Electric Double Layer: Charge Inversion

For many decades, the Gouy-Chapman model, whose cornerstone is the Poisson-Boltzmann equation, has been the traditional approach to describing the electric double layer (EDL). Since the early 1980s, a great amount of theoretical work (mostly computer simulations and integral equation theories) has proved that this classical picture of the EDL presents severe failures in the case of electrolytes with multivalent ions, as a result of neglecting ion size correlations or specific ion effects (Hofmeister effects). The overlooking of the phenomenon of charge reversal is probably one of the most representative examples of such deficiencies. Our experiencie in this filed provides a critical survey on the relevance of ion size correlations in real colloidal systems (focused mainly on solutions with multivalent counterions). A sophisticated electrophoresis theory (in which ionic steric correlations are taken into account) will be applied to analyze experimental data, which will be also compared with predictions of the classical approach. In addition, we discuss to what extent ion size correlations contribute to charge reversal in colloids of biological nature and other real colloids. Unlike the classical Poisson-Boltzmann approach, the presented theory describes the charge inversion that occurs within aqueous latexes when increasing the trivalent aqueous electrolyte concentration well above the mmolar range.

PUBLICATIONS

[35] A Martin-Molina, L Lue, M Quesada-Perez, K Bohinc. Interaction between charged lipid vesicles and point-or rod-like trivalent ions. Colloids and Surfaces B: Biointerfaces 178 (2019) 525-529

[34] G. I. Guerrero-Garcia, E. Gonzalez-Tovar, M. Quesada-Perez, A. Martin-Molina, The non-dominance of counterions in charge-asymmetric electrolytes: non-monotonic precedence of the electrostatic screening and local inversion of the electric field by multivalent coions. Phys. Chem. Chem. Phys. 18 (2016) 21852-21864

[33] F. Vereda, A. Martin-Molina, R. Hidalgo-Alvarez, M. Quesada-Perez, Specific ion effects on the electrokinetic properties of iron oxide nanoparticles: experiments and simulations, Phys. Chem. Chem. Phys. 17 (2015) 17069–17078.

[32] G. Luque-Caballero, A. Martín-Molina, M. Quesada-Pérez, Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study, J. Chem. Phys. 140 (2014) 174701.

[31] J. Faraudo, A. Martin-Molina, Competing forces in the interaction of polyelectrolytes with charged interfaces, Curr. Opin. Colloid Interface Sci. 18 (2013) 517–523.

[30] A. Martín-Molina, C. Rodríguez-Beas and  J. Faraudo, Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations, Biophysical Journal, 102 (2012) 2095-2103.

[29] J.G. Ibarra-Armenta, A. Martín-Molina, K. Bohinc and  M. Quesada-Pérez, Effects of the internal structure of spheroidal divalent ions on the charge density profiles of the electric double layer, The Journal of chemical physics, 137 (2012) 224701.

[28] A. Martín-Molina, J.G. Ibarra-Armenta, E. González-Tovar, R. Hidalgo-Álvarez and  M. Quesada-Pérez, Monte Carlo simulations of the electrical double layer forces in the presence of divalent electrolyte solutions: effect of the ion size, Soft Matter, 7 (2011) 1441-1449.

[27] J.G. Ibarra-Armenta, A. Martín-Molina and  M. Quesada-Pérez, Influence of monovalent ion size on colloidal forces probed by Monte Carlo simulations, Physical Chemistry Chemical Physics, 13 (2011) 13349-13357.

[26] M. Quesada-Pérez, A. Martín-Molina, J. Ibarra-Armenta and  R. Hidalgo-Álvarez, 10 Ion Size Correlations in Electric Double Layers, Nanoscience: Colloidal and Interfacial Aspects, (2010) 249-268.

[25] A. Martín-Molina, C. Rodríguez-Beas and  J. Faraudo, Charge reversal in anionic liposomes: experimental demonstration and molecular origin, Physical review letters, 104 (2010) 168103.

[24] A. Martín-Molina, M. Quesada-Pérez and  R. Hidalgo-Álvarez, 3 Ionic Structures in Colloidal Electric Double Layers: Ion Size Correlations, Structure and functional properties of colloidal systems, 146 (2010) 63.

[23] M. Quesada-Pérez, R. Hidalgo-Álvarez, A. Martín-Molina, Effect of ionic van der Waals forces on the diffuse potential of model colloids, Colloid Polym. Sci. 288 (2010) 151–158

[22] A. Martín-Molina, J.G. Ibarra-Armenta, M. Quesada-Pérez, Effect of ion dispersion forces on the electric double layer of colloids: a Monte Carlo simulation study, J. Phys. Chem. B. 113 (2009) 2414–2421

[21] A. Travesset, A. Martin-Molina, C. Calero, J. Faraudo, M. Quesada-Perez and  R. Hidalgo-Alvarez, Charge inversion in monovalent ionic solutions, in:  APS Meeting Abstracts, Vol 1, 2009, pp. 14008.

[20] A. Martín-Molina, C. Rodríguez-Beas, R. Hidalgo-Álvarez and  M. Quesada-Pérez, Effect of surface charge on colloidal charge reversal, The Journal of Physical Chemistry B, 113 (2009) 6834-6839.

[19] A. Martín-Molina, R. Hidalgo-Álvarez and  M. Quesada-Pérez, Additional considerations about the role of ion size in charge reversal, Journal of Physics: Condensed Matter, 21 (2009) 424105.

[18] A. Martín-Molina, C. Calero, J. Faraudo, M. Quesada-Pérez, A. Travesset and  R. Hidalgo-Álvarez, The hydrophobic effect as a driving force for charge inversion in colloids, Soft Matter, 5 (2009) 1350-1353.

[17] J.G. Ibarra-Armenta, A. Martín-Molina and  M. Quesada-Pérez, Testing a modified model of the Poisson–Boltzmann theory that includes ion size effects through Monte Carlo simulations, Physical Chemistry Chemical Physics, 11 (2009) 309-316.

[16] A. Martín-Molina, J.A. Maroto-Centeno, R. Hidalgo-Alvarez and  M. Quesada-Pérez, Charge reversal in real colloids: Experiments, theory and simulations, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 319 (2008) 103-108.

[15] S. Madurga, A. Martín-Molina, E. Vilaseca, F. Mas and  M. Quesada-Pérez, Effect of the surface charge discretization on electric double layers: A Monte Carlo simulation study, The Journal of chemical physics, 126 (2007) 234703.

[14] A. Martín-Molina, M. Quesada-Pérez and  R. Hidalgo-Álvarez, Electric double layers with electrolyte mixtures: Integral equations theories and simulations, The Journal of Physical Chemistry B, 110 (2006) 1326-1331.

[13] A. Martín-Molina, J.A. Maroto-Centeno, R. Hidalgo-Álvarez and  M. Quesada-Pérez, Testing one component plasma models on colloidal overcharging phenomena, The Journal of chemical physics, 125 (2006) 144906.

[12] M. Quesada-Pérez, A. Martín-Molina and  R. Hidalgo-Álvarez, Simulation of electric double layers undergoing charge inversion: mixtures of mono-and multivalent ions, Langmuir, 21 (2005) 9231-9237.

[11] M. Quesada-Pérez, E. González-Tovar, A. Martín-Molina, M. Lozada-Cassou and  R. Hidalgo-Álvarez, Ion size correlations and charge reversal in real colloids, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 267 (2005) 24-30.

[10] M. Quesada-Pérez, A. Martın-Molina and  R. Hidalgo-Álvarez, Simulation of electric double layers with multivalent counterions: Ion size effect, The Journal of chemical physics, 121 (2004) 8618-8626.

[9] A. Martin-Molina, M. Quesada-Perez, F. Galisteo-Gonzalez and  R. Hidalgo-Alvarez, Charge inversion of latex particles in the presence of electrolyte, in:  Trends in Colloid and Interface Science XVI, Springer Berlin Heidelberg, 2004, pp. 114-118.

[8] M. Quesada-Perez, A. Martin-Molina, F. Galisteo-Gonzalez and  R. Hidalgo-Alvarez, Erratum: Electrophoretic mobility of model colloids and overcharging: theory and experiment, MOLECULAR PHYSICS, 101 (2003) 1933-1934.

[7] M. Quesada‐Pérez, E. González‐Tovar, A. Martín‐Molina, M. Lozada‐Cassou and  R. Hidalgo‐Álvarez, Overcharging in colloids: beyond the Poisson–Boltzmann approach, ChemPhysChem, 4 (2003) 234-248.

[6] A. Martı́n-Molina, M. Quesada-Pérez, F. Galisteo-González and  R. Hidalgo-Alvarez, Primitive models and electrophoresis: an experimental study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222 (2003) 155-164.

[5] A. Martın-Molina, M. Quesada-Pérez, F. Galisteo-González and  R. Hidalgo-Álvarez, Looking into overcharging in model colloids through electrophoresis: Asymmetric electrolytes, The Journal of chemical physics, 118 (2003) 4183-4189.

[4] A. Martin-Molina, M. Quesada-Pérez, F. Galisteo-González and  R. Hidalgo-Alvarez, Probing charge inversion in model colloids: electrolyte mixtures of multi-and monovalent counterions, Journal of Physics: Condensed Matter, 15 (2003) S3475.

[3] A. Martín-Molina, Propiedades electrocinéticas de sistemas coloidales modelo: efecto del tamaño iónico, in, University of Granada, 2003.

[2] M. Quesada-Pérez, A. Martin-Molina, F. Galisteo-González and  R. Hidalgo-Alvarez, Electrophoretic mobility of model colloids and overcharging: theory and experiment, Molecular Physics, 100 (2002) 3029-3039.

[1] A. Martin-Molina, M. Quesada-Perez, F. Galisteo-González and  R. Hidalgo-Alvarez, Electrophoretic mobility and primitive models: Surface charge density effect, The Journal of Physical Chemistry B, 106 (2002) 6881-6886.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>