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Reaction-diffusion systems with mass dissipation

Let Q C R" be bounded and u;(x, t) be the i—th concentration (chemical,

population, etc.) for i =1,..., m. We consider the following reaction-diffusion
system
Oruj — diAu; = fi(u), x €9,
Vui-v =0, x € 09, (1)
ui(x,0) = ujo(x), x €1,

where d; > 0 are diffusion coefficients and the nonlinearities f; are locally Lipschitz
continuous and satisfy

@ quasi-positivity condition
filu)>0 forall wel0,00)" with v =0. (P)

@ mass dissipation condition

m

> fi(u) <0 forall we0,00)" (M)
i=1
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Reversible reactions

CH3COOH + G HsOH = CH3COOGHs + H,O  or  S1 4S5 = S3+ S5,
The Fickian law and the law of mass action lead to
Oy — diAuy = f(U) == —wtp + uzuy, x €9,
Orty — daAup = f(u) :
Orus — d3Aus = f(U) := +uup — uzuy, x € Q,
Orug — daAuy = fo(u) :

= —uwup + uzuy, xE€Q,

()
= +urup — uzus, x €L

o It is clear that f;(u) > 0 if u; =0, so (P) is satisfied.
@ For (M) we have a stronger property, namely the mass conservation, i.e.

4
> fi(u)=0. (M)
i=1

@ (2) has additionally an entropy inequality, i.e.

4
Z fi(u)log u; = —(urup — usuy) Iog% <0. (E)
i—1 Usta
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A remark about (M) and (M)

(M) D fi(u)<o and (M) S fi(u) = 0.
i=1 i=1
Obviously (M’) = (M).
From (M) one can create a new system with (M’).
Ot — diAuj = fi(u), i=1,...,m  with > fi(u) <o0.
i=1

Add to the system the (m + 1)—th equation,
m
Otumi1 — Dtmyr = — Z f;(u) >0,
i=1

then the new system (with m + 1 unknowns) satisfies (M’) (and also (P)).
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Global existence with (P) and (M’)?

Owuj — diAu; = fi(u)  with  (P) and (M'): Z fi(u) = 0.

Thanks to (P), if the initial data is non-negative, the solution remains
non-negative as long as it exists.

Local existence on (0, T,.x): Classical result since f; are locally Lipschitz
continuous.

Global existence of classical solutions:

lim  [[ui(t)]| Lo (@) < +o0 for i =1,. — Tha = +00.

t— Tmax

When d; = d for all i =1,..., m one has

8tZU'—dAZU':OM>

When d; are different from each other — It is a challenging question!
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Available estimates
lim [Jui(t)|| o) < +oofori=1,....m = Timax = +00.
t— Trax

e From (M’),
0y ui—AY diy =Y fi(u) =0, (3)
i=1 i=1 i=1
hence

Oy Z/ ui(x, t)dx = 0,
i=1 79

and therefore
u; € L=(0, T; L1(Q)).

@ From (3), one can apply an improved duality method?

u; € L2H5(0, T; L275(Q)).

ID. Schmidt, M. Pierre, SIAM Review 2000; Cafiizo, Desvillettes, Fellner, CPDE=2014
T e



An “almost” counterexample?

There exists f(u, v) and g(u, v) and functions hy, h, : R — R such that
(P) f(0,v)>0, g(u,00>0 and f(u,v)+g(u,v)<0

and the solution to

Oru — diAu = f(u,v), x € Q,

Orv — dhAv = g(u,v), x € Q,
u(x, t) = hi(t), x € 09,
v(x, t) = hy(t), x € 082

blows up in finite time.
Remark that we have in this case inhomogeneous Dirichlet boundary conditions.

An example with homogeneous Neumann boundary conditions is unknown!

2D. Schmidt, M. Pierre, SIAM Review 2000
T



Polynomial nonlinearities
Ouj — diAu; = fi(u)  with (P) and (M'): Z fi(u) = 0.
i=1
Polynomial growth of nonlinearities is pretty common, i.e. there exists p > 1 such

that
Ifi(u)] < C(L+ [ul*) for i=1,...,m. (G)

In particular the case of quadratic nonlinearities, i.e. 1+ = 2. For instance

8tU1 — dlAul = ﬂ u

(u) = —us+ usuy, x €9,
Oruy — dhAuy = f(u) := —urtp + uzuy, x €,
(u) :
(u) :

6tU3 — d3AU3 = f3 u
atU4 — d4AU4 = f;; u

= tuwu — 3y, X €8,

=t — uzly, x € Q.

or antisymmetric Lotka-Volterra system with A = (a;;) € R™*",

Oruj — diAu; = —1iu; + u; Z ajju;j where A+ AT = 0.
j=1
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The literature

Goudon, Vasseur (2010): when n=1and p=3orn=2and y =2
(assuming additionally the entropy dissipation (E)). T. (2018): solutions
grow at most polynomially in time.

Caputo, Vasseur (2009): for arbitrary n > 1 with strictly subquadratic
nonlinearities, i.e. p < 2 (still assuming (E)).

Cafiizo, Desvillettes, Fellner (2014): for n < 2 and p = 2 without assuming
(E). The solution grows at most polynomially in time.

Pierre, Suzuki, Yamada (2019): The solution is bounded uniformly in time for
n<2and p=2.

When p > 2, Caiiizo, Desvillettes, Fellner (2014) or Fellner, Latos, Suzuki
(2016) showed global strong solution when

sup|d; —dj| <6 for § small enough.
iJ

Close-to-equilibrium: Caceres, Cafiizo (2017) n <4 & p=2; T. (2018)
n§4andu:1+%.

(Weaker solutions) Pierre (2003), fi(u) € L}(0, T; L}(Q)) implies global weak
solutions; Fischer (2015), global renormalized solutions under (E) without
any restriction on n and p.
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A forgotten Russian paper
Ya. |. Kanel’, Solvability in the large of a system of reaction- diffusion equations
with the balance condition, Differ. Uravn., 1990, Volume 26, Number 3, 448-458

PASPELUIHMOCTb B LLEJIOM CHCTEMbI YPABHEHHHA
PEAKUHH-IH®®Y3HH C BAJJAHCHBIM YCJIOBHEM

B GuoxuMHH H XHMHYeCKOl KHHeTHKe [l, 2] BcTpeuaroTcs cHCTeMBl ypas-
HeHuil BHIa

Luy= ‘;L;_A,Au,z Fl@, i=1, .y n, By = const>0,

M

w=(Uy, .oy Up), X= (X1, .cep Xm).

TMoctasum 3apauy Kowm nas cucremsr (1) B momympoctparcrse ¢>0,
XER™ npH HAYaNBLHBIX YCIOBHAX

w (x, 0) = uy(x), xER, 2
rae i, (x) Kycouno-nenpepuun B R™,
0w (x)<Kep=const, i=1, ..., n (3)

Ilpeanonocxkum, uto B (1) dyukuns fi(u) yi0BAeTBOPSIOT yeaobrio JIum-
wHua no & B Ji060oit KoweuHol o6aacTH H3 R™ H yCJIOBHAM

fi) =0 npu w; =0, u; =0, j==1, (€]
@+ o i@ =0 ()

IMocnennee yc/ioBHe HasbiBaeTcst GanaHCHBIM.
Teopema 2. [lycre avinoansawnrca ycaosun (3), (4), (5) u ycaosus

[ R@I<KQ e, i=1, 0, K=const>0, @)

20e r=2 npu m>1: r=3 npu m=1; >0 docraroyno mao. Tozda cywect-

ayer eduncTaennoe pewenue u(x, t) sadawu (1), (2) 6 noaynpocrpancree
t>0, x6R™.
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Three recent works
e Caputo, Goudon, Vasseur. Analysis and PDE (2019): De Giorgi's method.
Q =R", assume (M’) and (E), i.e.
Z fi(u)=0 and Z fi(u)log u; < 0.
i=1 i=1
@ Souplet. JEE (2018): Kanel's approach.
Q is bounded, assume (M) and (E), i.e.

Z fi(u) <0 and Z fi(u)log u; < 0.
i=1 i=1

o Fellner, Morgan, T. Annales IHP & DCDS-S (in press): Kanel's approach.
Q is bounded, assume only (M) (and even weaker), i.e.

m

Zfi(u) < Lo+ L1ZU,‘~

i=1 i=1
Moreover, if Lo = L1 =0, i.e. (M), then the solution is bounded uniformly in
time

sup [lui(t) || L) < M.
£>0
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Sketch of the proof

A key lemma

Lemma

Consider Oru — dAu = f, Vu-v =0 and u(0) = vuy. Assume that
o |[flli=(ax(, 1) < F; and
@ there exists y € [0, 1) such that

lu(x,t) —u(xX', t)| < H|x = X'|7, forall (x,t),(x',t) € Qx(0,T).
Then,

sup |Vu| < sup |[Vup| + BH™ F==
Qx(0,T) Q

When v is not Holder continuous, we can take v = 0 and H = 2||u|| 1 (ax(0,T))-

B.Q. Tang ( University of Graz, Austria ) Reaction-diffusion systems 14.1.2020 12/21




Sketch of the proof

From . . .
BtZu; — AZG’,’U,’ = Zf,(u) = 0,
i=1 i=1 i=1
follows
m t m m m
Z ui(x,t) = A (/ Z diu;i(x, s)ds) + Z uio(x) = Av(x,t) + Z ui o(x).
i=1 0 =1 i=1 i=1

=:v(x,t)

Aim: To estimate ||Av|| = in terms of U := 3 u;.
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Estimate of Av with v(x, t) = [5 > dui(x,s)ds
e (1) b(x,t)0;v — Av =0, 0 < m < b(x,t) < M gives

lv(x,t) — v(xX,t')| < H <|X X |- t/|5/2) .
° (2 v — Av = > (d; — 1)u;. Application of key lemma yields
Vv < Cr (14U,

Also from (2), |Av| < Cr(1 + |Vv[Y/?2|VU|/?).
From O:u; — d;Au; = f;(u) and |f;(u)| < Cr(1 + |u|?*%) one has from the key
lemma

IVU| < Cr (1+ |U|3“)
Therefore, from > u; = Av + 3 uj o,

e 1-6
Ul < Cr(1+|Av)) < Cr (1 Ul 2(2_5))

with 2= + 2( ) < 1 when ¢ is small enough, and therefore
Ul < Cr.
AT T



Theorem (Fellner, Morgan, T. (2019))

Assume (P),
Z filu) < Lo+ L4 Z up  forall uel0,00)"
i=1 i=1

and

Ifi(u)| < C(1+[uft®)  forall i=1,....m.

Then reaction-diffusion system (1) has a unique global classical solution.
Moreover,

e if Ly <0 then
[|ui(t)|| L) < Ce™;

@ if Lo = Ly =0, that means assuming (M), then
sup [|ui(t) Lo (@) < M.
>0

e ifLy =0 and Ly > 0 then

i ()| (@) < C(1 +tP);
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Super-quadratic nonlinearities

Theorem (Cupps, Morgan, T. (2019))

Assume (P), (M) and f;(u) < C(1 + |u|*) forall i=1,...

sup|d; — dj| <d&(p,n) or di > D(u,n) foralli=1,...
iJ

then
sup [|ui(t)|| Lo (@) < C.
>0

f

Corollary (Close-to-equilibrium)

Let us, € (0,00)™ be an equilibrium, i.e.
filueo) =0 forall i=1,..
If ||uio — Uoo”Loo(Q) < ¢ then

sup [|ui(t)|| Lo (@) < C.
>0

., m.
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Super-quadratic nonlinearities

Conjecture (Global Attractor Conjecture for ODE)

If a chemical reaction network is complex balanced, then the positive complex
balanced equilibrium is the global attractor of the dynamics of the differential
system.

Corollary (GAC with large diffusion)

Let (1) represents a complex balanced reaction network. Assume that
Ifi(u)| < C(1+ |u|*) foralli=1,....,m. If

di > D(u,n) forall i=1,...,m,

then the GAC holds for the PDE system as long as it holds for the corresponding
ODE system.
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Quadratic Intermediate Sum Conditions

Theorem (Morgan, T. (2019))
Let n < 2. Assume (P), (M) and

anfi(u)
anfi(u) + anfr(v)

amf(u) + amb(u) + - + ammfm(u) < C(1 + |uf?).

C1+]ul),

<
< C(1+uf?),

Then
sup [|ui(t)[| =) < C.
>0
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Quadratic Intermediate Sum Conditions

Consider the reversible reaction S; + pS; = S, + Ss, for p > 1 arbitrary.

Oty — diAuy = —uub + wpus, fi(u) < s
Orup — dhAuy = —uyub + wpuz,  then fr(u) < wu3
Oruz — dsAuz = 4w ub — wous, f(u) + f(u) <O0.

Theorem (Morgan, T. (2019))

Let n < 2. Then the above system has a unique bounded solution, i.e.
sup [|ui(t)l L= (@) < C.
>0

Moreover, the solution converges exponentially to equilibrium with explicit rates
and constants,

3
Z ||u,-(t) — U,"OOHLOO(Q) < Ce ™ forall t > 0.
i=1

vy
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Conclusion and Outlook

Conclusion: Global existence and uniform-in-time bound of solutions with (P)
and (M) for

@ systems with quadratic nonlinearities;
@ systems with large enough diffusion coefficients;

@ systems with quadratic intermediate sum conditions (when n = 2).

Outlook
@ Quadratic intermediate sum conditions in all dimensions?

@ Blow-up examples with homogeneous Neumann boundary conditions?
@ Threshold of growth order for global existence?
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Thank you for your attention!

Gracias por su atencidn!
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