluding this subject).

D. Quality of the AEP estimations for different
categorizations

The quality of the AEP responses was determined in

terms of their SNR. The SNR was calculated as the ratio

between the energy of the AEP waveform and the energy of

the noise in the latency interval 0–200 ms. The SNR was

FIG. 4. AEP responses (grand average and individual responses for each subject) categorized by stimulation intensity in blocks of 5 dB (16 categories). The

stimulus level range is shown in the left panels. A subspace-constrained deconvolution has been applied.
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calculated in the reduced representation (since the transfor-

mation Vr between the complete and the reduced representa-

tion spaces is orthonormal, the energy is the same in both

representations). The respective energies of the response

and the noise are obtained according to the “plus-minus

reference” procedure proposed by Schimmel (1967). In our

implementation, the procedure was estimated using the first

half and the second half of the available epochs (Martinez

et al., 2023), specifically for each categorization and for

each subject.

Figure 5 represents the average SNR estimated for each

categorization and each subject as a function of the interval

width used for the categorization. The figure includes indi-

vidual traces for each subject (with triangles) and traces for

the grand average (with circles). The number of categories

is also indicated in the figure. A reduction in a factor 2 in

the number of categories (for example, from 32 categories,

2.5 dB intervals, to 16 categories, 5 dB intervals) implies an

increment in a factor 2 in the number of epochs per category

contributing to the response estimation, and therefore, a

SNR improvement of 3 dB would be expected (because the

amplitude of the noise in the estimated response would

decrease 3 dB as the number of epochs is doubled). This

improvement is approximately achieved on the left side of

the plot (many categories with narrow intervals), but the

improvement is smaller than expected (the slope decreases)

as we move to the right side of the plot. The reduction of the

SNR improvement with respect to the expected one seems

to be associated with the fact that wide categories cause a

spread of latencies (and a weak verification of the LTI-like

assumption) and the subsequent amplitude reduction in the

response estimation (as observed in Fig. 2).

Supplementary material (Sec. 7) contains a detailed

description of the procedure for the SNR estimation (includ-

ing a simulation to verify that the procedure provides a non-

biased SNR estimation) and detailed results (including also

the average signal and noise levels estimated for each sub-

ject and categorization).

E. Estimation of latencies and amplitudes

Even though a very detailed analysis of the morphology

of the estimated AEP responses is not the main objective of

this manuscript (because of its extension, such analysis will

be considered in a future manuscript), in Fig. 6, we include

measurements of amplitudes and latencies for the ABR

wave V and the MLR wave Na-Pa (two of the most consis-

tent components across subjects) as a function of the stimu-

lation level. These measurements correspond to a

categorization of the responses in intervals of 10 dB (which

provides a reasonable trade-off between noise and resolu-

tion). The results presented in the figure include individual

measurements for each subject (triangles) and mean across

the subjects (circles). The latency results are corrected

(reduced by 0.82 ms with respect to the measurements in the

evoked responses) taking into account the length of the

transducer tube (28 cm).

In the case of wave V, a clear dependence is observed

in the plots, with a reduction of latency and an increase in

the amplitude of the wave as the stimulation level

increases. Due to the noise affecting the estimated evoked

responses, the amplitude measurements are affected by

fluctuations. The latency measurements are significantly

more stable. In the case of wave Na-Pa, a strong depen-

dence is observed in the amplitude, with a significant

inter-subject variability. The plot with the largest ampli-

tude corresponds to subject 5 (with a large PAMR compo-

nent). In this case, the Na negative peak is influenced by

the PAMR component (as observed in Fig. 4), which

causes an overestimation of the Na-Pa amplitude. For this

reason, the measurements corresponding to this subject

were excluded from the average. The dependence on the

stimulation level is significantly smaller for the latency of

the peak Pa. Supplementary material (Sec. 8) includes

measurements of waves V and Na-Pa (latencies and ampli-

tudes) for categorizations in intervals of 20 dB (less noisy

responses but with lower resolution) and 5 dB (higher reso-

lution but more noisy responses).

IV. DISCUSSION AND CONCLUSIONS

In this article, we propose multi-response deconvolution

of AEPs performed in the reduced representation space pro-

vided by the latency-dependent filtering and downsampling.

The proposed method can be considered a natural and obvi-

ous combination of the multi-response deconvolution pro-

posed by Bardy et al. (2014a) and the subspace-constrained

deconvolution proposed by de la Torre et al. (2022).

However, the proposed method provides a very useful and

practical tool, because in the complete representation space,

the multi-response deconvolution is difficult to be applied

due to the computational cost, while this difficulty is allevi-

ated in the reduced representation space. In the experiments

presented in Fig. 1, the time required for the AEP estimation

FIG. 5. (Color online) Average estimated SNR for each categorization and

each subject as a function of the interval width used for the categorization

(the number of categories is indicated in the top trace in parenthesis).
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was reduced from 18 min to 30 s (and with more categories,

the AEP estimation was not possible in the complete repre-

sentation space due to memory overflow). Interestingly, the

computational time required to deconvolve the responses

(135.7 s for 32 categorizations in the most complex experi-

ment) was significantly smaller than the duration of the

EEG (i.e., the time devoted to EEG recording, 1890 s in the

experiments). This fact could be applied in the future to esti-

mate and represent the responses in real time during the

recording session. Additionally, the latency-dependent filter-

ing involved in the reduced representation provides a reduc-

tion of high frequency noise.

The reduced representation space also allows a detailed

analysis of the matrix involved in the deconvolution (for

instance, the estimation of the eigenvalues or the condition

number). This analysis is computationally more expensive

than the deconvolution. The eigenvalues and the condition

number are useful to assess potential problems in the decon-

volved responses (the matrix division amplifies those com-

ponents with low eigenvalues, and the over-amplification of

background noise increases the risk of highly noisy AEP

estimations). On the other hand, the dimensionality reduc-

tion guarantees a reduction of the condition number accord-

ing to the Cauchy interlacing theorem, as discussed in de la

Torre et al. (2022), which is more important in the multi-

response deconvolution (the condition number grows with

the number of categories, particularly in the complete repre-

sentation space, as can be observed in Table I). This

reduction of the condition number leads to a better condi-

tioned deconvolution problem (less susceptible to noise

amplification). The supplementary material (Sec. 9) includes

an analysis (including examples and simulations) of the

eigenvalues and the condition number and their utility to

detect ill-conditioned deconvolution problems.

The evoked responses observed in Figs. 1, 2, and 4 are

compatible with those described in de la Torre et al. (2019,

2020) and de la Torre et al. (2022) (for the ISI range

15–30 ms). These plots provide clear and consistent ABR

and MLR responses. However, in the responses presented in

this article, the CAEP components are difficult to observe

due to the filter applied to the EEG (with a 20–3300 Hz

bandwidth). The Pb/P1 wave (latency around 60 ms) is

attenuated with respect to the amplitudes observed in the

previous works, and the P2 wave, also attenuated, can be

observed only in subjects 1 and 3. As in the previous works

(even though with some limitations due to the bandwidth),

the proposed comprehensive AEP representation facilitates

the simultaneous exploration of peripheral and central

components.

The proposed multi-response deconvolution allows an a
posteriori categorization, as can be observed in Fig. 2. In

these experiments, the stimuli can easily be categorized

according to their intensity, and different categorizations

can be defined using different sizes of the intensity intervals

because the response morphology changes only subtly for

small variations of the stimulation intensity.

FIG. 6. (Color online) Measurements of the ABR wave V amplitude (top-left) and latency (bottom-left), and the MLR wave Na-Pa amplitude (top-right)

and latency (bottom-right) as a function of the stimulation level. These measurements were obtained from the responses estimated with eight categorizations

in intervals of 10 dB.
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Using few categories (with wide intensity intervals and

many stimuli in each category) reduces the computational

cost of the multi-response deconvolution and provides

responses less affected by noise, as observed in Fig. 5, but

affected by an amplitude reduction (associated with the

spread of amplitudes and latencies within each category and

the subsequent weak verification of the LTI-assumption), as

observed in Fig. 2. With more categories, the amplitude of

the components is usually larger (as observed in Fig. 2 and

in the Secs. 4 and 6 in the supplementary material), because

the spread in their latencies is smaller. Additionally, a better

resolution in intensity is achieved (which would be impor-

tant if the purpose of the exploration was, for example, to

estimate click-based hearing thresholds). The optimal cate-

gorization would depend on the total number of available

stimuli (which grows with the recording time) and the level

of the background noise in the EEG. The flexibility in the

multi-response categorization could be very useful for clini-

cal applications of AEP explorations in order to optimize

the information obtained from the recorded data since the

categorization could easily be adapted after the exploration

(or even during the exploration) according to the noise con-

ditions and the purpose of the exploration (for example,

identification of an electrophysiological response, or accu-

rate determination of click-based thresholds).

One of the limitations of the convolutional model for

the AEP responses is the LTI assumption of the hearing sys-

tem. The hearing system is not lineal (an increase in the

stimulus level produces a non-linear but approximately log-

arithmic increase in the response, with threshold and satura-

tion effects and with changes in the latencies and

morphology). Similarly, the hearing system is not time

invariant due to adaptation and fatigue mechanisms

(Valderrama et al., 2014a; Valderrama et al., 2016). Under

specific circumstances, the no-LTI hearing system behaves

as an LTI-like system (for example for a quasi-stationary

presentation of repetitive stimuli), if the response to each

stimulus can be assumed to be identical. In such a case, the

convolutional model can be applied to estimate the

responses via deconvolution (or with synchronous averaging

if the responses are not overlapped), but this limitation

strongly constrains the stimulation patterns that can be used

to evoke consistent responses. The proposed multi-response

deconvolution allows the definition of different categories

of stimuli (which are expected to evoke different responses)

and therefore allows for the extension of the LTI-like

assumption to stimulation patterns much more elaborated

than the classical repetitive patterns. This flexibility can be

used to make the acquisition sessions more comfortable for

the explored subjects (some of them find annoying or boring

the repetitive stimulation patterns, Martinez et al., 2023), or

for the assessment of specific aspects of the hearing percep-

tion (requiring complex stimulation patterns).

The multi-response estimation of evoked responses

have some precedents in the literature. In the context of

auditory steady state responses (ASSR) the simultaneous

estimation of responses to different stimulation frequencies

is very common (John et al., 1998; Lins and Picton, 1995;

Luts et al., 2006), and more recently, some interesting

experiments have been proposed to evaluate the auditory

attention (Manting et al., 2023). Compared with those

approaches, the multi-response deconvolution proposed in

the present article has the advantage of providing the tran-

sient evoked responses, and therefore information about the

source of the neural activity. In the context of multiple esti-

mations of transient responses, the parallel auditory brain-

stem response (Polonenko and Maddox, 2019, 2022)

proposes a multi-frequency stimulation procedure using

non-correlated stimulation sequences and therefore allowing

them to deconvolve the evoked response using the synchro-

nous average (without the need of an elaborated deconvolu-

tion procedure and without limitations related to

computational cost). This is possible (in spite of the

response overlapping) because the autocorrelation matrix is

the identity matrix for uncorrelated stimulation sequences.

However, this approach is restricted to experiments in which

the stimulation events are specifically configured to be sta-

tistically independent (which restricts the flexibility in the

experimental design to stimulation sequences following a

Poisson distribution). Additionally, the large ISI spread of

uncorrelated stimulation sequences could compromise the

verification of the LTI-assumption (weak when epochs with

different expected responses are grouped under the same

category), and makes it recommendable the verification of

the size of the ISI effect (Maddox and Lee, 2018; Polonenko

and Maddox, 2019, 2022; Stoll and Maddox, 2023) in order

to guarantee an accurate estimation of the responses.

In general, a quasi-uncorrelated stimulation sequence

(i.e., with large ISI spread) provides a low condition number

in the autocorrelation matrix. This guarantees low amplifica-

tion of the noise in the estimated response x̂ and a small bias

between the response and the synchronous average z0 (as

discussed and simulated in Sec. 9 of the supplementary

material). However, a large spread of ISI compromises the

verification of the LTI-assumption, and could lead to incor-

rect estimation of the responses. On the other hand, a narrow

ISI range guarantees the verification of the LTI-assumption,

but causes a large condition number (and amplification of

noise, requiring an increment of the number of events to

compensate for this effect). According to our previous expe-

rience with adaptation of evoked responses (de la Torre

et al., 2022; Valderrama et al., 2014a; Valderrama et al.,
2016), a uniform ISI distribution with the upper limit twice

the lower one (one octave ISI range) provides a reasonable

trade-off between the verification of the LTI-assumption

and the condition number.

In the present article, we have applied a relatively sim-

ple stimulation pattern (the stimuli are always the same

except for the stimulation level), in order to describe the

proposed procedure with a simple experiment. However, the

proposed multi-response deconvolution can be extended to

experimental designs using more complex stimulation pat-

terns and more audacious and creative categorizations. In a

previous work, we stimulated with bursts of clicks, and the
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stimuli were categorized taking into account their position

in the burst in order to study fast and slow adaptation mech-

anisms in the hearing system (Valderrama et al., 2019). In

another study, the stimuli were presented binaurally, where

the stimulation pattern was affected by changes in the inter-

aural delay, and different categories were defined for the

stimulation pattern or the changes in the interaural delay

(Martinez et al., 2021). In these studies, an iterative (and

time consuming) multi-response deconvolution was applied,

and the experimental design was constrained by the compu-

tational cost required by the deconvolution. With the proce-

dure proposed in this article, the computational cost is

alleviated, and more complex AEP experiments can be

designed, which will offer new perspectives for the research

and assessment of the hearing system.

SUPPLEMENTARY MATERIAL

See the supplementary material for (Sec. 1) detailed

description of convolution and deconvolution with matrix

formulation including examples and simulations; (Sec. 2)

description of the code (also provided as supplementary

material) with algorithms, examples of use and simulations;

(Sec. 3) extension of the subspace-constrained multi-

response deconvolution for the case of response-specific

transformation; (Sec. 4) detailed results of AEP responses

for subject 1; (Sec. 5) detailed results about computational

cost; (Sec. 6) detailed results about individual and grand

average AEP responses; (Sec. 7) description of the proce-

dure for SNR estimation in AEP responses and detailed

results; (Sec. 8) detailed results about estimated latencies

and amplitudes of ABR wave V and MLR wave Na-Pa;

(Sec. 9) a detailed analysis about eigenvalues and matrix

condition number, including simulations for single- and

multi-response deconvolution. See also supplementary

material for a zip file with code and data with algorithms,

examples and simulations: (a) scripts implementing simple

examples of convolution and deconvolution; (b) functions,

scripts and data with the algorithms for multi-response

deconvolution, with examples of use and simulations; (c) a

script with a simulation verifying the accuracy of the proce-

dure for SNR estimation; (d) functions and scripts imple-

menting simulations related to the effect of the eigenvalues

and the condition number on the deconvolved responses.
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