Nematic alignment of self-propelled particles in the macroscopic regime

Sara Merino-Aceituno (U. Vienna/ U. Sussex) Pierre Degond (Imperial College London)

8-16 January 2020. Workshop on PDEs: Modelling, Analysis and Numerical Simulation. PDE-MANS

Sara Merino-Aceituno

Nematic collective dynamics

8-16 January 2020, Granada

Table of contents

Context and motivation: what is nematic alignment?

2 Main result and interpretation

3 Comments on the proof: Hilbert expansion and GCI

Sara Merino-Aceituno

Nematic collective dynamics

8-16 January 2020, Granada

Section 1

Context and motivation: what is nematic alignment?

Nematic alignment and collective dynamics

Figure: (a) Inert particles (from left to right: basmati rice, cylinders and rolling pins) from '*Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic, and smectic correlations*' Narayan et. al. (2006). (b) Nematic swarming in myxobacteria (active particles), from G. Velicer (Indiana U. Bloomington) and J. Bergen (Max-Planck I. for Developmental Biology). (c) Macroscopic view of swarming myxobacteria: formation of ripples, https://youtu.be/0ALM7X1_LqA

Some previous results on nematic phenomena

Vast literature, specially in the Physics community (mostly particle simulations):

• **Inert matter:** many interest in liquid crystals (excluded volume interaction of rod-like polymers).

 \rightarrow See, e.g., John Ball for mathematical works.

Great interest in the Physics community, but rigorous derivation missing.

Some previous results on nematic phenomena

Vast literature, specially in the Physics community (mostly particle simulations):

• **Inert matter:** many interest in liquid crystals (excluded volume interaction of rod-like polymers).

 \rightarrow See, e.g., John Ball for mathematical works.

- Active matter (a selection):
 - Chaté et. al. Modeling collective motion: variations on the vicsek model. Eur. Phys. J. B (2008) and Ginelli et. al. Large-scale collective properties of self-propelled rods Phys. Rev. Lett., (2010) and Chaté et. al. Simple model for active nematics: quasi-long-range order and giant fluctuations. Phys. Rev. Lett. 2006).

 \rightarrow particle simulation/pattern formation.

- F. Peruani, A. Deutsch, and M. Bär. A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms. Eur. Phys. J-spec. top., 157(1), 2008.
- Bertin et. al. Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E, 74(2), 2006.
 - \rightarrow Heuristic derivation.

Great interest in the Physics community, but rigorous derivation missing.

Sara Merino-Aceituno

Maths literature (in relation to collective dynamics):

 P. Degond, A. Manhart, and H. Yu. A continuum model for nematic alignment of self-propelled particles. Discrete Contin. Dyn. Syst. Ser. B, 22(4), 2017.

A complexified model for myxobacteria:

P. Degond, A. Manhart, and H. Yu. An age-structured continuum model for myxobacteria. Math. Models Methods Appl. Sci., 28(09), 2018.

ightarrow hyperbolic limit.

• P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases. *Quaternions in collective dynamics.* Multiscale Model. Simul., 16(1), 2018.

 \rightarrow nematic alignment in dim. 4; quadratic transport term; hyperbolic limit.

In this work we consider the diffusive limit.

Degond-Manhart-Yu model (without time reversal) $(X_i, \theta_i)_{i=1,...,N}, X_i \in \mathbb{R}^2, \theta_i \in [-\pi, \pi)$:

$$\begin{cases} dX_i = a v(\theta_i) dt, & v(\theta_i) = (\cos \theta_i(t), \sin \theta_i(t)), \ a > 0, \quad (1a) \\ d\theta_i = \nu \,\partial_{\theta_i} |\cos(\theta_i - \bar{\theta}_i)| dt + \sqrt{2d\cos^2(\theta_i - \bar{\theta}_i)} \, dB_t^i, \quad (1b) \end{cases}$$

where $\bar{\theta}_i$ is the 'mean nematic angle' of the neighbours. Noise cancels when $\theta_i = \bar{\theta}_i + \pi/2$. This affects the shape of the equilibria

$$f_{
ho_+,
ho_-,ar{ heta}}(heta) = \left\{ egin{array}{c}
ho_+ M_{ar{ heta}}(heta), \ \cos(heta-ar{ heta}) > 0, \
ho_- M_{ar{ heta}}(heta), \ \cos(heta-ar{ heta}) < 0. \end{array}
ight| M_{ar{ heta}}(heta) \sim \exp\left(rac{-
u}{d|\cos(heta-ar{ heta})|}
ight)$$

Macroscopic equations:

$$\left(\begin{array}{c} \partial_t \rho_+ + d_1 \nabla_x \cdot \left(\rho_+ v(\bar{\theta}) \right), \\ \partial_t \rho_+ + d_1 \nabla_x \cdot \left(\rho_+ v(\bar{\theta}) \right) \end{array} \right)$$
(2a)

$$\partial_t \rho_- - d_1 \nabla_{\mathsf{x}} \cdot \left(\rho_- \mathsf{v}(\bar{\theta}) \right) = 0,$$
 (2b)

 $(\rho_+ + \rho_-)\partial_t \bar{\theta} + d_2(\rho_+ - \rho_-)(\nu(\bar{\theta}) \cdot \nabla_x)\bar{\theta} + \mu\nu(\bar{\theta})^{\perp} \cdot \nabla_x(\rho_+ - \rho_-) = 0.$

Adding 'reversal motion': ripple (wave) formation.

Figure: From: P. Degond, A. Manhart, and H. Yu. *An age-structured continuum model for myxobacteria.* Math. Models Methods Appl. Sci., 28(09), 2018.

The Vicsek-nematic: discrete dynamics

 $(X_i, \omega_i) \in \mathbb{R}^d \times \mathbb{S}^{d-1}$, $i = 1, \dots, N$, $d \ge 2$. SDE in Stratonovich sense:

$$\int dX_i = \omega_i dt, \tag{3a}$$

$$\int_{\infty} d\omega_i = \frac{\nu}{2} \nabla_{\omega_i} (\omega_i \cdot \bar{\omega}_i)^2 dt + P_{\omega_i^{\perp}} \circ \sqrt{2D} dB_t^i,$$
(3b)

 $\nu, D > 0; (B_t^i)_{i=1,...,N}$ independent Brownian motions; $P_{\omega^{\perp}}$ orthogonal projection onto the orthogonal space to ω denoted by $\{\omega\}^{\perp}$. Finally, $\bar{\omega}_i$ denotes any of the two unitary leading eigenvectors of

$$Q_{i} = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{R^{d}} K\left(\frac{|X_{i} - X_{j}|}{R}\right) \left(\omega_{j} \otimes \omega_{j} - \frac{1}{d} \mathsf{Id}\right), \quad (4)$$

where the function K corresponds to a sensing kernel and R > 0 is the typical radius of the sensing region. We assume that $K \ge 0$ and

$$\int_{\mathbb{R}^d} \frac{1}{R^d} K\left(\frac{|x|}{R}\right) \, dx = 1.$$

We assume that the leading eigenvalue of Q_i is simple.

The Vicsek-nematic: discrete dynamics

 $(X_i, \omega_i) \in \mathbb{R}^d \times \mathbb{S}^{d-1}$, $i = 1, \dots, N$, $d \ge 2$. SDE in Stratonovich sense:

$$\int dX_i = \omega_i dt, \tag{3a}$$

$$\int_{\infty} d\omega_i = \frac{\nu}{2} \nabla_{\omega_i} (\omega_i \cdot \bar{\omega}_i)^2 dt + P_{\omega_i^{\perp}} \circ \sqrt{2D} dB_t^i,$$
(3b)

 $\nu, D > 0; (B_t^i)_{i=1,...,N}$ independent Brownian motions; $P_{\omega^{\perp}}$ orthogonal projection onto the orthogonal space to ω denoted by $\{\omega\}^{\perp}$. Finally, $\bar{\omega}_i$ denotes any of the two unitary leading eigenvectors of

$$Q_{i} = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{R^{d}} K\left(\frac{|X_{i} - X_{j}|}{R}\right) \left(\omega_{j} \otimes \omega_{j} - \frac{1}{d} \mathsf{Id}\right), \quad (4)$$

where the function K corresponds to a sensing kernel and R > 0 is the typical radius of the sensing region. We assume that $K \ge 0$ and

$$\int_{\mathbb{R}^d} \frac{1}{R^d} K\left(\frac{|x|}{R}\right) \, dx = 1.$$

We assume that the leading eigenvalue of Q_i is simple.

Compare with Vicsek: different potential and average orientation.

Sara Merino-Aceituno

Vicsek model

$$\begin{cases} dX_{i} = \omega_{i}dt, \qquad (5a)\\ d\omega_{i} = \frac{\nu}{2}\nabla_{\omega_{i}}(\omega_{i}\cdot\bar{\omega}_{i})dt + P_{\omega_{i}^{\perp}}\circ\sqrt{2D}dB_{t}^{i}, \qquad (5b) \end{cases}$$

$$\bar{\omega}_i = rac{J_i}{|J_i|}, \quad J_i = rac{1}{N} \sum_{j=1}^N rac{1}{R^d} K\left(rac{|X_i - X_j|}{R}\right) \, \omega_j.$$

Kinetic equation

Proposition (Formal mean-field limit)

The empirical distribution converges to a function $f = f(t, x, \omega)$ which satisfies the following kinetic equation:

$$\partial_t f + \nabla_x \cdot (\omega f) = \nabla_\omega \cdot \left[-\frac{\nu}{2} \nabla_\omega (\omega \cdot \bar{\omega}_{R,f})^2 f + D \nabla_\omega f \right] := C_R(f), \quad (6)$$

where ∇_{ω} and ∇_{ω} denote the gradient and divergence operators on \mathbb{S}^{d-1} , respectively, and where $\bar{\omega}_{R,f}$ is the unitary leading eigenvector (up to a sign) of

$$Q_{R,f}(t,x) := \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \frac{1}{R^d} K\left(\frac{|x-y|}{R}\right) \left(\omega \otimes \omega - \frac{1}{d} I d\right) f \, d\omega \, dy. \quad (7)$$

The initial condition to (6) is $f(0, x, \omega) = f_0(x, \omega)$.

Section 2

Main result and interpretation

Parabolic rescaling

• Hyperbolic rescaling:

$$t' = \varepsilon t, \quad x' = \varepsilon x,$$

leads to

$$\partial_t \rho = 0,$$

because

$$\int v M(v) dv = 0$$
 (no net motion of the particles)

where M is the equilibria of C_R (as we will see next).

• Parabolic rescaling:

$$t' = \varepsilon^2 t, \quad x' = \varepsilon x$$

 $\varepsilon^{\varepsilon}(t', x', \omega) = \frac{1}{\varepsilon^d} f(\frac{t'}{\varepsilon^2}, \frac{x'}{\varepsilon}, \omega),$

and $R = \varepsilon R'$ (localized interactions).

Fokker-Planck formulation

After some expansions:

$$\varepsilon^2 \partial_t f^{\varepsilon} + \varepsilon \nabla_x \cdot (\omega f^{\varepsilon}) = \Gamma(f^{\varepsilon}) + \mathcal{O}(\varepsilon^4).$$
(8)

where

$$\Gamma(f) = D\nabla_{\omega} \cdot \left[M_{u_f} \nabla_{\omega} \left(\frac{f}{M_{u_f}} \right) \right], \tag{9}$$

and u_f is one of the two normalized leading eigenvector of Q_f

$$Q_f := \int_{\mathbb{S}^{d-1}} \left(\omega \otimes \omega - \frac{1}{d} \mathsf{Id} \right) f \, d\omega, \tag{10}$$

and

$$M_u(\omega) \sim \exp\left(\frac{\kappa}{2}(\omega \cdot u)^2\right), \int_{\mathbb{S}^{d-1}} M_u(\omega) \, d\omega = 1, \qquad \kappa := \frac{\nu}{D}.$$
 (11)

We will see that, formally, $f^{\varepsilon} \rightarrow \rho M_u$ as $\varepsilon \rightarrow 0$, for that we will use:

Proposition (Properties of the operator Γ)

We have the following properties:

(i) Entropy dissipation: the following inequality holds:

$$H(f) := \int_{\mathbb{S}^{d-1}} \Gamma(f) \frac{f}{M_{u_f}} d\omega = -D \int_{\mathbb{S}^{d-1}} \left| \nabla_{\omega} \left(\frac{f}{M_{u_f}} \right) \right|^2 M_{u_f} d\omega \le 0.$$
(12)

(ii) Consistency relation: u is the leading eigenvector (up to a sign) of

$$Q_{M_u} = \int_{\mathbb{S}^{d-1}} M_u(\omega) \, \left(\omega \otimes \omega - rac{1}{d} I d
ight) \, d\omega.$$

(iii) Equilibria: the set *E* of functions f = f(ω) ≥ 0 such that Γ(f) = 0 are given by

$$\mathcal{E} = \{\rho M_u \mid \rho \in [0, \infty), \ u \in \mathbb{S}^{d-1}\}.$$
(13)

Main result

Suppose that f^{ε} converges to f as $\varepsilon \to 0$. Then, it holds that

$$f^{\varepsilon} o
ho M_u$$
, with $ho =
ho(t, x) \in [0, \infty)$, $u = u(t, x) \in \mathbb{S}^{d-1}$.

If the convergence is strong enough and ρ , u are smooth enough, then:

$$\begin{cases} \partial_{t}\rho + \nabla_{x} \cdot \left(C_{1}\left(u \cdot \nabla_{x}\rho\right)u + C_{2}P_{u^{\perp}}\nabla_{x}\rho + C_{3}\rho\left(u \cdot \nabla_{x}\right)u \right. \\ + C_{4}\left(\nabla_{x} \cdot u\right)\rho u\right) = 0, \\ \rho\partial_{t}u + E_{1}P_{u^{\perp}}\nabla_{x}\left(\left(u \cdot \nabla_{x}\right)\rho\right) \\ + F_{1}\rho P_{u^{\perp}}\left[\left(u \cdot \nabla_{x}\right)\left(\left(u \cdot \nabla_{x}\right)u\right)\right] + F_{2}\rho P_{u^{\perp}}\left(\nabla_{x} \cdot \left(P_{u^{\perp}}\nabla_{x}u\right)\right) \\ + F_{3}\rho P_{u^{\perp}}\nabla_{x}(\nabla_{x} \cdot u) \\ + G_{1}\left(u \cdot \nabla_{x}\rho\right)\left(u \cdot \nabla_{x}\right)u + G_{2}\left(P_{u^{\perp}}\nabla_{x}u\right)\left(P_{u^{\perp}}\nabla_{x}\rho\right) \\ + G_{3}\left(\left(P_{u^{\perp}}\nabla_{x}\rho\right) \cdot P_{u^{\perp}}\nabla_{x}\right)u + G_{4}\left(\nabla_{x} \cdot u\right)P_{u^{\perp}}\nabla_{x}\rho \\ + H_{1}\left(u \cdot \nabla_{x}\log\rho\right)\left(P_{u^{\perp}}\nabla_{x}\rho\right) + H_{2}\rho\left(P_{u^{\perp}}\nabla_{x}u\right)\left(\left(u \cdot \nabla_{x}\right)u\right) \\ + H_{3}\rho\left[\left(\left(u \cdot \nabla_{x}\right)u\right) \cdot P_{u^{\perp}}\nabla_{x}\right]u + H_{4}\rho\left(\nabla_{x} \cdot u\right)\left(u \cdot \nabla_{x}\right)u = 0, \\ |u| = 1. \end{cases}$$

 System of cross diffusion equations. Well-posedness? Is the system of higher order derivatives elliptic?... Future work. Coefficients are positive.

- System of cross diffusion equations. Well-posedness? Is the system of higher order derivatives elliptic?... Future work. Coefficients are positive.
- Conservative form for ρ (mass conservation)

$$\partial_t \rho + \nabla_x \cdot \mathcal{J} = \mathbf{0}.$$

- System of cross diffusion equations. Well-posedness? Is the system of higher order derivatives elliptic?... Future work. Coefficients are positive.
- Conservative form for ρ (mass conservation)

$$\partial_t \rho + \nabla_x \cdot \mathcal{J} = \mathbf{0}.$$

- Non-conservative form for *u* (interactions do not conserve momentum):
 - ▶ involves linear terms in the second order derivatives (E, F) and quadratic terms in the first order derivatives (G, H)

- System of cross diffusion equations. Well-posedness? Is the system of higher order derivatives elliptic?... Future work. Coefficients are positive.
- Conservative form for ρ (mass conservation)

$$\partial_t \rho + \nabla_x \cdot \mathcal{J} = \mathbf{0}.$$

- Non-conservative form for *u* (interactions do not conserve momentum):
 - ▶ involves linear terms in the second order derivatives (E, F) and quadratic terms in the first order derivatives (G, H)
- If |u(t = 0)| = 1, then |u(t)| = 1.

- System of cross diffusion equations. Well-posedness? Is the system of higher order derivatives elliptic?... Future work. Coefficients are positive.
- Conservative form for ρ (mass conservation)

$$\partial_t \rho + \nabla_x \cdot \mathcal{J} = \mathbf{0}.$$

- Non-conservative form for *u* (interactions do not conserve momentum):
 - ▶ involves linear terms in the second order derivatives (E, F) and quadratic terms in the first order derivatives (G, H)
- If |u(t = 0)| = 1, then |u(t)| = 1.
- The equations are invariant under the change $u \rightarrow -u$.
 - Nematic symmetry 'wins over' polar transport operator,
 - but, it generates an anisotropy in the direction of u. This leads to an anisotropic diffusion for the mass density ρ and mean direction u.

Anisotropic dynamics

Decompose the differential operators into their component parallel to u: $(u \cdot \nabla_x \ldots)$; and the one on $\{u\}^{\perp}$: $P_{u^{\perp}} \nabla_x \ldots$ For second order operators:

$$(u \cdot \nabla_x)((u \cdot \nabla_x \ldots)), \quad P_{u^{\perp}} \nabla_x (u \cdot \nabla_x \ldots), \quad P_{u^{\perp}} \nabla_x (P_{u^{\perp}} \nabla_x \ldots), \quad (15)$$

In the equation of ρ :

$$\partial_t \rho + \nabla_x \cdot \left(C_1 \left(u \cdot \nabla_x \rho \right) u + C_2 P_{u^{\perp}} \nabla_x \rho \right) \\ + \nabla_x \cdot \left(C_3 \rho \left(u \cdot \nabla_x \right) u + C_4 \left(\nabla_x \cdot u \right) \rho u \right) = 0,$$

Diffusive terms (C_1, C_2) Cross-diffusion terms (C_3, C_4)

If we had that $C_1 = C_2$ and $C_3 = C_4$, then

$$\partial_t \rho + C_1 \Delta_x \rho + C_3 \nabla_x \cdot (\rho \nabla_x \cdot (u \otimes u)) = 0$$

but $C_1 \neq C_2$ and $C_3 \neq C_4$ (anisotropy).

The equation for u $\rho \partial_t u + E_1 P_{u^{\perp}} \nabla_x ((u \cdot \nabla_x) \rho)$ $+ F_1 \rho P_{u^{\perp}} [(u \cdot \nabla_x)((u \cdot \nabla_x)u)] + F_2 \rho P_{u^{\perp}} (\nabla_x \cdot (P_{u^{\perp}} \nabla_x u))$ $+ F_3 \rho P_{u^{\perp}} \nabla_x (\nabla_x \cdot u)$ $+ G_1 (u \cdot \nabla_x \rho) (u \cdot \nabla_x) u + G_2 (P_{u^{\perp}} \nabla_x u) (P_{u^{\perp}} \nabla_x \rho)$ $+ G_3 ((P_{u^{\perp}} \nabla_x \rho) \cdot P_{u^{\perp}} \nabla_x) u + G_4 (\nabla_x \cdot u) P_{u^{\perp}} \nabla_x \rho$ $+ H_1 (u \cdot \nabla_x \log \rho) (P_{u^{\perp}} \nabla_x \rho) + H_2 \rho (P_{u^{\perp}} \nabla_x u) ((u \cdot \nabla_x) u)$ $+ H_3 \rho [((u \cdot \nabla_x) u) \cdot P_{u^{\perp}} \nabla_x] u + H_4 \rho (\nabla_x \cdot u) (u \cdot \nabla_x) u = 0,$

Diffusive terms (E). Cross-diffusion terms (F). Convection terms (G, H) All the possible quadratic terms:

$$\begin{array}{l} \left((u \cdot \nabla_{x})\rho\right)\left((u \cdot \nabla_{x})u\right)[G_{1}], \quad \left((u \cdot \nabla_{x})\rho\right)\left(P_{u^{\perp}}\nabla_{x}u\right), \\ \left((u \cdot \nabla_{x})u\right)\left(P_{u^{\perp}}\nabla_{x}\rho\right), \quad \left(P_{u^{\perp}}\nabla_{x}\rho\right)\left(P_{u^{\perp}}\nabla_{x}u\right)[G_{2}, G_{3}, G_{4}], \\ \left((u \cdot \nabla_{x})\rho\right)^{2}, \quad \left((u \cdot \nabla_{x})\rho\right)\left(P_{u^{\perp}}\nabla_{x}\rho\right)[H_{1}], \quad \left(P_{u^{\perp}}\nabla_{x}\rho\right)^{2}, \\ \left((u \cdot \nabla_{x})u\right)^{2}[H_{2}, H_{3}, H_{4}], \quad \left((u \cdot \nabla_{x})u\right)\left(P_{u^{\perp}}\nabla_{x}u\right), \quad \left(P_{u^{\perp}}\nabla_{x}u\right)^{2}. \end{array}$$

Back to the original Vicsek model

Something similar seen before:

P. Degond and T. Yang. *Diffusion in a continuum model of self-propelled particles with alignment interaction*. Math. Models Methods Appl. Sci., 20(supp01):14591490,

$$\begin{aligned} \partial_t \rho + \nabla_x \cdot (c_1 \rho \Omega) &= \varepsilon R_1, \\ \rho (\partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega) + P_{\Omega^\perp} \nabla_x \rho &= \varepsilon R_2. \end{aligned}$$

Section 3

Comments on the proof: Hilbert expansion and GCI

Generalised Collision Invariant

Momentum is not conserved.

Definition

Let $u \in \mathbb{S}^{d-1}$ be given. The operator $\overline{\Gamma}(f, u)$ is defined by

$$\bar{\Gamma}(f,u) := D \,\nabla_{\omega} \cdot \left[M_u \nabla_{\omega} \left(\frac{f}{M_u} \right) \right]. \tag{16}$$

With this definition, we have

$$\Gamma(f) = \overline{\Gamma}(f, u_f). \tag{17}$$

Definition (GCI)

Let $u \in \mathbb{S}^{d-1}$ be given. A function ψ : $\mathbb{S}^{d-1} \to \mathbb{R}$ is called a 'Generalised Collision Invariant (GCI)' associated to u if and only if

$$\int_{\mathbb{S}^{d-1}} \bar{\Gamma}(f, u) \,\psi \, d\omega = 0, \quad \text{for all } f \text{ such that } P_{u^{\perp}}(Q_f \, u) = 0. \tag{18}$$

It holds

$$\int_{\mathbb{S}^{d-1}} \Gamma(f) \, \psi \, d\omega = \int_{\mathbb{S}^{d-1}} \overline{\Gamma}(f, u_f) \, \psi \, d\omega = 0. \tag{19}$$

Proposition (Characterisation of the GCI)

The set \mathcal{G}_u of GCIs associated to u is given by

$$\mathcal{G}_{u} = \left\{ B \cdot \vec{\psi}_{u} + C \mid B \in \{u\}^{\perp}, \ C \in \mathbb{R} \right\}.$$
(20)

where the vector GCI $\vec{\psi}_u$ is written:

$$\vec{\psi}_u(\omega) = P_{u^\perp} \omega h(\omega \cdot u),$$
 (21)

where the function h is the unique solution to an explicit differential equation; h is an odd function of r and $h(r) \le 0$ for $r \ge 0$.

Hilbert expansion

Hilbert expansion for f^{ε} : $\varepsilon^2 \partial_t f^{\varepsilon} + \varepsilon (v \cdot \nabla_x) f^{\varepsilon} = L(f^{\varepsilon})$

$$f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \mathcal{O}(\varepsilon^3), \qquad (22)$$

Taylor expanding Γ about f_0 :

$$\Gamma(f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \mathcal{O}(\varepsilon^3))$$

= $\Gamma(f_0) + \varepsilon D_{f_0} \Gamma(f_1) + \varepsilon^2 (D_{f_0} \Gamma(f_2) + \frac{1}{2} D_{f_0}^2 \Gamma(f_1, f_1)) + \mathcal{O}(\varepsilon^3), (23)$

At each order we get

$$\mathcal{O}(\varepsilon^0): \qquad \Gamma(f_0) = 0, \tag{24}$$

$$\mathcal{D}(\varepsilon^1): \qquad D_{f_0} \Gamma(f_1) = (\omega \cdot \nabla_x) f_0, \qquad (25)$$

$$\mathcal{O}(\varepsilon^2): \qquad D_{f_0} \Gamma(f_2) = \partial_t f_0 + (\omega \cdot \nabla_x) f_1 - \frac{1}{2} D_{f_0}^2 \Gamma(f_1, f_1).$$
(26)

We have that

$$f_0(t,x,\omega) = \rho_0(t,x) \mathcal{M}_{u_0(t,x)}(\omega), \quad \forall (t,x,\omega) \in [0,\infty) \times \mathbb{R}^d \times \mathbb{S}^{d-1}.$$
(27)

Theorem (Inversion of the linearized operator $D_{\rho_0 M_{\mu_0}} \Gamma$)

(i) Let
$$(\rho_0, u_0) \in [0, \infty) \times \mathbb{S}^{d-1}$$
 and $g \in L^2(\mathbb{S}^{d-1})$. There exists $f \in H^1(\mathbb{S}^{d-1})$ such that

$$D_{\rho_0 M_{u_0}} \Gamma(f) = g \tag{28}$$

holds if and only if g satisfies the solvability conditions:

$$\int_{\mathbb{S}^{d-1}} g(\omega) \, d\omega = 0, \quad \int_{\mathbb{S}^{d-1}} g(\omega) \, \vec{\psi}_{u_0}(\omega) \, d\omega = 0. \tag{29}$$

(ii) If condition (29) is satisfied, Eq. (28) has a unique solution f satisfying the two properties

$$f \in \dot{H}_0^1(\mathbb{S}^{d-1})$$
 and $P_{u_0^\perp}(Q_f u_0) = 0,$ (30)

where $\dot{H}_0^1(\mathbb{S}^{d-1}) = \left\{ \varphi \in H^1(\mathbb{S}^{d-1}) \mid \int_{\mathbb{S}^{d-1}} \frac{\varphi}{M_{\nu_0}} d\omega = 0 \right\}$. This solution is also the unique solution to the problem

$$\bar{\Gamma}(f, u_0) = g, \tag{31}$$

in $\dot{H}_0^1(\mathbb{S}^{d-1})$ (where $\bar{\Gamma}$ is defined in (16)) and conversely, the unique solution to (31) in $\dot{H}_0^1(\mathbb{S}^{d-1})$ is also the unique solution to (28) satisfying the two conditions (30).

Sara Merino-Aceituno

Theorem (Continuation)

(iii) If f is the above solution, the set S_{u_0} of all solutions of (28) in $H^1(\mathbb{S}^{d-1})$ is given by

$$\mathcal{S}_{u_0} = \left\{ f + M_{u_0} \left(\hat{\rho} + (\omega \cdot u_0)(\omega \cdot \hat{u}) \right) \mid \hat{\rho} \in \mathbb{R}, \ \hat{u} \in \{u_0\}^{\perp} \right\}.$$
(32)

Lemma (Linearised operator)

Let $f_0 = \rho_0 M_{u_0}$ with $\rho_0 > 0$ and $u_0 \in \mathbb{S}^{d-1}$. For all functions $f_1 = f_1(\omega)$ it holds that

$$D_{f_0}\Gamma(f_1) = \overline{\Gamma}(f_1, u_0) - \kappa \nabla_{\omega} \cdot \big[f_0 \nabla_{\omega} \big((\omega \cdot u_0) \, (\omega \cdot u_1) \big) \big], \tag{33}$$

where u_1 is related to f_1 through

$$u_{1} = \frac{d-1}{d \lambda_{\parallel} \rho_{0}} P_{u_{0}^{\perp}}(Q_{f_{1}} u_{0}), \qquad (34)$$

where λ_{\parallel} is the leading eigenvalue of Q_{f_0} .

Outlook

- The Generalised Collision Invariant plays a key role in the inversion of the linearized collision operator.
- Well-posedness?
- Understand the terms in the equations.
- Our Numerical simulations? Develop a method that preserves the symmetries of the system (in particular the rotational invariance).
- Same patterns at the particle and macro level?

Outlook

- The Generalised Collision Invariant plays a key role in the inversion of the linearized collision operator.
- Well-posedness?
- Understand the terms in the equations.
- Numerical simulations? Develop a method that preserves the symmetries of the system (in particular the rotational invariance).
- Same patterns at the particle and macro level?

THANK YOU!