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The Boltzmann equation with quantum effects

To take into account quantum effects (like Pauli exclusion principle), classical
Boltzmann equation is modified as

∂t f + v · ∇x f =

∫ ∫
R3×S2

B(v − v∗, σ)
{

f ′f ′∗(1− εf )(1− εf∗)

− ff∗(1− εf ′)(1− εf ′∗)
}

dσ dv∗.

where ε is proportional to the Planck constant ~ and
• ε = 0: the Boltzmann equation;
• ε > 0: the Boltzmann-Fermi-Dirac equation;
• ε < 0: the Boltzmann-Bose-Einstein equation.

with usual post-collisional velocities v ′ = v+v∗
2 + |v−v∗|

2 σ, v ′∗ = v+v∗
2 − |v−v∗|

2 σ.

Ref. : Chapman & Cowling (1970), Danielewicz (1980), Lifshitz & Pitaevskivı (1981)
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Case of inverse-power law potentials

B(z, σ) = |z|γ b(θ), where cos θ =

(
v − v∗
|v − v∗|

)
· σ.

The function b is only implicitly defined, locally smooth with a nonintegrable
singularity at θ = 0

sin(θ)b(θ)
θ→0∼ C θ(γ−3)/2

• 0 < γ 6 1: hard potentials;
• γ = 0: the Maxwellian potential;
• −3 < γ < 0: soft potentials;
• γ = −3: the Coulomb potential.



Landau-Fermi-Dirac equation New advances: appearance of regularity Convergence to equilibrium

The Boltzmann Fermi Dirac equation

∂t f + v · ∇x f =

∫ ∫
R3×S2

B(v − v∗, σ)
{

f ′f ′∗(1− εf )(1− εf∗)

− ff∗(1− εf ′)(1− εf ′∗)
}

dσ dv∗.

For ε > 0, there are two kinds of equilibrium states :
• Fermi-Dirac distributions

Mε(v) =
Mε(v)

1 + ε Mε(v)
=

ae−b|v−v0|2

1 + aε e−b|v−v0|2
, a, b > 0, v0 ∈ R3

• characteristic functions of balls

Fε(v) =
1
ε

1|v−v0|6Rε

Spatially homogeneous case
Lu (2001), Escobedo, Mischler & Valle (2003), Lu & Wennberg (2003)

Spatially inhomogeneous case

Dolbeault (1994), Lions (1994), Alexandre (2000), Lu (2006 and 2008).
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Grazing collisions asymptotic

b(θ) sin(θ) is replaced by 1
δ3 b

(
θ

δ

)
sin
(
θ

δ

)
and, letting δ → 0, one obtains

The Landau operator with quantum effects

QLFD(f )(v) = ∇v ·
∫
R3
|v−v∗|γ+2 Π(v−v∗)

{
f∗(1−εf∗)∇f − f (1−εf )∇f ∗

}
dv∗

with
Π(z) = (Πi,j (z))i,j and Πi,j (z) = δi,j −

zi zj

|z|2 .

Ref.: Degond & Lucquin-Desreux (1992), Desvillettes (1992) for ε = 0
Danielewicz (1980) in the general case.
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The classical Landau equation (ε = 0)

∂t f + v · ∇x f = ∇v ·
∫
R3
|v − v∗|γ+2 Π(v − v∗)

{
f∗∇f − f∇f ∗

}
dv∗

The equilibrium states are Maxwellian distributions :

M(v) = ae−b|v−v0|2 , a, b > 0, v0 ∈ R3

Spatially homogeneous case
Arsen’ev & Peskov (1977), Arsen’ev & Buryak (1991), Villani (1998), Desvillettes & Villani (2000), El Safadi (2007), Fournier & Guerin
(2009), Chen, Li & Xu (2009 and 2010), Fournier (2010), Morimoto, Pravda-Starov & Xu (2013), Wu (2014), Carrapatoso (2015),
Desvillettes (2015), Alexandre, Lia & Lin (2015), Desvillettes (2016), Carrapatoso, Desvillettes & He (2017)

Spatially inhomogeneous case

Villani (1996), Guo (2002), Yu (2006), Guo & Strain (2006 and 2008), Chen, Desvillettes & He (2009), Carrapatoso, Tristani & Wu

(2016), Carrapatoso & Mischler (2017)
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The Landau-Fermi-Dirac (LFD) equation

∂t f = QLFD(f )

= ∇v ·
∫
R3
|v − v∗|γ+2 Π(v − v∗)

{
f∗(1− εf∗)∇f − f (1− εf )∇f ∗

}
dv∗.

• Such an equation also arises in the modelling of self-gravitating particles.
Kadomtsev & Pogutse (1970), Chavanis (1998)

• (Non quantitative) spectral analysis for the linearization has been obtained
by Lemou (2000)

• There are some results in the spatially inhomogeneous case.
Liu, Ma & Yu (2012), Liu (2012)
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The Landau-Fermi-Dirac (LFD) equation

∂t f = QLFD(f )

= ∇v ·
∫
R3
|v − v∗|γ+2 Π(v − v∗)

{
f∗(1− εf∗)∇f − f (1− εf )∇f ∗

}
dv∗.

Equilibrium solutions are the same as for Boltzmann-Fermi-Dirac:
• Fermi-Dirac distributions

Mε(v) =
Mε(v)

1 + ε Mε(v)
=

ae−b|v−v0|2

1 + aε e−b|v−v0|2
, a, b > 0, v0 ∈ R3

• characteristic functions of balls

Fε(v) =
1
ε

1|v−v0|6Rε
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Equilibrium distributions cannot have arbitrary mass and energy
If 0 6 g 6 ε−1 is such that∫

R3
g(v)

( 1
v
|v |2

)
dv =

(
%
0

3%E

)
then

ε 6
4π
3ρ (5 E)

3
2

and equality only occurs only if g = Fε is a degenerate equilibrium (X. Lu
(2001)).
Fermi-Dirac equilibrium exists only for

ε < εdeg :=
4π
3ρ
(

5 E
)3/2

.
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A priori estimates

∂t f (t, v) = ∇v ·
∫
R3

a(v − v∗)
{

f∗(1− εf∗)∇f − f (1− εf )∇f ∗
}

dv∗.

where
ai,j (z) = |z|γ+2

(
δi,j −

zi zj

|z|2

)
.

L∞-bound:

0 6 f (0, ·) 6 ε−1 =⇒ 0 6 f (t, ·) 6 ε−1 ∀t > 0.

Weak formulation:∫
QLFD(f )(v)ϕ(v) dv

= −1
2

∫∫
a(v − v∗)

{
f∗(1− εf∗)∇f − f (1− εf )∇f ∗

}{
∇ϕ−∇ϕ∗

}
dv∗ dv

Conservation laws
Mass, momentum and energy are preserved, i.e.
d
dt

∫
f (t, v) dv = 0 d

dt

∫
f (t, v) v dv = 0 d

dt

∫
f (t, v) |v |2dv = 0
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Fermi-Dirac Entropy
For any ε > 0 and 0 6 f 6 ε−1 we introduce the Fermi-Dirac entropy as

Sε(f ) = −1
ε

∫
R3

[
εf log(εf ) + (1− εf ) log(1− εf )

]
dv . (1)

Then, along solutions to the LFD eq., one has

d
dt Sε(f (t)) = −Dε,γ(f (t)),

where the dissipation term reads

Dε,γ(f ) =

∫
R3
QLFD(f )

(
log(εf (v))− log(1− εf (v))

)
dv

=
1
2

∫
R3×R3

dvdv∗|v − v∗|γ+2ff∗(1− εf )(1− εf∗)×

×
∣∣∣∣Π(v − v∗)

(
∇f

f (1− εf )
− ∇f∗

f∗(1− εf∗)

)∣∣∣∣2 > 0.

Hence,
t > 0 7−→ Sε(f )(t) is a non-decreasing function.
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Cauchy Theory

∂t f (t, v) = ∇v ·
∫
R3

a(v−v∗)
{

f∗(1−εf∗)∇f −f (1−εf )∇f ∗
}

dv∗ (t > 0) (2)

with f (t = 0, v) = f0(v).
The equation can be reformulated as a nonlinear parabolic equation

∂t f = ∇ ·
(

Σε[f ]∇f − b[f ] f (1− εf )
)
,

with
Σε[f ] = (ai,j ∗ f (1− εf ))i,j ,

and
b[f ] = (bi ∗ f )i , bi (z) =

∑
k

∂k ai,k (z) = −2 |z|γ zi .
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Cauchy Theory
Assumption on the initial datum There is ε0 ∈ (0, 1) such that the initial datum

0 < ‖f0‖∞ =: ε−1
0 <∞ and S0 := Sε0 (f0) > 0, (3)

and f0 ∈ L1
s0 (R3) for some s0 > 2.

Theorem (Bagland 2004 – for ε = 1.)
Under such an assumption, for any ε ∈ (0, ε0], there exists a weak solution f to
(2) satisfying the conservation laws and

f (1−εf ) ∈ L1
loc
(
R+; L1

s0+γ

(
R3)); f ∈ L∞loc

(
R+; L1

s0

(
R3))∩L2

loc
(
R+; H1

s0

(
R3)).

If s0 > 2 + γ, then the entropy is a non-decreasing function while, for
s0 > 4γ + 11, such a solution is unique.

———
For s ∈ R, p > 1, k ∈ N,

‖f‖p
Lp

s
=

∫
R3

∣
f (v)
∣p 〈v〉s dv, ‖f‖2

Hk
s

=

∑
06|β|6k

∫
R3

∣
∂β f (v)

∣2 〈v〉s dv,

where 〈v〉 = (1 + |v|2)1/2, β = (i1, i2, i3) ∈ N3, |β| = i1 + i2 + i3 and ∂β f = ∂
i1
1 ∂

i2
2 ∂

i3
3 f .
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The equation can be reformulated as a nonlinear parabolic equation

∂t f = ∇ ·
(

Σε[f ]∇f − b[f ] f (1− εf )
)
,

with
Σε[f ] = (ai,j ∗ f (1− εf ))i,j ,

and
b[f ] = (bi ∗ f )i , bi (z) =

∑
k

∂k ai,k (z) = −2 |z|γ zi .

Crucial estimate (uniform ellipticity): Let ε ∈ (0, ε0] then

Σε[f ](v) > K0〈v〉γI3×3, ∀v ∈ R3

for all f ∈ L1
2(R3) ∩ L∞(R3) satisfying (3) and∫

R3
f |v |2dv 6 E0, Sε(f ) > S0

and K0 > 0 depends only on γ, E0 and S0.
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Open problems: appearance of moments ? uniform in time estimates ?
Partial answer:

Proposition (Chen, 2010 and 2011)
Let γ ∈ (0, 1]. Consider fin ∈ L1

2s(R3) for any s > 1 satisfying 0 6 fin 6 1 a.e.
Let f be the weak solution to the LFD equation. Then,

• for any 0 < t0 < T < +∞, we have

f ∈ C∞([t0,T ];S(R3)),

where S(R3) is the Schwartz space.
• for any multi-index α ∈ N3, any s > 1 and any 0 < t0 < T < +∞,

sup
t06t6T

‖∂αf (t)‖L2
2s (R3) 6

{
C if 0 6 |α| 6 3,
C |α|−2(|α| − 4)! if |α| > 4,

where C only depends on γ, s, t0, T and fin.
In particular, f (t, ·) is analytic in R3 for any t > 0.
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Open problems: appearance of moments ? uniform in time estimates ?

Difficulty: Evolution of L2-moments enter naturally in the evolution of
L1-moments.

Typically, resuming the arguments done in the classical Landau case, we get
something like

d
dt

∫
R3

f 〈v〉s dv + Ks

∫
R3
〈v∗〉s+γ f∗(1− εf∗)dv∗ 6 Cs,1

∫
R3

f 〈v〉sdv ,

I Notice: A positive lower bound on 1− ε f∗ would be very helpful here.
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Given a solution f (t, v) to the LFD equation, we introduce

ms(t) =

∫
R3

f (t, v)〈v〉sdv , Ms(t) =

∫
R3

f 2(t, v)〈v〉sdv , s ∈ R.

Ds(t) =
∥∥∇ (f (t, ·)〈v〉

s
2
)∥∥2

2
, t > 0.

Proposition
If 0 6 f0 ∈ L1

s0 (R3), for some s0 > 2 satisfies (3) and f = f (t, v) is a weak
solution to the LFD equation that preserves mass and energy. Then, for some
constants Cs,1,Cs,2,Cs,3 > 0 and Ks > 0 depending only on m2(0), γ and s, it
holds

d
dt ms(t) + Ksms+γ(t) 6 KsMs+γ(t) + Cs,1ms(t) , s > 2 .

1
2

d
dtMs(t) + K0Ds+γ(t) 6 Cs,2Ms+γ(t) + Cs,3m2+γ(t)Ms+γ−2(t),

where K0 comes from the ellipticity of Σε[f ]. All constants are independent of
ε > 0.
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Simple observation

∥∥f 〈·〉
s+γ−2

2
∥∥

L2 6 ‖f 〈·〉
s+γ

2 −
5
2 ‖1−θ

L1 ‖f 〈·〉
s+γ

2 ‖θL6 θ =
3
5

Estimating the last L6-norm with Sobolev’s inequality, we obtain that∥∥f 〈·〉
s+γ−2

2
∥∥

L2 6 C
∥∥f 〈·〉

s+γ
2 −

5
2
∥∥ 2

5
L1

∥∥∇(f 〈·〉
s+γ

2 )
∥∥ 3

5
L2 ,

i.e.
Ms+γ−2(t) 6 C m s+γ−5

2
(t)

2
5 Ds+γ(t)

3
5 .

Similar argument
Ms+γ(t) 6 Cm s+γ

2
(t)

4
5 Ds+γ(t)

3
5 .

We are only interested in the behaviour of ms(t) and Ms(t).
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Uniform in time estimates
Investigate the evolution of

Es(t) := ms(t) +Ms(t), t > 0, s ∈ (sγ , 9− γ]

and a control of the mixed terms m2+γ(t)Ms+γ−2(t) give

Theorem (Alonso, Bagland, L. 2019)
Consider 0 6 f0 ∈ L1

sγ (R3), with sγ = max{2 + 3γ
2 , 4− γ} satisfying (3). Then,

for any ε ∈ (0, ε0] there exists a weak solution f to the LFD equation such that:

(i) (Generation) For any t0 > 0, k ∈ N, and s > 0, there exists a constant
Ct0 > 0 such that

sup
t>t0

‖f (t)‖Hk
s
6 Ct0 .

The constant Ct0 depends, in addition to t0, on ‖f0‖L1
2
, Sin, k, s, γ. In

particular,
f ∈ C∞

(
[t0,+∞);S(R3)

)
, ∀ t0 > 0 .

(ii) (Propagation) Furthermore, if ‖f0‖Hk
s
<∞ and fin ∈ L1

s′(R
3) for sufficiently

large s ′ > 0, the choice t0 = 0 is valid with constant depending on such initial
regularity.
The constants are all independent of ε ∈ [0, ε0].
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Fundamental observation

Corollary
Consider 0 6 f0 ∈ L1

sγ (R3) satisfying (3). Then, for any solution f (t) = fε(t) to
(2) given by Theorem 1, it holds

sup
t>t0

‖f (t)‖∞ 6 Ct0 , ∀ t0 > 0.

The constant Ct0 only depends on M(f0), E(f0), S0, s, and t0.
Consequently, for any κ0 ∈ (0, 1) there exists ε? > 0 depending only on κ0,
M(f0), E(f0), and S0, such that

inf
v∈R3

(
1− ε f (t, v)

)
> κ0, ∀ ε ∈ (0, ε?), t > 1. (4)

I This is the lower bound which would had turn useful for the moment estimates.....

For ε < ε?, solution is uniformly far away from the degenerate steady state

Fε(v) = ε−11Rε .
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Convergence to equilibrium : non quantitative result
Theorem
Consider 0 6 f0 ∈ L1

sγ (R3) satisfying (3) and let f = f (t, v) be the previously
obtained solution to the LFD equation. Let Mε be the unique Fermi-Dirac
statistics satisfying∫

R3
f0(v)

( 1
v
|v |2

)
dv =

∫
R3
Mε(v)

( 1
v
|v |2

)
dv =

(
%
0

3%E

)

with ε < 4π
3

(5E)
3
2

%
. Then,

lim
t→∞

‖f (t)−Mε‖L1
2

= 0.

Idea of the proof. Consider a sequence {tn}n∈N of positive real numbers with
limn tn =∞. The family {f (tn)}n∈N is relatively compact in H1

p (R3) for any
p > 0 . One can extract a subsequence, still denoted {tn}n, and F∞ ∈ H1

p (R3)
such that

lim
n→∞

‖f (tn)− F∞‖H1
p

= 0.

It remains to show that F∞ =Mε. Ref.: Carrillo, Laurençot & Rosado (2009).
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Quantitative convergence to equilibrium

How to make the convergence quantitative. We will need some additional
assumption on E , % of the form

ε 6 c 4π
3

(5E)
3
2

%

We will combine
• Close-to-equilibrium analysis (Spectral gap estimate)
• Far from equilibrium analysis (Entropy/entropy production estimate).
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The linearized operator

Consider 0 6 f0 ∈ L1
s0 (R3), with s0 > 2, satisfying (3). Let ε ∈ (0, ε0] and

f = f (t, v) be the previously obtained weak solution to the LFD equation, and
let Mε be the unique Fermi-Dirac statistics with same mass, momentum and
energy as f (t, ·).
We introduce the fluctuation f =Mε + g . Then,

∂tg = Lεg + Γε(g) ,

where

Lε(g) = ∇ ·
∫
R3

a(v − v∗) [m∗∇g −m (∇g)∗] dv∗

+∇ ·
∫
R3

a(v − v∗)
[

g∗ (1− 2εMε)∗∇Mε − g (1− 2εMε)(∇Mε)∗

]
dv∗ .

with m(v) =Mε(v)(1− εMε(v)).
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Spectral gap for the linearized operator

Theorem
There exists an explicit ε† > 0 such that, for any ε ∈ (0, ε†) there exists
k†ε > 0 such that for any k > k†ε the linearized operator Lε around the
Fermi-Dirac statistics Mε generates a C0-semigroup (Sε(t))t>0 in L2

k .
Furthermore, for any g ∈ L2

k ,∥∥Sε(t)g − Pεg
∥∥

L2
k
6 C0 exp(−λε t)

∥∥g − Pεg
∥∥

L2
k
, ∀ t > 0 ,

for some explicit constant C0 > 0 (independent of ε) where λε > 0 is the
spectral gap of Lε which can be estimated explicitly. The operator Pε is the
spectral projection on Ker

(
Lε

)
.

This is an extension of the result of Lemou (2000) which makes the spectral
gap quantitative.
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Spectral gap estimate
Several main steps:

1. Lower bound for the Dirichlet form in natural space L2(m).
2. No loss of generality to consider maxwell molecules interactions γ = 0 by a

suitable comparison argument.
3. The Dirichlet form reads

Dε,2(h) =
1
2

∫
R6

mm∗|v−v∗|2 |Π(v − v∗) (∇h −∇h∗)|2 dvdv∗, h ∈ L2(m)

and there is λγ(ε) > 0 such that

Dε,2(h) > λγ(ε)‖h‖L2(m),

whenever
∫
R3

h(v)m(v)

( 1
v
|v |2

)
dv =

( 0
0
0

)
.

4. Extend the spectral result and decay of the semigroup to the space
L2(〈·〉k ) by enlargement and factorisation method, see Gualdani, Mischler,
Mouhot (2018).
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Spectral gap estimate

For the 3rd step: idea of the proof borrowed from computations of
Villani-Desvillettes (2000) and Desvillettes (2015) for the production of entropy
of the Landau operator.

Write Dε,2(h) = 1
2

∫
R6 mm∗|v − v∗|2 |Rh(v , v∗)|2 dvdv∗ with

Rh(v , v∗) = Π(v − v∗) (∇h −∇h∗) = ∇h −∇h∗ − λh (v − v∗)

for some suitable λh(v , v∗). For any circular permutation (i , k, k) of (1, 2, 3), it holds(
(v − v∗) ∧ Rh(v , v∗)

)
k

= (v − v∗)j (∂i h − ∂i h∗)− (v − v∗)i (∂j h − ∂j h∗) .

Multiply this vectorial identity by ϕ`(v∗) and integrate over R3 to get a suitable
system which is solved with Cramer’s rule to express ∂j h in terms of Rh.
Contrast with the approach used for classical Landau where the spectral gap is
deduced from the one of the Boltzmann operator in the grazing collision limit
(see Baranger-Mouhot, 2003).
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Quantitative convergence to equilibrium
The spectral result and decay of semigroup yields an explicit convergence to
Mε for close-to-equilibrium initial data.
• Tool to extend this to far-from-equilibrium initial data is the entropy
production.

Lemma
Fix ε > 0 and let 0 6 f 6 ε−1 be a function such that

inf
v∈R3

(
1− ε f (v)

)
= κ0 > 0 .

Then,

κ2
0D0(f ) 6 2Dε(f ) +

4ε2

κ0

∫
R6

f f∗ |v − v∗|γ+2 |∇f (v)|2 dvdv∗,

where D0(f ) is the entropy production for the classical Landau operator.
For the solutions to LFD:

κ2
0 D0(f (t)) 6 2Dε(f (t)) + C1ε2, ∀ ε ∈ (0, ε?) , t > 1,

with ε ∈ (0, ε†).
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Notice that the Fermi-Dirac entropy

Sε(f ) = −1
ε

∫
R3

(ε log(εf ) + (1− εf ) log(1− εf )) dv

does not converge as ε→ 0 to the Boltzmann entropy

H(f ) =

∫
R3

f log fdv .

However, the relative entropy do converge

Hε(f |g) := Sε(f )− Sε(g) −→
ε→0
H0(f |g) = H(f )− H(g)

if f , g share same mass.
This allows to exploit the entropy production estimate for Landau operator

D0(f ) > min
(
λ1H0(f |Mf ) ; λ2H0(f |Mf )1+

γ
2

)
.

established in Desvillettes-Villani (2000).
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Evolution of the relative entropy

Theorem
Consider 0 6 f0 ∈ L1

s0 (R3), with s0 > 2, satisfying (3) and a solution f (t, v) to
(2) with ε ∈ (0, ε0] given by Theorem 1. Then, there exist ε? ∈ (0, ε0], λ0 > 0,
and C0 > 0 such that

d
dtHε(f (t)|Mε) 6 −λ0 min

(
Hε(f (t)|Mε) ; Hε(f (t)|Mε)1+

γ
2

)
+ C0ε1+

γ
2 ,

for any ε ∈ (0, ε?) and any t > 1. As a consequence, there is a positive
constant C1 > 0 such that

Hε(f (t)|Mε) 6 C1

(
(1 + t)−

2
γ + ε

1+ 2
γ

)
∀ t > 1, ε ∈ (0, ε?).
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Combining this with the close-to-equilibrium convergence, we easily deduce

Theorem
Consider 0 6 f0 ∈ L1

sγ (R3)∩ L2
k (R3), with sγ = max{ 3γ

2 + 2, 4− γ} and k > k†ε ,
satisfying (3). Let ε ∈ (0, ε0] and f be a weak solution to (2). Then, there
exists ε‡ ∈ (0, ε†) such that for any ε ∈ (0, ε‡)

‖f (t)−Mε‖L1
2
6 C exp(−λεt), ∀ t > 0 , (5)

where λε > 0 is the explicit spectral gap of Lε. The constant C > 0 depends
also on M(f0), E(f0), S0, γ but not on ε.
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Comments

• All the obtained estimates are uniform in terms of ε and allows to recover
the results known for Landau equation

• Actually, the only place in which we use the knowledge of the result for
Landau operator is the final step which used the estimate of
Desvillettes-Villani for D0(f ).

• It is actually possible to adapt the proof of Desvillettes-Villani for
Maxwell-molecules to provide a direct estimate

Dε(f ) > λεHε(f |Mε)

with λε > 0 as soon as ε ∈ (0, ε1) (Alonso, Bagland, L. work in progress).
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Perspectives

• Investigate the link between the entropy dissipation for
Landau-Fermi-Dirac and that of Boltzmann-Fermi-Dirac (link with
Cercignani’s conjecture for Boltzmann-Fermi-Dirac).

• Landau-Fermi-Dirac for Coulomb interactions.
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