

TOURITAGE – Tourism-led Heritage Development

Blended Intensive Programmes

School of Architecture | 1–6 July 2025

Brainwaves and beyond: EEG tools for auditory evaluation and emotion analysis

Joaquin T. Valderrama

Department of Signal Theory, Telematics and Communications School of Technology and Telecommunications Engineering University of Granada jvalderrama@ugr.es

Structure

1. Fundamentals of EEG

- 1. Electroencephalography (EEG)
- 2. Hardware elements
- 3. EEG recording systems
- 4. Neural oscillations
- 5. Evoked potentials

2. The hearing process

- 1. The external and middle ear
- 2. The cochlea
- 3. The basilar membrane
- 4. The Organ of Corti
- 5. The outer hair cells (OHC)
- 6. The inner hair cells (IHC)
- 7. The auditory pathway
- 8. The brain
- 9. Hearing with a cochlear implant

3. Hearing measures

- 1. Auditory evoked potentials (AEPs)
- 2. AEPs recording
- 3. Hearing threshold estimation

4. Cognitive measures

- 1. Listening effort
- 2. Selective attention
- 3. Emotions recognition

1. Fundamentals of EEG

- 1. Electroencephalography (EEG)
- 2. Hardware elements
- 3. EEG recording systems
- 4. Neural oscillations
- 5. Evoked potentials

1.1. Electroencephalography (EEG)

Electroencephalogram (EEG)

• *Electro* refers to an electrical component.

- **Encéfalo** comes from the Greek word *en-kephale*, meaning "of the head", and refers to the brain.
- o *Gram* represents the act of measuring.

1.2. Hardware elements

1.3. EEG recording systems

Images (left): <u>https://www.biosemi.com/pin_electrode.htm</u> | Images (right): <u>https://www.bitbrain.com/es</u>

1.4. Neural oscillations

Delta (0.5–4 Hz).

- Main function: Regulation of deep sleep, memory consolidation, and brain restoration processes.
- Associated state of consciousness: Occurs during slow-wave sleep (NREM), a state of deep unconsciousness crucial for nervous system recovery.
- Clinical implications: A decrease in delta waves may be associated with insomnia or sleep disturbances, while an abnormal increase during wakefulness may be related to brain damage or coma states.

- Theta (4—8 Hz).
 - *Main function*: Processing of episodic memory, learning, spatial navigation, and emotional regulation.
 - Associated state of consciousness: Deep relaxation, meditative states, light sleep, and hippocampal activity related to memory.
 - *Example in brain activity*: In the hippocampus, theta oscillations facilitate the encoding and retrieval of memories, playing a key role in memory consolidation.
 - *Clinical implications*: Alterations in theta activity may be associated with neurodegenerative diseases and learning disorders.

- Alpha (8—12 Hz).
 - *Main function*: Regulation of attention and alertness, inhibition of irrelevant information, and facilitation of sensory processing.
 - Associated state of consciousness: Relaxation without drowsiness, mental calmness, and reduced cortical activity when not actively processing external stimuli.
 - *Example in brain activity*: Alpha activity increases when we close our eyes and decreases when we focus on demanding cognitive tasks.
 - *Clinical implications*: Decreased alpha activity may be associated with anxiety, stress, and disorders such as ADHD.

- **Beta** (12—30 Hz).
 - *Main function*: Active information processing, motor control, and coordination of complex cognitive tasks.
 - Associated state of consciousness: Active wakefulness, logical thinking, decisionmaking, and concentration.
 - *Example in brain activity*: Beta activity increases during problem-solving in mathematics or while learning new motor skills.
 - *Clinical implications*: Excessive beta activity may be associated with anxiety and stress, while reduced beta activity is linked to movement disorders such as Parkinson's disease.
- **Gamma** (30—100 Hz).
 - *Main function*: Integration of multisensory information, conscious perception, working memory, and higher cognitive functions.
 - Associated state of consciousness: Peak attention, high-level information processing, and full awareness.
 - *Example in brain activity*: Observed during conscious perception processes, such as when we identify an object in a split second.
 - *Clinical implications*: Dysfunction in gamma activity has been linked to disorders such as schizophrenia and Alzheimer's disease.

Time vs Frequency analysis

Time domain

Fourier Transform

Frequency domain

• Ejemplo 1. Identificación automática de emociones (Pandey et al., 2022).

Pankaj Pandey^{1*}, Richa Tripathi² and Krishna Prasad Miyapuram^{1,3}

Navarasas (Nine Rasas)	Corresponding Dominant state
1. Sringaram (Erotic)	Rati (Love)
2. Hasyam (Comic)	Hasyabhava (Mirth)
3. <i>Raudram</i> (Rage)	Krodha (Anger)
4. Adbhutam (Marvellous)	Vismay (Astonishment)
5. Veeram (Heroic)	Utsah (Energy)
6. Bibhatsam (Odious)	Jugupsha (Disgust)
7. Bhayanakam (Terror)	Bhay (Fear)
8. Karunayam (Pathos)	Shoka (Sorrow)
9. Santam (Peace)	Santabhava (Peace)

Table 5 Distinguishable pairs (p < 0.001) of *Rasas* in different frequency bands

Rasa 1	Discriminated (Rasas 2)	Band
Bibhatsam	Santam, Veeram and Karunayam	Delta and Gamma
Bibhatsam	Hasyam and Adbhutam	Beta
Bhayanakam	Karunayam	Delta, Beta and Gamma
Sringaram	All	Delta, Beta and Gamma
Sringaram	except Bibhatsam and Bhay- anakam	Theta
Sringaram	Santam and Hasyam	Alpha

1.4. Evoked potentials

- Evoked potentials (EP) are voltage waves that reflect the synchronized activity of neurons activated by an external stimulus.
- Depending on the type of external stimulus used, there are different types.

• Visual evoked potentials

- These are elicited in response to visual stimuli such as light flashes or reversing patterns.
- They are recorded in the occipital cortex and are used to assess visual function and diagnose conditions like multiple sclerosis.

o Somatosensory evoked potentials

- These are generated after peripheral nerve stimulation using electrical impulses.
- They reflect sensory conduction from the spinal cord to the somatosensory cortex and are used in the diagnosis of spinal cord injuries and neuropathies.

• Auditory evoked potentials

- These are responses from the brainstem or auditory cortex to sound stimuli such as clicks, brief tones, or more complex sounds.
- They are used to assess hearing, especially in newborns, and to detect brainstem disorders.

• Cognitive evoked potentials

- These are generated in response to cognitive tasks such as detecting novel or meaningful stimuli.
- They are used to study attention, memory, and speech comprehension.

• Motor evoked potentials

- These are obtained by stimulating the motor cortex and recording responses from muscles.
- They are essential for evaluating the motor pathway in diseases such as amyotrophic lateral sclerosis.

Image (top): https://multiacustica.com/blog/potenciales-evocados-auditivos-ventana-al-funcionamiento-del-oido-interno/ Image (bottom): https://neuronup.com/actividades-de-neurorrehabilitacion/actividades-para-funciones-cognitivas/actividades-de-atencion/ficha-paratrabajar-la-atencion-selectiva-con-ninos-objetos-exactos/

2. The hearing process

- 1. The external and middle ear
- 2. The cochlea
- 3. The basilar membrane
- 4. The Organ of Corti
- 5. The outer hair cells (OHC)
- 6. The inner hair cells (IHC)
- 7. The auditory pathway
- 8. The brain
- 9. Hearing with a cochlear implant

1.1. The external and middle ear

1.2. The cochlea

1.3. The basilar membrane

1.4. The Organ of Corti

1.6. The inner hair cells (IHC)

Frecuencia (Hz)

1.7. The auditory pathway

1.8. The brain

- The brain contains around 10¹¹ neurons.
- Highly interconnected -1 neuron \rightarrow 1000-100.000 synapses.
 - Breathing, body temperature regulation, digestion, voluntary movements, thinking, creating, learning.
- **Grey matter** contains most of the bain's neuronal cell bodies.
- White matter is made up axons that connect different brain regions.
- Left hemisphere → speech comprehension, reading, writing, and logical thinking.
- Right hemisphere → artistic activities and creativity.
- Frontal lobe \rightarrow voluntary control, planning, decision-making, reasoning, emotional regulation, and language—*higher cognitive functions*.
- Parietal lobe → Sense of touch, temperature perception, spatial orientation, audiovisual integration.
- **Occipital lobe** \rightarrow Vision, colour perception, shape recognition, motion.
- Temporal lobe → Hearing, face and object recognition, memory, language, and speech comprehension.

1.9. Hearing with a cochlear implant

Normal hearing

Cochlear implant

3. Hearing measures

Auditory evoked potentials (AEPs)
AEPs recording
<u>C. Hearing threshold estimation</u>

3.1. Auditory evoked potentials

26

3.3. Hearing threshold estimation

4. Cognitive measures

- a. Listening effort
- b. Selective attention
- c. Emotions recognition

4.1. Listening effort

I have to try harder to hear. I can't always hear what they're speaking to me about. It takes a lot of concentration.

[OD] Quasi

Omnidirectional

[BB] Binaural Beamforming

Dual-task

- Task 1. Speech-in-noise task
- Task 2. Behavioural task

Reaction time

OD BB Spare Task 1 Spare

Hearing aid microphones

Small amount of spare cognitive resources (<u>long</u> reaction time) Large amount of spare cognitive resources (<u>short</u> reaction time)

Task 1

4.3. Emotions recognition

Jerónimo Vida Manzano

Ángel Ramos Ridao

Rafael García Quesada

M^a del Carmen Aguilar

Francisco J. Abarca

José A.

Almagro

Joaquín T. Valderrama

35

- EEG signals offer a safe and simple way to assess how we process surrounding sounds.
- These techniques are widely used in clinical settings for objective hearing assessment.
- They also help investigate cognitive processes such as attention and cognitive load.
- EEG holds potential for identifying emotional states.

Acknowledgements

 RYC2022-037875-I, funded by MCIU/AEI/10.13039/501100011033 and FSE+.

 CNS2024-154207, funded by MCIU/AEI/10.13039/501100011033.

