Global existence of classical solutions for reaction-diffusion systems with mass dissipation

Bao Quoc Tang

(joint works with B. Cupps, K. Fellner, J. Morgan)

University of Graz, Austria

PDEs: Modelling, Analysis and Numerical Simulation

Granada 13.1.2020 - 16.1.2020

Reaction-diffusion systems with mass dissipation

Let $\Omega \subset \mathbb{R}^n$ be bounded and $u_i(x,t)$ be the i-th concentration (chemical, population, etc.) for $i=1,\ldots,m$. We consider the following reaction-diffusion system

$$\begin{cases} \partial_t u_i - d_i \Delta u_i = f_i(u), & x \in \Omega, \\ \nabla u_i \cdot \nu = 0, & x \in \partial \Omega, \\ u_i(x, 0) = u_{i, 0}(x), & x \in \Omega, \end{cases}$$
 (1)

where $d_i > 0$ are diffusion coefficients and the nonlinearities f_i are locally Lipschitz continuous and satisfy

quasi-positivity condition

$$f_i(u) \ge 0$$
 for all $u \in [0,\infty)^m$ with $u_i = 0$. (P

mass dissipation condition

$$\sum_{i=1}^m f_i(u) \le 0 \quad \text{ for all } \quad u \in [0, \infty)^m.$$
 (M)

Reversible reactions

$$CH_3COOH + C_2H_5OH \leftrightharpoons CH_3COOC_2H_5 + H_2O$$
 or $S_1 + S_2 \leftrightharpoons S_3 + S_4$

The Fickian law and the law of mass action lead to

$$\partial_{t}u_{1} - d_{1}\Delta u_{1} = f_{1}(u) := -u_{1}u_{2} + u_{3}u_{4}, \quad x \in \Omega,
\partial_{t}u_{2} - d_{2}\Delta u_{2} = f_{2}(u) := -u_{1}u_{2} + u_{3}u_{4}, \quad x \in \Omega,
\partial_{t}u_{3} - d_{3}\Delta u_{3} = f_{3}(u) := +u_{1}u_{2} - u_{3}u_{4}, \quad x \in \Omega,
\partial_{t}u_{4} - d_{4}\Delta u_{4} = f_{4}(u) := +u_{1}u_{2} - u_{3}u_{4}, \quad x \in \Omega.$$
(2)

- It is clear that $f_i(u) \ge 0$ if $u_i = 0$, so (**P**) is satisfied.
- For (M) we have a stronger property, namely the mass conservation, i.e.

$$\sum_{i=1}^{4} f_i(u) = 0. {(M')}$$

• (2) has additionally an entropy inequality, i.e.

$$\sum_{i=1}^{4} f_i(u) \log u_i = -(u_1 u_2 - u_3 u_4) \log \frac{u_1 u_2}{u_3 u_4} \le 0.$$
 (E)

A remark about (M) and (M')

(**M**)
$$\sum_{i=1}^{m} f_i(u) \leq 0$$
 and $(M') $\sum_{i=1}^{m} f_i(u) = 0$.$

Obviously $(\mathbf{M}') \Rightarrow (\mathbf{M})$.

From (M) one can create a new system with (M').

$$\partial_t u_i - d_i \Delta u_i = f_i(u), \quad i = 1, \dots, m$$
 with $\sum_{i=1}^m f_i(u) \leq 0.$

Add to the system the (m+1)-th equation,

$$\partial_t u_{m+1} - \Delta u_{m+1} = -\sum_{i=1}^m f_i(u) \ge 0,$$

then the new system (with m+1 unknowns) satisfies (\mathbf{M}') (and also (\mathbf{P})).

Global existence with (P) and (M')?

$$\partial_t u_i - d_i \Delta u_i = f_i(u)$$
 with (\mathbf{P}) and (\mathbf{M}') : $\sum_{i=1}^m f_i(u) = 0$.

Thanks to (P), if the initial data is non-negative, the solution remains non-negative as long as it exists.

Local existence on $(0, T_{\text{max}})$: Classical result since f_i are locally Lipschitz continuous.

Global existence of classical solutions:

$$\lim_{t\to T_{\max}}\|u_i(t)\|_{L^\infty(\Omega)}<+\infty \text{ for } i=1,\ldots,m \qquad \Longrightarrow \qquad T_{\max}=+\infty.$$

When $d_i = d$ for all i = 1, ..., m one has

$$\partial_t \sum u_i - d\Delta \sum u_i = 0 \xrightarrow{\mathsf{Maximal principle}} \left\| \sum u_i(t) \right\|_{L^\infty(\Omega)} \leq \left\| \sum u_{i,0} \right\|_{L^\infty(\Omega)}.$$

When d_i are different from each other \longrightarrow It is a challenging question!

Available estimates

$$\lim_{t o T_{\mathsf{max}}} \|u_i(t)\|_{L^\infty(\Omega)} < +\infty \; \mathsf{for} \; i=1,\ldots,m \qquad \Longrightarrow \qquad T_{\mathsf{max}} = +\infty.$$

• From (**M**'),

$$\partial_t \sum_{i=1}^m u_i - \Delta \sum_{i=1}^m d_i u_i = \sum_{i=1}^m f_i(u) = 0,$$
 (3)

hence

$$\partial_t \sum_{i=1}^m \int_{\Omega} u_i(x,t) dx = 0,$$

and therefore

$$u_i \in L^{\infty}(0, T; L^1(\Omega)).$$

• From (3), one can apply an improved duality method¹

$$u_i \in L^{2+\varepsilon}(0, T; L^{2+\varepsilon}(\Omega)).$$

¹D. Schmidt, M. Pierre, SIAM Review 2000; Cañizo, Desvillettes, Fellner, €PDE 2014

An "almost" counterexample²

There exists f(u, v) and g(u, v) and functions $h_1, h_2 : \mathbb{R} \to \mathbb{R}$ such that

$$(\mathbf{P}) \quad f(0,v) \geq 0, \quad g(u,0) \geq 0 \quad \text{ and } \quad f(u,v) + g(u,v) \leq 0$$

and the solution to

$$\begin{split} \partial_t u - d_1 \Delta u &= f(u, v), & x \in \Omega, \\ \partial_t v - d_2 \Delta v &= g(u, v), & x \in \Omega, \\ u(x, t) &= h_1(t), & x \in \partial \Omega, \\ v(x, t) &= h_2(t), & x \in \partial \Omega \end{split}$$

blows up in finite time.

Remark that we have in this case inhomogeneous Dirichlet boundary conditions.

An example with homogeneous Neumann boundary conditions is unknown!

4□ > 4ⓓ > 4≧ > 4≧ > ½ 900

²D. Schmidt, M. Pierre, SIAM Review 2000

Polynomial nonlinearities

$$\partial_t u_i - d_i \Delta u_i = f_i(u)$$
 with (**P**) and (**M**'): $\sum_{i=1}^m f_i(u) = 0$.

Polynomial growth of nonlinearities is pretty common, i.e. there exists $\mu>1$ such that

$$|f_i(u)| \le C(1+|u|^\mu)$$
 for $i=1,\ldots,m$. (G)

In particular the case of quadratic nonlinearities, i.e. $\mu = 2$. For instance

$$\begin{split} &\partial_t u_1 - d_1 \Delta u_1 = f_1(u) := -u_1 u_2 + u_3 u_4, \quad x \in \Omega, \\ &\partial_t u_2 - d_2 \Delta u_2 = f_2(u) := -u_1 u_2 + u_3 u_4, \quad x \in \Omega, \\ &\partial_t u_3 - d_3 \Delta u_3 = f_3(u) := +u_1 u_2 - u_3 u_4, \quad x \in \Omega, \\ &\partial_t u_4 - d_4 \Delta u_4 = f_4(u) := +u_1 u_2 - u_3 u_4, \quad x \in \Omega. \end{split}$$

or antisymmetric Lotka-Volterra system with $A=(a_{ij})\in\mathbb{R}^{m\times m}$,

$$\partial_t u_i - d_i \Delta u_i = - au_i u_i + u_i \sum_{j=1}^m a_{ij} u_j \quad ext{ where } \quad A + A^ op = 0.$$

The literature

- Goudon, Vasseur (2010): when n=1 and $\mu=3$ or n=2 and $\mu=2$ (assuming additionally the entropy dissipation (E)). T. (2018): solutions grow at most polynomially in time.
- Caputo, Vasseur (2009): for arbitrary $n \ge 1$ with *strictly subquadratic* nonlinearities, i.e. $\mu < 2$ (still assuming (**E**)).
- Cañizo, Desvillettes, Fellner (2014): for $n \le 2$ and $\mu = 2$ without assuming (E). The solution grows at most polynomially in time. Pierre, Suzuki, Yamada (2019): The solution is bounded uniformly in time for $n \le 2$ and $\mu = 2$.
- When $\mu>$ 2, Cañizo, Desvillettes, Fellner (2014) or Fellner, Latos, Suzuki (2016) showed global strong solution when

$$\sup_{i,j} |d_i - d_j| \le \delta \quad \text{ for } \delta \text{ small enough.}$$

- Close-to-equilibrium: Cáceres, Cañizo (2017) $n \le 4$ & $\mu = 2$; T. (2018) $n \le 4$ and $\mu = 1 + \frac{4}{n}$.
- (Weaker solutions) Pierre (2003), $f_i(u) \in L^1(0, T; L^1(\Omega))$ implies global weak solutions; Fischer (2015), global *renormalized solutions* under (**E**) without any restriction on n and μ .

A forgotten Russian paper

Ya. I. Kanel', Solvability in the large of a system of reaction- diffusion equations with the balance condition, Differ. Uravn., 1990, Volume 26, Number 3, 448–458

РАЗРЕШИМОСТЬ В ЦЕЛОМ СИСТЕМЫ УРАВНЕНИЙ РЕАКЦИИ-ДИФФУЗИИ С БАЛАНСНЫМ УСЛОВИЕМ

В биохимии и химической кинетике [1, 2] встречаются системы уравнений вида

$$L_{i}u_{i} \equiv \frac{\partial u_{i}}{\partial t} - \lambda_{i}\Delta u_{i} = f_{i}(u), \quad i = 1, ..., n, \quad \lambda_{i} = \text{const} > 0,$$

$$u = (u_{1}, ..., u_{n}), \quad x = (x_{1}, ..., x_{m}).$$
(1)

Поставим задачу Коши для системы (1) в полупространстве t>0, $x\in R^m$ при начальных условиях

$$u_i(x, 0) = u_{i0}(x), \quad x \in \mathbb{R}^m,$$
 (2)

где $u_{i0}(x)$ кусочно-непрерывны в R^m ,

$$0 \le u_{i0}(x) \le c_i = \text{const}, \quad i = 1, ..., n.$$
 (3)

Предположим, что в (1) функции $f_i(u)$ удовлетворяют условию Липшица по u в любой конечной области из R^n и условиям

$$f_i(u) \geqslant 0$$
 при $u_i = 0$, $u_j \geqslant 0$, $j \neq i$, (4)
 $f_1(u) + ... + f_n(u) = 0$. (5)

Последнее условие называется балансным.

Теорема 2. Пусть выполняются условия (3), (4), (5) и условия

$$|f_t(u)| \le K(1 + |u|^{r+\varepsilon}), \quad i = 1, ..., n, \quad K = \text{const} > 0,$$
 (9)

где [r-2] при m>1]; r=3 при m=1; $\varepsilon>0$ достаточно мало. Тогда существует единственное решение u(x,t) задачи (1), (2) в полупространстве t>0. $x(R^m)$

10 / 21

Three recent works

• Caputo, Goudon, Vasseur. Analysis and PDE (2019): De Giorgi's method. $\Omega = \mathbb{R}^n$, assume (**M**') and (**E**), i.e.

$$\sum_{i=1}^m f_i(u) = 0 \quad \text{and} \quad \sum_{i=1}^m f_i(u) \log u_i \leq 0.$$

• Souplet. JEE (2018): Kanel's approach. Ω is bounded, assume (**M**) and (**E**), i.e.

$$\sum_{i=1}^m f_i(u) \le 0 \quad \text{and} \quad \sum_{i=1}^m f_i(u) \log u_i \le 0.$$

• Fellner, Morgan, T. Annales IHP & DCDS-S (in press): Kanel's approach. Ω is bounded, assume only (**M**) (and even weaker), i.e.

$$\sum_{i=1}^{m} f_i(u) \leq L_0 + L_1 \sum_{i=1}^{m} u_i.$$

Moreover, if $L_0 = L_1 = 0$, i.e. (M), then the solution is bounded uniformly in time

$$\sup_{t\geq 0}\|u_i(t)\|_{L^\infty(\Omega)}\leq M.$$

Sketch of the proof

A key lemma

Lemma

Consider $\partial_t u - d\Delta u = f$, $\nabla u \cdot \nu = 0$ and $u(0) = u_0$. Assume that

- $||f||_{L^{\infty}(\Omega\times(0,T))} \leq F$; and
- there exists $\gamma \in [0,1)$ such that

$$|u(x,t)-u(x',t)| \le H|x-x'|^{\gamma}$$
, for all $(x,t),(x',t) \in \Omega \times (0,T)$.

Then,

$$\sup_{\Omega\times(0,T)}|\nabla u|\leq \sup_{\Omega}|\nabla u_0|+B\frac{1}{2-\gamma}F^{\frac{1-\gamma}{2-\gamma}}.$$

When u is not Hölder continuous, we can take $\gamma = 0$ and $H = 2||u||_{L^{\infty}(\Omega \times (0,T))}$.

Sketch of the proof

From

$$\partial_t \sum_{i=1}^m u_i - \Delta \sum_{i=1}^m d_i u_i = \sum_{i=1}^m f_i(u) = 0,$$

follows

$$\sum_{i=1}^{m} u_i(x,t) = \Delta \underbrace{\left(\int_0^t \sum_{i=1}^{m} d_i u_i(x,s) ds\right)}_{=:v(x,t)} + \sum_{i=1}^{m} u_{i,0}(x) = \Delta v(x,t) + \sum_{i=1}^{m} u_{i,0}(x).$$

Aim: To estimate $\|\Delta v\|_{L^{\infty}}$ in terms of $U := \sum u_i$.

Estimate of Δv with $v(x,t) = \int_0^t \sum d_i u_i(x,s) ds$

• (1) $b(x, t)\partial_t v - \Delta v = 0$, $0 < m \le b(x, t) \le M$ gives

$$|v(x,t)-v(x',t')| \le H(|x-x'|^{\delta}+|t-t'|^{\delta/2}).$$

• (2) $\partial_t v - \Delta v = \sum (d_i - 1)u_i$. Application of key lemma yields

$$|\nabla v| \leq C_T \left(1 + |U|^{\frac{1-\delta}{2-\delta}}\right).$$

- Also from (2), $|\Delta v| \le C_T (1 + |\nabla v|^{1/2} |\nabla U|^{1/2}).$
- From $\partial_t u_i d_i \Delta u_i = f_i(u)$ and $|f_i(u)| \leq C_T (1 + |u|^{2+\varepsilon})$ one has from the key lemma

$$|\nabla U| \leq C_T \left(1 + |U|^{\frac{3+\varepsilon}{2}}\right).$$

• Therefore, from $\sum u_i = \Delta v + \sum u_{i,0}$,

$$|U| \leq C_T (1 + |\Delta v|) \leq C_T \left(1 + |U|^{rac{3+arepsilon}{4} + rac{1-\delta}{2(2-\delta)}}
ight)$$

with $\frac{3+\varepsilon}{4}+\frac{1-\delta}{2(2-\delta)}<1$ when ε is small enough, and therefore

$$|U| \leq C_T$$
.

Theorem (Fellner, Morgan, T. (2019))

Assume (P),

$$\sum_{i=1}^m f_i(u) \le L_0 + L_1 \sum_{i=1}^m u_i \quad \text{ for all } \quad u \in [0, \infty)^m$$

and

$$|f_i(u)| \le C (1+|u|^{2+\varepsilon})$$
 for all $i=1,\ldots,m$.

Then reaction-diffusion system (1) has a unique global classical solution. Moreover,

• if $L_1 < 0$ then

$$||u_i(t)||_{L^{\infty}(\Omega)} \leq Ce^{-\lambda t};$$

• if $L_0 = L_1 = 0$, that means assuming (**M**), then

$$\sup_{t\geq 0}\|u_i(t)\|_{L^\infty(\Omega)}\leq M.$$

• if $L_1 = 0$ and $L_0 > 0$ then

$$||u_i(t)||_{L^{\infty}(\Omega)} \leq C(1+t^p);$$

Super-quadratic nonlinearities

Theorem (Cupps, Morgan, T. (2019))

Assume (P), (M) and $f_i(u) \leq C(1+|u|^{\mu})$ for all $i=1,\ldots,m$. If

$$\sup_{i,j} |d_i - d_j| \le \delta(\mu,n) \quad \text{ or } \quad d_i \ge D(\mu,n) \text{ for all } i = 1,\dots,m,$$

then

$$\sup_{t\geq 0}\|u_i(t)\|_{L^\infty(\Omega)}\leq C.$$

Corollary (Close-to-equilibrium)

Let $u_{\infty} \in (0, \infty)^m$ be an equilibrium, i.e.

$$f_i(u_\infty) = 0$$
 for all $i = 1, \dots, m$.

If
$$||u_{i,0} - u_{\infty}||_{L^{\infty}(\Omega)} \leq \varepsilon$$
 then

$$\sup_{t>0}\|u_i(t)\|_{L^{\infty}(\Omega)}\leq C.$$

Super-quadratic nonlinearities

Conjecture (Global Attractor Conjecture for ODE)

If a chemical reaction network is complex balanced, then the positive complex balanced equilibrium is the global attractor of the dynamics of the differential system.

Corollary (GAC with large diffusion)

Let (1) represents a complex balanced reaction network. Assume that $|f_i(u)| \le C(1+|u|^\mu)$ for all $i=1,\ldots,m$. If

$$d_i > D(\mu, n)$$
 for all $i = 1, \dots, m$,

then the GAC holds for the PDE system as long as it holds for the corresponding ODE system.

Quadratic Intermediate Sum Conditions

Theorem (Morgan, T. (2019))

Let $n \leq 2$. Assume (**P**), (**M**) and

$$\begin{cases} a_{11}f_1(u) & \leq C(1+|u|^2), \\ a_{21}f_1(u) + a_{22}f_2(u) & \leq C(1+|u|^2), \\ \dots, \\ a_{m1}f_1(u) + a_{m2}f_2(u) + \dots + a_{mm}f_m(u) & \leq C(1+|u|^2). \end{cases}$$

Then

$$\sup_{t\geq 0}\|u_i(t)\|_{L^\infty(\Omega)}\leq C.$$

Quadratic Intermediate Sum Conditions

Consider the reversible reaction $S_1 + pS_2 \leftrightharpoons S_2 + S_3$, for $p \ge 1$ arbitrary.

$$\begin{cases} \partial_t u_1 - d_1 \Delta u_1 &= -u_1 u_2^p + u_2 u_3, \\ \partial_t u_2 - d_2 \Delta u_2 &= -u_1 u_2^p + u_2 u_3, \\ \partial_t u_3 - d_3 \Delta u_3 &= +u_1 u_2^p - u_2 u_3, \end{cases} \quad \text{then} \quad \begin{cases} f_1(u) & \leq u_2 u_3 \\ f_2(u) & \leq u_2 u_3 \\ f_2(u) + f_3(u) & \leq 0. \end{cases}$$

Theorem (Morgan, T. (2019))

Let $n \le 2$. Then the above system has a unique bounded solution, i.e.

$$\sup_{t\geq 0}\|u_i(t)\|_{L^\infty(\Omega)}\leq C.$$

Moreover, the solution converges exponentially to equilibrium with explicit rates and constants.

$$\sum_{i=1}^3 \|u_i(t) - u_{i,\infty}\|_{L^\infty(\Omega)} \leq C \mathrm{e}^{-\lambda t} \quad \textit{for all} \quad t \geq 0.$$

Conclusion and Outlook

Conclusion: Global existence and uniform-in-time bound of solutions with (P) and (M) for

- systems with quadratic nonlinearities;
- systems with large enough diffusion coefficients;
- systems with quadratic intermediate sum conditions (when n = 2).

Outlook

- Quadratic intermediate sum conditions in all dimensions?
- Blow-up examples with homogeneous Neumann boundary conditions?
- Threshold of growth order for global existence?

Thank you for your attention!

Gracias por su atención!