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Section 1

Context and motivation: what is nematic
alignment?
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Nematic alignment and collective dynamics

Figure: (a) Inert particles (from left to right: basmati rice, cylinders and rolling
pins) from ‘Nonequilibrium steady states in a vibrated-rod monolayer: tetratic,
nematic, and smectic correlations’ Narayan et. al. (2006). (b) Nematic swarming
in myxobacteria (active particles), from G. Velicer (Indiana U. Bloomington) and
J. Bergen (Max-Planck I. for Developmental Biology). (c) Macroscopic view of
swarming myxobacteria: formation of ripples, https://youtu.be/0ALM7X1_LqA
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Some previous results on nematic phenomena
Vast literature, specially in the Physics community (mostly particle
simulations):

Inert matter: many interest in liquid crystals (excluded volume
interaction of rod-like polymers).
→ See, e.g., John Ball for mathematical works.

Active matter (a selection):
I Chaté et. al. Modeling collective motion: variations on the vicsek

model. Eur. Phys. J. B (2008) and Ginelli et. al. Large-scale collective
properties of self-propelled rods Phys. Rev. Lett., (2010) and Chaté et.
al. Simple model for active nematics: quasi-long-range order and giant
fluctuations. Phys. Rev. Lett. 2006).
→ particle simulation/pattern formation.

I F. Peruani, A. Deutsch, and M. Bär. A mean-field theory for
self-propelled particles interacting by velocity alignment mechanisms.
Eur. Phys. J-spec. top., 157(1), 2008.

I Bertin et. al. Boltzmann and hydrodynamic description for
self-propelled particles. Phys. Rev. E, 74(2), 2006.
→ Heuristic derivation.

Great interest in the Physics community, but rigorous derivation missing.
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Maths literature (in relation to collective dynamics):

P. Degond, A. Manhart, and H. Yu. A continuum model for nematic
alignment of self-propelled particles. Discrete Contin. Dyn. Syst. Ser.
B, 22(4), 2017.
A complexified model for myxobacteria:

I P. Degond, A. Manhart, and H. Yu. An age-structured continuum
model for myxobacteria. Math. Models Methods Appl. Sci., 28(09),
2018.

→ hyperbolic limit.

P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases.
Quaternions in collective dynamics. Multiscale Model. Simul., 16(1),
2018.
→ nematic alignment in dim. 4; quadratic transport term;
hyperbolic limit.

In this work we consider the diffusive limit.
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Degond-Manhart-Yu model (without time reversal)
(Xi , θi )i=1,...,N , Xi ∈ R2, θi ∈ [−π, π):{

dXi = a v(θi )dt, v(θi ) = (cos θi (t), sin θi (t)), a > 0, (1a)

dθi = ν ∂θi | cos(θi − θ̄i )|dt +
√

2dcos2(θi − θ̄i ) dB i
t , (1b)

where θ̄i is the ‘mean nematic angle’ of the neighbours. Noise cancels
when θi = θ̄i + π/2. This affects the shape of the equilibria

fρ+,ρ−,θ̄
(θ) =

{
ρ+Mθ̄(θ), cos(θ − θ̄) > 0,
ρ−Mθ̄(θ), cos(θ − θ̄) < 0.

∣∣∣∣ Mθ̄(θ) ∼ exp

(
−ν

d | cos(θ − θ̄)|

)
,

Macroscopic equations:
∂tρ+ + d1∇x ·

(
ρ+v(θ̄)

)
, (2a)

∂tρ− − d1∇x ·
(
ρ−v(θ̄)

)
= 0, (2b)

(ρ+ + ρ−)∂t θ̄ + d2(ρ+ − ρ−)(v(θ̄) · ∇x)θ̄ + µv(θ̄)⊥ · ∇x(ρ+ − ρ−) = 0.
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Adding ’reversal motion’: ripple (wave) formation.

Figure: From: P. Degond, A. Manhart, and H. Yu. An age-structured continuum
model for myxobacteria. Math. Models Methods Appl. Sci., 28(09), 2018.
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The Vicsek-nematic: discrete dynamics
(Xi , ωi ) ∈ Rd × Sd−1, i = 1, . . . ,N, d ≥ 2. SDE in Stratonovich sense:{

dXi = ωidt, (3a)

dωi =
ν

2
∇ωi (ωi · ω̄i )

2dt + Pω⊥i
◦
√

2DdB i
t , (3b)

ν,D > 0; (B i
t)i=1,...,N independent Brownian motions; Pω⊥ orthogonal

projection onto the orthogonal space to ω denoted by {ω}⊥.
Finally, ω̄i denotes any of the two unitary leading eigenvectors of

Qi =
1

N

N∑
j=1

1

Rd
K

(
|Xi − Xj |

R

)(
ωj ⊗ ωj −

1

d
Id

)
, (4)

where the function K corresponds to a sensing kernel and R > 0 is the
typical radius of the sensing region. We assume that K ≥ 0 and∫

Rd

1

Rd
K

(
|x |
R

)
dx = 1.

We assume that the leading eigenvalue of Qi is simple.

Compare with Vicsek: different potential and average orientation.
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Vicsek model

{
dXi = ωidt, (5a)

dωi =
ν

2
∇ωi (ωi · ω̄i )dt + Pω⊥i

◦
√

2DdB i
t , (5b)

ω̄i =
Ji
|Ji |

, Ji =
1

N

N∑
j=1

1

Rd
K

(
|Xi − Xj |

R

)
ωj .
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Kinetic equation

Proposition (Formal mean-field limit)

The empirical distribution converges to a function f = f (t, x , ω) which
satisfies the following kinetic equation:

∂t f +∇x · (ωf ) = ∇ω ·
[
−ν

2
∇ω(ω · ω̄R,f )2 f + D∇ωf

]
:= CR(f ), (6)

where ∇ω and ∇ω· denote the gradient and divergence operators on Sd−1,
respectively, and where ω̄R,f is the unitary leading eigenvector (up to a
sign) of

QR,f (t, x) :=

∫
Rd

∫
Sd−1

1

Rd
K

(
|x − y |

R

)(
ω ⊗ ω − 1

d
Id

)
f dω dy . (7)

The initial condition to (6) is f (0, x , ω) = f0(x , ω).
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Section 2

Main result and interpretation
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Parabolic rescaling

Hyperbolic rescaling:
t ′ = εt, x ′ = εx ,

leads to
∂tρ = 0,

because ∫
vM(v)dv = 0 (no net motion of the particles)

where M is the equilibria of CR (as we will see next).

Parabolic rescaling:
t ′ = ε2t, x ′ = εx

f ε(t ′, x ′, ω) =
1

εd
f (

t ′

ε2
,
x ′

ε
, ω),

and R = εR ′ (localized interactions).
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Fokker-Planck formulation

After some expansions:

ε2∂t f
ε + ε∇x · (ωf ε) = Γ(f ε) +O(ε4). (8)

where

Γ(f ) = D∇ω ·
[
Muf∇ω

(
f

Muf

)]
, (9)

and uf is one of the two normalized leading eigenvector of Qf

Qf :=

∫
Sd−1

(
ω ⊗ ω − 1

d
Id

)
f dω, (10)

and

Mu(ω) ∼ exp
(κ

2
(ω · u)2

)
,

∫
Sd−1

Mu(ω) dω = 1, κ :=
ν

D
. (11)
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We will see that, formally, f ε → ρMu as ε→ 0, for that we will use:

Proposition (Properties of the operator Γ)

We have the following properties:

(i) Entropy dissipation: the following inequality holds:

H(f ) :=

∫
Sd−1

Γ(f )
f

Muf

dω = −D
∫

Sd−1

∣∣∣∇ω( f

Muf

)∣∣∣2 Muf dω ≤ 0.

(12)

(ii) Consistency relation: u is the leading eigenvector (up to a sign) of

QMu =

∫
Sd−1

Mu(ω)

(
ω ⊗ ω − 1

d
Id

)
dω.

(iii) Equilibria: the set E of functions f = f (ω) ≥ 0 such that Γ(f ) = 0
are given by

E = {ρMu | ρ ∈ [0,∞), u ∈ Sd−1}. (13)
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Main result
Suppose that f ε converges to f as ε→ 0. Then, it holds that

f ε → ρMu, with ρ = ρ(t, x) ∈ [0,∞), u = u(t, x) ∈ Sd−1.

If the convergence is strong enough and ρ, u are smooth enough, then:

∂tρ+∇x ·
(
C1 (u · ∇xρ) u + C2 Pu⊥∇xρ+ C3 ρ (u · ∇x)u

+ C4 (∇x · u) ρu
)

= 0,

ρ∂tu + E1 Pu⊥∇x

(
(u · ∇x)ρ

)
+ F1 ρPu⊥

[
(u · ∇x)

(
(u · ∇x)u

)]
+ F2 ρPu⊥

(
∇x · (Pu⊥∇xu)

)
+ F3 ρPu⊥∇x(∇x · u)

+ G1 (u · ∇xρ) (u · ∇x)u + G2 (Pu⊥∇xu)(Pu⊥∇xρ)

+ G3

(
(Pu⊥∇xρ) · Pu⊥∇x

)
u + G4 (∇x · u)Pu⊥∇xρ

+ H1 (u · ∇x log ρ) (Pu⊥∇xρ) + H2 ρ (Pu⊥∇xu)
(
(u · ∇x)u

)
+ H3 ρ

[(
(u · ∇x)u

)
· Pu⊥∇x

]
u + H4 ρ (∇x · u) (u · ∇x)u = 0,

|u| = 1.

(14a)

(14b)

(14c)

All the constants are explicit, Ci ,Ei ,Fi ≥ 0.
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Meaning of the equations

System of cross diffusion equations. Well-posedness? Is the system of
higher order derivatives elliptic?... Future work. Coefficients are
positive.

Conservative form for ρ (mass conservation)

∂tρ+∇x · J = 0.

Non-conservative form for u (interactions do not conserve
momentum):

I involves linear terms in the second order derivatives (E ,F ) and
quadratic terms in the first order derivatives (G ,H)

If |u(t = 0)| = 1, then |u(t)| = 1.

The equations are invariant under the change u → −u.
I Nematic symmetry ‘wins over’ polar transport operator,
I but, it generates an anisotropy in the direction of u. This leads to an

anisotropic diffusion for the mass density ρ and mean direction u.
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Anisotropic dynamics
Decompose the differential operators into their component parallel to u:
(u · ∇x . . .); and the one on {u}⊥: Pu⊥∇x . . .. For second order operators:

(u · ∇x)
(
(u · ∇x . . .)

)
, Pu⊥∇x (u · ∇x . . .), Pu⊥∇x (Pu⊥∇x . . .), (15)

In the equation of ρ:

∂tρ + ∇x ·
(
C1 (u · ∇xρ) u + C2 Pu⊥∇xρ

)
+ ∇x ·

(
C3 ρ (u · ∇x)u + C4 (∇x · u) ρu

)
= 0,

Diffusive terms (C1,C2)
Cross-diffusion terms (C3,C4)

If we had that C1 = C2 and C3 = C4, then

∂tρ + C1∆xρ

+ C3∇x · (ρ∇x · (u ⊗ u)) = 0

but C1 6= C2 and C3 6= C4 (anisotropy).
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The equation for u
ρ∂tu + E1 Pu⊥∇x

(
(u · ∇x)ρ

)
+ F1 ρPu⊥

[
(u · ∇x)

(
(u · ∇x)u

)]
+ F2 ρPu⊥

(
∇x · (Pu⊥∇xu)

)
+ F3 ρPu⊥∇x(∇x · u)

+ G1 (u · ∇xρ) (u · ∇x)u + G2 (Pu⊥∇xu)(Pu⊥∇xρ)

+ G3

(
(Pu⊥∇xρ) · Pu⊥∇x

)
u + G4 (∇x · u)Pu⊥∇xρ

+ H1 (u · ∇x log ρ) (Pu⊥∇xρ) + H2 ρ (Pu⊥∇xu)
(
(u · ∇x)u

)
+ H3 ρ

[(
(u · ∇x)u

)
· Pu⊥∇x

]
u + H4 ρ (∇x · u) (u · ∇x)u = 0,

Diffusive terms (E ). Cross-diffusion terms (F ). Convection terms (G ,H)
All the possible quadratic terms:(

(u · ∇x)ρ
) (

(u · ∇x)u
)

[G1],
(
(u · ∇x)ρ

)
(Pu⊥∇xu),(

(u · ∇x)u
)

(Pu⊥∇xρ), (Pu⊥∇xρ) (Pu⊥∇xu) [G2,G3,G4],(
(u · ∇x)ρ

)2
,
(
(u · ∇x)ρ

)
(Pu⊥∇xρ) [H1], (Pu⊥∇xρ)2,(

(u · ∇x)u
)2

[H2,H3,H4], ((u · ∇x)u
)

(Pu⊥∇xu), (Pu⊥∇xu)2.
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Back to the original Vicsek model

Something similar seen before:
P. Degond and T. Yang. Diffusion in a continuum model of self-propelled
particles with alignment interaction. Math. Models Methods Appl. Sci.,
20(supp01):14591490,

∂tρ+∇x · (c1ρΩ) = εR1,

ρ(∂tΩ + c2(Ω · ∇x)Ω) + PΩ⊥∇xρ = εR2.
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Section 3

Comments on the proof: Hilbert expansion and
GCI
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Generalised Collision Invariant
Momentum is not conserved.

Definition

Let u ∈ Sd−1 be given. The operator Γ̄(f , u) is defined by

Γ̄(f , u) := D∇ω ·
[
Mu∇ω

(
f

Mu

)]
. (16)

With this definition, we have

Γ(f ) = Γ̄(f , uf ). (17)

Definition (GCI)

Let u ∈ Sd−1 be given. A function ψ: Sd−1 → R is called a ‘Generalised
Collision Invariant (GCI)’ associated to u if and only if∫

Sd−1

Γ̄(f , u)ψ dω = 0, for all f such that Pu⊥(Qf u) = 0. (18)
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It holds ∫
Sd−1

Γ(f )ψ dω =

∫
Sd−1

Γ̄(f , uf )ψ dω = 0. (19)

Proposition (Characterisation of the GCI)

The set Gu of GCIs associated to u is given by

Gu =
{
B · ~ψu + C | B ∈ {u}⊥, C ∈ R

}
. (20)

where the vector GCI ~ψu is written:

~ψu(ω) = Pu⊥ω h(ω · u), (21)

where the function h is the unique solution to an explicit differential
equation; h is an odd function of r and h(r) ≤ 0 for r ≥ 0.
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Hilbert expansion
Hilbert expansion for f ε: ε2∂t f

ε + ε(v · ∇x)f ε = L(f ε)

f ε = f0 + εf1 + ε2f2 +O(ε3), (22)

Taylor expanding Γ about f0:

Γ(f0 + εf1 + ε2f2 +O(ε3))

= Γ(f0) + εDf0Γ(f1) + ε2(Df0Γ(f2) +
1

2
D2
f0Γ(f1, f1)) +O(ε3),(23)

At each order we get

O(ε0) : Γ(f0) = 0, (24)

O(ε1) : Df0Γ(f1) = (ω · ∇x)f0, (25)

O(ε2) : Df0Γ(f2) = ∂t f0 + (ω · ∇x)f1 −
1

2
D2
f0Γ(f1, f1). (26)

We have that

f0(t, x , ω) = ρ0(t, x)Mu0(t,x)(ω), ∀(t, x , ω) ∈ [0,∞)× Rd × Sd−1. (27)
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Theorem (Inversion of the linearized operator Dρ0Mu0
Γ)

(i) Let (ρ0, u0) ∈ [0,∞)× Sd−1 and g ∈ L2(Sd−1). There exists
f ∈ H1(Sd−1) such that

Dρ0Mu0
Γ(f ) = g (28)

holds if and only if g satisfies the solvability conditions:∫
Sd−1

g(ω) dω = 0,

∫
Sd−1

g(ω) ~ψu0(ω) dω = 0. (29)

(ii) If condition (29) is satisfied, Eq. (28) has a unique solution f
satisfying the two properties

f ∈ Ḣ1
0 (Sd−1) and Pu⊥0

(Qf u0) = 0, (30)

where Ḣ1
0 (Sd−1) =

{
ϕ ∈ H1(Sd−1)

∣∣∣ ∫Sd−1
ϕ

Mu0
dω = 0

}
. This solution is

also the unique solution to the problem

Γ̄(f , u0) = g , (31)

in Ḣ1
0 (Sd−1) (where Γ̄ is defined in (16)) and conversely, the unique

solution to (31) in Ḣ1
0 (Sd−1) is also the unique solution to (28) satisfying

the two conditions (30).
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Theorem (Continuation)

(iii) If f is the above solution, the set Su0 of all solutions of (28) in
H1(Sd−1) is given by

Su0 =
{
f + Mu0 (ρ̂+ (ω · u0)(ω · û)) | ρ̂ ∈ R, û ∈ {u0}⊥

}
. (32)

Lemma (Linearised operator)

Let f0 = ρ0Mu0 with ρ0 > 0 and u0 ∈ Sd−1. For all functions f1 = f1(ω) it
holds that

Df0Γ(f1) = Γ̄(f1, u0)− κ∇ω ·
[
f0∇ω

(
(ω · u0) (ω · u1)

)]
, (33)

where u1 is related to f1 through

u1 =
d − 1

d λ‖ρ0
Pu⊥0

(Qf1u0), (34)

where λ‖ is the leading eigenvalue of Qf0 .
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Outlook

1 The Generalised Collision Invariant plays a key role in the inversion of
the linearized collision operator.

2 Well-posedness?

3 Understand the terms in the equations.

4 Numerical simulations? Develop a method that preserves the
symmetries of the system (in particular the rotational invariance).

5 Same patterns at the particle and macro level?

THANK YOU!
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