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Section 1

Context and motivation: what is nematic
alignment?
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Figure: (a) Inert particles (from left to right: basmati rice, cylinders and rolling
pins) from ‘Nonequilibrium steady states in a vibrated-rod monolayer: tetratic,
nematic, and smectic correlations’ Narayan et. al. (2006). (b) Nematic swarming
in myxobacteria (active particles), from G. Velicer (Indiana U. Bloomington) and
J. Bergen (Max-Planck I. for Developmental Biology). (c) Macroscopic view of
swarming myxobacteria: formation of ripples, https://youtu.be/0ALM7X1_LgA
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https://youtu.be/0ALM7X1_LqA

Some previous results on nematic phenomena
Vast literature, specially in the Physics community (mostly particle
simulations):
o Inert matter: many interest in liquid crystals (excluded volume
interaction of rod-like polymers).
— See, e.g., John Ball for mathematical works.

Great interest in the Physics community, but rigorous derivation missing.
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Some previous results on nematic phenomena

Vast literature, specially in the Physics community (mostly particle
simulations):
o Inert matter: many interest in liquid crystals (excluded volume
interaction of rod-like polymers).
— See, e.g., John Ball for mathematical works.
o Active matter (a selection):
> Chaté et. al. Modeling collective motion: variations on the vicsek
model. Eur. Phys. J. B (2008) and Ginelli et. al. Large-scale collective
properties of self-propelled rods Phys. Rev. Lett., (2010) and Chaté et.
al. Simple model for active nematics: quasi-long-range order and giant
fluctuations. Phys. Rev. Lett. 2006).
— particle simulation/pattern formation.
> F. Peruani, A. Deutsch, and M. Bar. A mean-field theory for
self-propelled particles interacting by velocity alignment mechanisms.
Eur. Phys. J-spec. top., 157(1), 2008.
» Bertin et. al. Boltzmann and hydrodynamic description for
self-propelled particles. Phys. Rev. E, 74(2), 2006.
— Heuristic derivation.
Great interest in the Physics community, but rigorous derivation missing.
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Maths literature (in relation to collective dynamics):

o P. Degond, A. Manhart, and H. Yu. A continuum model for nematic
alignment of self-propelled particles. Discrete Contin. Dyn. Syst. Ser.
B, 22(4), 2017.

A complexified model for myxobacteria:

» P. Degond, A. Manhart, and H. Yu. An age-structured continuum
model for myxobacteria. Math. Models Methods Appl. Sci., 28(09),
2018.

— hyperbolic limit.

o P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases.
Quaternions in collective dynamics. Multiscale Model. Simul., 16(1),
2018.

— nematic alignment in dim. 4; quadratic transport term;
hyperbolic limit.

In this work we consider the diffusive limit.
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Degond-Manhart-Yu model (without time reversal)
(Xi,0i)i=1,..n, Xi € R%, 0; € [-m,7):

{ dX; = av(0;)dt, v(0;) = (cos0;(t),sin0;(t)), a>0, (la)

df; = v 8y, | cos(; — 8;)|dt + 1/2dcos2(8; — 0;) dBE, (1b)

where 6; is the ‘mean nematic angle’ of the neighbours. Noise cancels
when 0; = 6; + 7/2. This affects the shape of the equilibria

M5(6), cos(6 — 6) > —v
for- a0 = { ZJer(Q) os(f — 9_ ‘ Mg6) ~ exp <d|cos(9—§)]>

Macroscopic equations:

8tp+ + d]_vx . (p+ v(0_)) 9 (23)
Orp— — d1Vy - (p_ v(é)) =0, (2b)
(o4 +p-)0:0 + do(py — p-)(v() - V)8 + pv(0)" - Vi(ps — p-) = 0.
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Adding 'reversal motion: ripple (wave) formation.

(A t=199min (B) t=200min
ah Particle Model, Particles Particle Model, Particles
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(a) Ripples in the IBM (b) Comparison to 2-Age model

Figure: From: P. Degond, A. Manhart, and H. Yu. An age-structured continuum
model for myxobacteria. Math. Models Methods Appl. Sci., 28(09), 2018.
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The Vicsek-nematic: discrete dynamics
(Xj,w;)) €R?I xS971 i=1,....N, d > 2. SDE in Stratonovich sense:

dX; = widt, (3a)
dw; — %le_(w,- . @;)%dt + P, o v/2DdB, (3b)

v,D > 0; (Bé)izl,...,N independent Brownian motions; P, 1 orthogonal
projection onto the orthogonal space to w denoted by {w}™.
Finally, &; denotes any of the two unitary leading eigenvectors of

N (G DR

where the function K corresponds to a sensing kernel and R > 0 is the
typical radius of the sensing region. We assume that K > 0 and

L (I
K dx = 1.
forek (%)

We assume that the leading eigenvalue of Q; is simple.
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The Vicsek-nematic: discrete dynamics
(Xj,w;)) €R?I xS971 i=1,....N, d > 2. SDE in Stratonovich sense:

dX; = widt, (3a)
dwl- — %vwf(wi : @,)2dt + Pw; [SIY, 2DdB1_I“a (3b)

v,D > 0; (Bé)izl,...,N independent Brownian motions; P, 1 orthogonal
projection onto the orthogonal space to w denoted by {w}™.
Finally, &; denotes any of the two unitary leading eigenvectors of

I DRC

where the function K corresponds to a sensing kernel and R > 0 is the
typical radius of the sensing region. We assume that K > 0 and

L (I
K dx = 1.
forek (%)

We assume that the leading eigenvalue of Q; is simple.
Compare with Vicsek: different potential and average orientation.
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Vicsek model

dX; = wjdt, (5a)
dw; = ng,(w; -®)dt + P, o v/2DdB, (5b)

N
_ Ji 1 il | Xi — Xl
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Kinetic equation

Proposition (Formal mean-field limit)

The empirical distribution converges to a function f = f(t, x,w) which
satisfies the following kinetic equation:

Ouf + Vs (@) = V- [~2 Vulw - Br 2+ DVuf] == Ca(f), (6)

where V,, and V- denote the gradient and divergence operators on S9!,

respectively, and where &g ¢ is the unitary leading eigenvector (up to a
sign) of

1 |X—Y|> < 1 >
t,x) = —K Quw——=Id| fdwdy. (7
Qr,r(t,X) /Rd /Sdl Rd < R W d wel. ()

The initial condition to (6) is f(0,x,w) = fo(x,w).
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Section 2

Main result and interpretation
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Parabolic rescaling

@ Hyperbolic rescaling:

t =et, x =ex,

leads to
atp = 07

because

/vM(v)dv =0 (no net motion of the particles)

where M is the equilibria of Cg (as we will see next).
@ Parabolic rescaling:
t' =e%t, x =ex
1 _ .t X
fg(t/,X/,W) = 5_df(5_2, ?,W),

and R = R’ (localized interactions).
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Fokker-Planck formulation

After some expansions:

€20,F5 + eV, - (W) =T(F¢) + O(eY). (8)
where .
r(f)=DV, - [Mufvw (—)] , (9)
M.,
and ur is one of the two normalized leading eigenvector of Qr
1
Qr = / (w Qw— —Id) fdw, (10)
Sd—1 d
and

K

My(w) ~ exp (2(w . u)2> ,/Sd_l My(w) dw =1, K= % (11)
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We will see that, formally, f* — pM, as € — 0, for that we will use:
Proposition (Properties of the operator I')

We have the following properties:

(i) Entropy dissipation: the following inequality holds:
f\2
Vw (/\/’uf)‘ Muf dw < 0.

H(f) = /Sd_l r(f) Mf dus — —D/Sd_l
f (12)

(i1) Consistency relation: u is the leading eigenvector (up to a sign) of

Sd—1

Qm, = M, (w) <w Qw — Cljld) dw.

(iii) Equilibria: the set £ of functions f = f(w) > 0 such that T(f) =0
are given by

E={pM,|p e [0,00), uec St} (13)
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Main result
Suppose that ¢ converges to f as € — 0. Then, it holds that
f& — pM,, with p=p(t,x) € [0,00), wu=u(t,x)eS?
If the convergence is strong enough and p, u are smooth enough, then:
Oep+ V- (C(u-Vep)u+ GPuVip+ CGp(u-Vy)u
+ G4 (V- u) pu) =0,
pOcu+ E1 P,V ((u- V)p)
+FipPu[(u- V) ((u-V)u)] + Fp Py (Vi (PyrViu))
+ F3pP, V(Vy-u)
+ G1(u-Vip) (u-Vi)u+ G2 (P, Viu)(Py1Vip)
+ Gz ((P,LVxp) - PyoVi)u+ Ga (V- u) P, Vip
+ Hi (u- Vxlog p) (P, Vxp) + Ho p (P Vixu)((u - Vi)u)
+ Hsp[((u-Vi)u) - PuVi]u+ Hap (V- u) (u- Vy)u =0,
lul = 1.

\
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Meaning of the equations
@ System of cross diffusion equations. Well-posedness? Is the system of

higher order derivatives elliptic?... Future work. Coefficients are
positive.
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Meaning of the equations

@ System of cross diffusion equations. Well-posedness? Is the system of

higher order derivatives elliptic?... Future work. Coefficients are
positive.

o Conservative form for p (mass conservation)

8tp+vX'\7:0.
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Meaning of the equations

@ System of cross diffusion equations. Well-posedness? Is the system of
higher order derivatives elliptic?... Future work. Coefficients are
positive.

o Conservative form for p (mass conservation)

8tp+vX'\7:0.

@ Non-conservative form for u (interactions do not conserve
momentum):

> involves linear terms in the second order derivatives (E, F) and
quadratic terms in the first order derivatives (G, H)

o If [u(t =0)| =1, then |u(t)| = 1.
@ The equations are invariant under the change v — —u.

» Nematic symmetry ‘wins over’ polar transport operator,
> but, it generates an anisotropy in the direction of u. This leads to an
anisotropic diffusion for the mass density p and mean direction u.
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Anisotropic dynamics

Decompose the differential operators into their component parallel to u:
(u-Vy...); and the one on {u}*: P,.V,.... For second order operators:

(u-V)((u-Vx..)), PuaVi(u-Vx...), PVi(P,Vx...), (15)
In the equation of p:

Op + Vi (G(u-Vip)u+ GP,Vyp)
+ Vi (Gp(u-Vyi)u+ C(Vy-u)pu) =0,

Diffusive terms (Cy, C2)
Cross-diffusion terms (Cs, Ca)

If we had that C; = G and (3 = (4, then

Owp + CGAxp
+ GVx - (pVx-(t®u))=0

but C; # G and C3 # C4 (anisotropy).
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The equation for u

poru + E1 PUJ_VX((U . Vx)p)
+ FipPy[(u- Vi) ((u-V)u)| + Fap Py (Vi (PyiViu))
+ F3pP,.Vy(Vx-u)
+ G1 (v Vip) (u- Vi)u + G2 (P Viu)(Py1 Vip)
+ Gs (PyrVip) - Por V)t + Gy (Vi - 1) Pyi Viep
+ Hi (u- Vilog p) (PyVxp) + Ha p (Pyr Viu) ((u - Vi)u)
+ Hsp[((u-Vi)u) - PouVi]u+ Hap(Vx-u) (u-Vi)u=0,

Diffusive terms (E). Cross-diffusion terms (F). Convection terms (G, H)
All the possible quadratic terms:

(u-V)p) (v V:)u) (G, (4 Vi)p) (Pyur Vit),
(PULVXP), (Puvap) (Pulvxu) [GQ, G3./ G4],

((u : VX)p) (Pulvxp) [H1]7 (PuJ-VX:O)Q?
Ha, Hs, Ha], ((u- Vx)u) (P,iViu), (P,1Vxu).
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Back to the original Vicsek model

Something similar seen before:
P. Degond and T. Yang. Diffusion in a continuum model of self-propelled

particles with alignment interaction. Math. Models Methods Appl. Sci.,
20(supp01):14591490,

8tp i VX : (Cpo) = €R1,
p(atQ ol C2(Q : VX)Q) + PQJ_VXP = €R2.
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Section 3

Comments on the proof: Hilbert expansion and
GCI
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Generalised Collision Invariant
Momentum is not conserved.

Definition

Let u € S9! be given. The operator T'(f, u) is defined by

r(f,u):=DV,- [Muvw (ML)] . (16)

With this definition, we have
F(f) = T(f, ur). (17)
Definition (GCl)

Let u € S be given. A function ¢: S9! — R is called a ‘Generalised
Collision Invariant (GCI)" associated to v if and only if

/ T(f,u)ydw =0, forall fsuch that P, (Qfu)=0. (18)
Qd—1
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It holds
/ F(f)y dw = / F(f, uf) v dw = 0. (19)
Sd—l Sd—l

Proposition (Characterisation of the GCI)
The set G, of GCls associated to u is given by
Go={B -, +C|Be{u}t, CeR}. (20)
where the vector GCI Ju is written:
bu(w) = Pyrw h(w - u), (21)

where the function h is the unique solution to an explicit differential
equation; h is an odd function of r and h(r) <0 for r > 0.
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Hilbert expansion
Hilbert expansion for f€: e20,f¢ + &(v - Vx)f¢ = L(f?)

fe =fo+ch +e*h + O(), (22)
Taylor expanding I about fy:
M(fo + ef + €26 4+ O(£?))
= () + <DgT(f) +<2(Del () + 3DET (R, ) + O(%),(23)

At each order we get

O(%) : M(fo) =0, (24)
O(eh) : Dipl'(f) = (w - Vx)fo, (25)
O(2):  Dyl(h) = difo+ (w- Vi) — %D,%F(fl,fl). (26)

We have that
fo(t, x,w) = po(t, x)Myy ) (w), V(t,x,w) € [0,00) X RY x s971. (27)
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Theorem (Inversion of the linearized operator D, I')

(i) Let (po, up) € [0,00) x S9! and g € L2(S91). There exists
f € HY(S971) such that
Dpom,, T(F) = & (28)

holds if and only if g satisfies the solvability conditions:
/ ) s = 3, / 00 o9 oo = (29)
Sd-1 Sd-1

(ii) If condition (29) is satisfied, Eq. (28) has a unique solution f
satisfying the two properties

feHs(S™Y) and P,(Qruo) =0, (30)

where FH(ST1) = {(p e HY(s%1) ’ Joor 7 dw = o}. This solution is
also the unique solution to the problem

F(f,uw) =g, (31)
in H}(S9=1) (where T is defined in (16)) and conversely, the unique
solution to (31) in H}(S9~1) is also the unique solution to (28) satisfying
the two conditions (30).
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Theorem (Continuation)

(i) If f is the above solution, the set S,, of all solutions of (28) in
H(S9-1) is given by

Sup={f+ My (p+ (w-u)(w-0)) | pER, d€{uwt}.  (32)
Lemma (Linearised operator)

Let fo = poM,, with po > 0 and ug € S9=1. For all functions f; = f(w) it
holds that

Dgl(f) = [(f,up) — KV, - [fbvw ((w <up) (w - ul))], (33)

where uy is related to f; through

d—1
Uy P, (Qf u), (34)

N dXAjpo

where )\ is the leading eigenvalue of Q.
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Outlook

The Generalised Collision Invariant plays a key role in the inversion of
the linearized collision operator.

Well-posedness?
Understand the terms in the equations.

Numerical simulations? Develop a method that preserves the
symmetries of the system (in particular the rotational invariance).

© 0600 O

Same patterns at the particle and macro level?
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Understand the terms in the equations.
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Same patterns at the particle and macro level?

THANK YOU!
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