Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials

Bertrand Lods

Università degli studi di Torino & Collegio Carlo Alberto

Joint work with Ricardo J. Alonso (PUC-Rio) & Véronique Bagland (Clermont-Université)

Landau-Fermi-Dirac equation

The model

A priori estimates

Cauchy theory: well-posedness and propagation of moments

New advances: appearance of regularity

 L^1 and L^2 estimates Strengthening the L^{∞} -bound

Convergence to equilibrium

Compactness argument Spectral gap estimate Quantitative convergence to equilibrium

The Boltzmann equation with quantum effects

To take into account quantum effects (like Pauli exclusion principle), classical Boltzmann equation is modified as

$$\partial_t f + v \cdot \nabla_x f = \int\!\!\int_{\mathbb{R}^3 \times \mathbb{S}^2} B(v - v_*, \sigma) \Big\{ f' f'_* (1 - \varepsilon f) (1 - \varepsilon f_*) \\ - f f_* (1 - \varepsilon f') (1 - \varepsilon f'_*) \Big\} d\sigma dv_*.$$

where ${m \varepsilon}$ is proportional to the Planck constant \hbar and

- $\varepsilon = 0$: the Boltzmann equation;
- $\varepsilon > 0$: the Boltzmann-Fermi-Dirac equation;
- ε < 0: the Boltzmann-Bose-Einstein equation.

with usual post-collisional velocities $v'=\frac{v+v_*}{2}+\frac{|v-v_*|}{2}\sigma$, $v'_*=\frac{v+v_*}{2}-\frac{|v-v_*|}{2}\sigma$.

Ref.: Chapman & Cowling (1970), Danielewicz (1980), Lifshitz & Pitaevskivı (1981)

Case of inverse-power law potentials

$$B(z,\sigma) = |z|^{\gamma} b(\theta),$$
 where $\cos \theta = \left(\frac{v - v_*}{|v - v_*|}\right) \cdot \sigma.$

The function b is only implicitly defined, locally smooth with a nonintegrable singularity at $\theta=0$

$$\sin(\theta)b(\theta) \stackrel{\theta \to 0}{\sim} C \theta^{(\gamma-3)/2}$$

- $0 < \gamma \leqslant 1$: hard potentials;
- $\gamma = 0$: the Maxwellian potential;
- $-3 < \gamma < 0$: soft potentials;
- $\gamma = -3$: the Coulomb potential.

$$\partial_t f + v \cdot
abla_{ imes} f = \int\!\!\int_{\mathbb{R}^3 imes \mathbb{S}^2} B(v - v_*, \sigma) \Big\{ f' f'_* (1 - arepsilon f) (1 - arepsilon f_*)$$

$$-\mathit{ff}_*(1-arepsilon \mathit{f}')(1-arepsilon \mathit{f}'_*)igg\}\, d\sigma\, d\mathsf{v}_*.$$

For arepsilon>0, there are two kinds of equilibrium states :

Fermi-Dirac distributions

$$\mathcal{M}_{\varepsilon}(v) = rac{M_{\varepsilon}(v)}{1 + \varepsilon \, M_{\varepsilon}(v)} = rac{ae^{-b|v-v_0|^2}}{1 + a\varepsilon \, e^{-b|v-v_0|^2}}, \qquad a,b > 0, v_0 \in \mathbb{R}^3$$

· characteristic functions of balls

$$F_{\varepsilon}(v) = \frac{1}{\varepsilon} \mathbf{1}_{|v-v_0| \leqslant R_{\varepsilon}}$$

Spatially homogeneous case

Lu (2001), Escobedo, Mischler & Valle (2003), Lu & Wennberg (2003)

Spatially inhomogeneous case

Dolbeault (1994), Lions (1994), Alexandre (2000), Lu (2006 and 2008).

Grazing collisions asymptotic

$$b(\theta)\sin(\theta)$$
 is replaced by $\frac{1}{\delta^3}\,b\left(\frac{\theta}{\delta}\right)\sin\left(\frac{\theta}{\delta}\right)$ and, letting $\delta\to 0$, one obtains

The Landau operator with quantum effects

$$Q_{LFD}(f)(v) = \nabla_v \cdot \int_{\mathbb{R}^3} |v - v_*|^{\gamma + 2} \, \Pi(v - v_*) \Big\{ f_* (1 - \varepsilon f_*) \nabla f - f (1 - \varepsilon f) \nabla f_* \Big\} \, dv_*$$

with

$$\Pi(z) = (\Pi_{i,j}(z))_{i,j}$$
 and $\Pi_{i,j}(z) = \delta_{i,j} - \frac{z_i z_j}{|z|^2}$.

Ref.: Degond & Lucquin-Desreux (1992), Desvillettes (1992) for $\varepsilon = 0$ Danielewicz (1980) in the general case.

$$\partial_t f + v \cdot \nabla_x f = \nabla_v \cdot \int_{\mathbb{R}^3} |v - v_*|^{\gamma+2} \, \Pi(v - v_*) \Big\{ f_* \nabla f - f \nabla f_* \Big\} \, dv_*$$

The equilibrium states are Maxwellian distributions :

$$M(v) = ae^{-b|v-v_0|^2}, \qquad a, b > 0, v_0 \in \mathbb{R}^3$$

Spatially homogeneous case

Arsen'ev & Peskov (1977), Arsen'ev & Buryak (1991), Villani (1998), Desvillettes & Villani (2000), El Safadi (2007), Fournier & Guerin (2009), Chen, Li & Xu (2009 and 2010), Fournier (2010), Morimoto, Pravda-Starov & Xu (2013), Wu (2014), Carrapatoso (2015), Desvillettes (2015), Alexandre, Lia & Lin (2015), Desvillettes (2016), Carrapatoso, Desvillettes & He (2017)

Spatially inhomogeneous case

Villani (1996), Guo (2002), Yu (2006), Guo & Strain (2006 and 2008), Chen, Desvillettes & He (2009), Carrapatoso, Tristani & Wu (2016), Carrapatoso & Mischler (2017)

The Landau-Fermi-Dirac (LFD) equation

$$egin{aligned} \partial_t f &= \mathcal{Q}_{LFD}(f) \ &=
abla_v \cdot \int_{\mathbb{R}^3} |v - v_*|^{\gamma + 2} \, \Pi(v - v_*) \Big\{ f_* (1 - \varepsilon f_*)
abla f &= f_$$

- Such an equation also arises in the modelling of self-gravitating particles.
 Kadomtsev & Pogutse (1970), Chavanis (1998)
- (Non quantitative) spectral analysis for the linearization has been obtained by Lemou (2000)
- There are some results in the spatially inhomogeneous case.
 Liu, Ma & Yu (2012), Liu (2012)

The Landau-Fermi-Dirac (LFD) equation

$$egin{aligned} \partial_t f &= \mathcal{Q}_{LFD}(f) \ &=
abla_v \cdot \int_{\mathbb{R}^3} |v - v_*|^{\gamma + 2} \, \Pi(v - v_*) \Big\{ f_* (1 - \varepsilon f_*)
abla f - f(1 - \varepsilon f)
abla f_* \Big\} \, dv_*. \end{aligned}$$

Equilibrium solutions are the same as for Boltzmann-Fermi-Dirac:

Fermi-Dirac distributions

$$\mathcal{M}_{\varepsilon}(v) = rac{M_{\varepsilon}(v)}{1 + \varepsilon \, M_{\varepsilon}(v)} = rac{ae^{-b|v-v_0|^2}}{1 + a\varepsilon \, e^{-b|v-v_0|^2}}, \qquad a,b > 0, v_0 \in \mathbb{R}^3$$

characteristic functions of balls

$$F_{\varepsilon}(v) = rac{1}{arepsilon} \mathbf{1}_{|v-v_0| \leqslant R_{arepsilon}}$$

Equilibrium distributions cannot have arbitrary mass and energy If $0 \le g \le \varepsilon^{-1}$ is such that

$$\int_{\mathbb{R}^3} g(v) \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dv = \begin{pmatrix} \varrho \\ 0 \\ 3\varrho E \end{pmatrix}$$

then

$$\varepsilon\leqslant \frac{4\pi}{3\rho}(5\,E)^{\frac{3}{2}}$$

and equality only occurs only if $g = F_{\varepsilon}$ is a degenerate equilibrium (X. Lu (2001)).

Fermi-Dirac equilibrium exists only for

$$arepsilon < arepsilon_{
m deg} := rac{4\pi}{3
ho}ig(5\,Eig)^{3/2}.$$

A priori estimates

$$\partial_t f(t,v) = \nabla_v \cdot \int_{\mathbb{R}^3} a(v-v_*) \Big\{ f_*(1-\varepsilon f_*) \nabla f - f(1-\varepsilon f) \nabla f_* \Big\} dv_*.$$

where

$$a_{i,j}(z) = |z|^{\gamma+2} \left(\delta_{i,j} - \frac{z_i z_j}{|z|^2}\right).$$

 L^{∞} -bound:

$$0 \leqslant f(0,\cdot) \leqslant \varepsilon^{-1} \Longrightarrow 0 \leqslant f(t,\cdot) \leqslant \varepsilon^{-1} \qquad \forall t \geqslant 0.$$

Weak formulation:

$$\int \mathcal{Q}_{LFD}(f)(v) \, \varphi(v) \, dv$$

$$= -\frac{1}{2} \iint a(v - v_*) \Big\{ f_*(1 - \varepsilon f_*) \nabla f - f(1 - \varepsilon f) \nabla f_* \Big\} \Big\{ \nabla \varphi - \nabla \varphi_* \Big\} \, dv_* \, dv$$

Conservation laws

Mass, momentum and energy are preserved, i.e.

$$\frac{d}{dt}\int f(t,v)\,dv=0\qquad \qquad \frac{d}{dt}\int f(t,v)\,v\,dv=0\qquad \qquad \frac{d}{dt}\int f(t,v)\,|v|^2dv=0$$

Fermi-Dirac Entropy

For any $\varepsilon > 0$ and $0 \leqslant f \leqslant \varepsilon^{-1}$ we introduce the Fermi-Dirac entropy as

$$S_{\varepsilon}(f) = -\frac{1}{\varepsilon} \int_{\mathbb{R}^3} \left[\varepsilon f \log(\varepsilon f) + (1 - \varepsilon f) \log(1 - \varepsilon f) \right] dv. \tag{1}$$

Then, along solutions to the LFD eq., one has

$$\frac{d}{dt}\mathcal{S}_{\varepsilon}(f(t)) = -\mathscr{D}_{\varepsilon,\gamma}(f(t)),$$

where the dissipation term reads

$$egin{aligned} \mathscr{D}_{arepsilon,\gamma}(f) &= \int_{\mathbb{R}^3} \mathcal{Q}_{LFD}(f) \left(\log(arepsilon f(v)) - \log(1-arepsilon f(v))
ight) dv \ &= rac{1}{2} \int_{\mathbb{R}^3 imes \mathbb{R}^3} dv dv_* |v-v_*|^{\gamma+2} ff_* (1-arepsilon f) (1-arepsilon f_*) imes \ & imes \left| \Pi(v-v_*) \left(rac{
abla f}{f(1-arepsilon f)} - rac{
abla f_*}{f_* (1-arepsilon f_*)}
ight)
ight|^2 \geqslant 0. \end{aligned}$$

Hence,

 $t \geqslant 0 \longmapsto S_{\varepsilon}(f)(t)$ is a non-decreasing function.

Cauchy Theory

$$\partial_t f(t,v) = \nabla_v \cdot \int_{\mathbb{R}^3} a(v - v_*) \Big\{ f_*(1 - \varepsilon f_*) \nabla f - f(1 - \varepsilon f) \nabla f_* \Big\} dv_* \quad (t \geqslant 0) \quad (2)$$

with $f(t = 0, v) = f_0(v)$.

The equation can be reformulated as a nonlinear parabolic equation

$$\partial_t f = \nabla \cdot (\boldsymbol{\Sigma}_{\varepsilon}[f] \nabla f - \boldsymbol{b}[f] f (1 - \varepsilon f)),$$

with

$$\Sigma_{\varepsilon}[f] = (a_{i,j} * f(1 - \varepsilon f))_{i,j},$$

and

$$\boldsymbol{b}[f] = (b_i * f)_i, \qquad b_i(z) = \sum_k \partial_k a_{i,k}(z) = -2 |z|^{\gamma} z_i.$$

•00

Assumption on the initial datum There is $\varepsilon_0 \in (0,1)$ such that the initial datum

$$0 < \|f_0\|_{\infty} =: \varepsilon_0^{-1} < \infty$$
 and $S_0 := S_{\varepsilon_0}(f_0) > 0$, (3)

and $f_0 \in L^1_{s_0}(\mathbb{R}^3)$ for some $s_0 > 2$.

Theorem (Bagland 2004 – for $\varepsilon=1$.)

Under such an assumption, for any $\varepsilon \in (0, \varepsilon_0]$, there exists a weak solution f to (2) satisfying the conservation laws and

$$f(1-\varepsilon f) \in L^1_{\mathrm{loc}}\big(\mathbb{R}_+; L^1_{s_0+\gamma}\big(\mathbb{R}^3\big)\big); \qquad f \in L^\infty_{\mathrm{loc}}\big(\mathbb{R}_+; L^1_{s_0}\big(\mathbb{R}^3\big)\big) \cap L^2_{\mathrm{loc}}\big(\mathbb{R}_+; H^1_{s_0}\big(\mathbb{R}^3\big)\big).$$

If $s_0 \geqslant 2 + \gamma$, then the entropy is a non-decreasing function while, for $s_0 > 4\gamma + 11$, such a solution is unique.

For $s \in \mathbb{R}$, $p \geqslant 1$, $k \in \mathbb{N}$,

$$\|f\|_{L_{s}^{p}}^{p} = \int_{\mathbb{R}^{3}} |f(v)|^{p} \langle v \rangle^{s} dv, \qquad \|f\|_{H_{s}^{k}}^{2} = \sum_{0 \leq |\beta| \leq k} \int_{\mathbb{R}^{3}} |\partial_{\beta} f(v)|^{2} \langle v \rangle^{s} dv,$$

where $\langle v \rangle = (1+|v|^2)^{1/2}$, $\beta = (i_1, i_2, i_3) \in \mathbb{N}^3$, $|\beta| = i_1 + i_2 + i_3$ and $\partial_\beta f = \partial_1^{i_1} \partial_2^{i_2} \partial_3^{i_3} f$.

$$\partial_t f = \nabla \cdot (\boldsymbol{\Sigma}_{\boldsymbol{\varepsilon}}[f] \nabla f - \boldsymbol{b}[f] f (1 - \boldsymbol{\varepsilon} f)),$$

with

$$\Sigma_{\varepsilon}[f] = (a_{i,j} * f(1 - \varepsilon f))_{i,j},$$

and

$$\boldsymbol{b}[f] = (b_i * f)_i, \qquad b_i(z) = \sum_k \partial_k a_{i,k}(z) = -2 |z|^{\gamma} z_i.$$

Crucial estimate (uniform ellipticity): Let $\varepsilon \in (0, \varepsilon_0]$ then

$$\Sigma_{\varepsilon}[f](v) \geqslant K_0 \langle v \rangle^{\gamma} I_{3 \times 3}, \qquad \forall v \in \mathbb{R}^3$$

for all $f \in L^1_2(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$ satisfying (3) and

$$\int_{\mathbb{R}^3} f|v|^2 dv \leqslant E_0, \quad \mathcal{S}_{\varepsilon}(f) \geqslant S_0$$

and $K_0 > 0$ depends only on γ , E_0 and S_0 .

Open problems: appearance of moments ? uniform in time estimates ? Partial answer:

Proposition (Chen, 2010 and 2011)

Let $\gamma \in (0,1]$. Consider $f_{in} \in L^1_{2s}(\mathbb{R}^3)$ for any s>1 satisfying $0\leqslant f_{in}\leqslant 1$ a.e. Let f be the weak solution to the LFD equation. Then,

• for any $0 < t_0 < T < +\infty$, we have

$$f \in \mathcal{C}^{\infty}([t_0, T]; \mathcal{S}(\mathbb{R}^3)),$$

where $\mathcal{S}(\mathbb{R}^3)$ is the Schwartz space.

• for any multi-index $lpha \in \mathbb{N}^3$, any s>1 and any $0< t_0 < T < +\infty$,

$$\sup_{t_0\leqslant t\leqslant T}\|\partial_{\alpha}f(t)\|_{L^2_{2s}(\mathbb{R}^3)}\leqslant \left\{\begin{array}{ll} C & \text{if } 0\leqslant |\alpha|\leqslant 3,\\ C^{|\alpha|-2}(|\alpha|-4)! & \text{if } |\alpha|\geqslant 4, \end{array}\right.$$

where C only depends on γ , s, t₀, T and f_{in}. In particular, $f(t,\cdot)$ is analytic in \mathbb{R}^3 for any t>0. Open problems: appearance of moments? uniform in time estimates?

Difficulty: Evolution of L^2 -moments enter naturally in the evolution of L^1 -moments.

Typically, resuming the arguments done in the classical Landau case, we get something like

$$\frac{d}{dt} \int_{\mathbb{R}^3} f \left\langle v \right\rangle^s dv + K_s \int_{\mathbb{R}^3} \left\langle v_* \right\rangle^{s+\gamma} f_* (1 - \varepsilon f_*) dv_* \leqslant C_{s,1} \int_{\mathbb{R}^3} f \left\langle v \right\rangle^s dv,$$

 $lackbox{Notice:}$ A positive lower bound on $1-\varepsilon\,f_*$ would be very helpful here.

Given a solution f(t, v) to the LFD equation, we introduce

Proposition

If $0 \leqslant f_0 \in L^1_{s_0}(\mathbb{R}^3)$, for some $s_0 > 2$ satisfies (3) and f = f(t,v) is a weak solution to the LFD equation that preserves mass and energy. Then, for some constants $C_{s,1}, C_{s,2}, C_{s,3} > 0$ and $K_s > 0$ depending only on $m_2(0)$, γ and s, it holds

$$\frac{d}{dt}\boldsymbol{m}_{s}(t)+K_{s}\boldsymbol{m}_{s+\gamma}(t)\leqslant K_{s}\mathbb{M}_{s+\gamma}(t)+C_{s,1}\boldsymbol{m}_{s}(t), \qquad s>2.$$

$$\frac{1}{2}\frac{d}{dt}\mathbb{M}_s(t) + K_0\mathbb{D}_{s+\gamma}(t) \leqslant C_{s,2}\mathbb{M}_{s+\gamma}(t) + C_{s,3}\boldsymbol{m}_{2+\gamma}(t)\mathbb{M}_{s+\gamma-2}(t),$$

where K_0 comes from the ellipticity of $\Sigma_{\varepsilon}[f]$. All constants are independent of $\varepsilon > 0$.

Simple observation

$$\left\|f\langle\cdot\rangle^{\frac{s+\gamma-2}{2}}\right\|_{L^2}\leqslant \|f\langle\cdot\rangle^{\frac{s+\gamma}{2}-\frac{5}{2}}\|_{L^1}^{1-\theta}\|f\langle\cdot\rangle^{\frac{s+\gamma}{2}}\|_{L^6}^{\theta} \qquad \theta=\frac{3}{5}$$

Estimating the last L^6 -norm with Sobolev's inequality, we obtain that

$$\left\|f\langle\cdot\rangle^{\frac{s+\gamma-2}{2}}\right\|_{L^{2}}\leqslant C\left\|f\langle\cdot\rangle^{\frac{s+\gamma}{2}-\frac{5}{2}}\right\|_{L^{1}}^{\frac{2}{5}}\left\|\nabla(f\langle\cdot\rangle^{\frac{s+\gamma}{2}})\right\|_{L^{2}}^{\frac{3}{5}},$$

i.e.

$$\mathbb{M}_{s+\gamma-2}(t)\leqslant C\, oldsymbol{m}_{rac{s+\gamma-5}{2}}(t)^{rac{2}{5}}\,\mathbb{D}_{s+\gamma}(t)^{rac{3}{5}}.$$

Similar argument

$$\mathbb{M}_{s+\gamma}(t) \leqslant C m_{\frac{s+\gamma}{2}}(t)^{\frac{4}{5}} \mathbb{D}_{s+\gamma}(t)^{\frac{3}{5}}$$
.

We are only interested in the behaviour of $\mathbf{m}_s(t)$ and $\mathbb{M}_s(t)$.

Uniform in time estimates

Investigate the evolution of

$$\mathcal{E}_s(t) := \mathbf{m}_s(t) + \mathbb{M}_s(t), \qquad t \geqslant 0, \quad s \in (s_\gamma, 9 - \gamma]$$

and a control of the mixed terms $m{m}_{2+\gamma}(t) \mathbb{M}_{s+\gamma-2}(t)$ give

Theorem (Alonso, Bagland, L. 2019)

Consider $0 \leqslant f_0 \in L^1_{s_{\gamma}}(\mathbb{R}^3)$, with $s_{\gamma} = \max\{2 + \frac{3\gamma}{2}, 4 - \gamma\}$ satisfying (3). Then, for any $\varepsilon \in (0, \varepsilon_0]$ there exists a weak solution f to the LFD equation such that:

(i) (Generation) For any $t_0>0$, $k\in\mathbb{N}$, and s>0, there exists a constant $C_{t_0}>0$ such that

$$\sup_{t\geqslant t_0}\|f(t)\|_{H^k_s}\leqslant C_{t_0}.$$

The constant C_{t_0} depends, in addition to t_0 , on $||f_0||_{L_2^1}$, S_{in} , k, s, γ . In particular,

$$f \in \mathcal{C}^{\infty}\big([t_0,+\infty);\mathcal{S}(\mathbb{R}^3)\big)\,, \qquad \forall \ t_0 > 0\,.$$

(ii) (Propagation) Furthermore, if $||f_0||_{H^k_s} < \infty$ and $f_{in} \in L^1_{s'}(\mathbb{R}^3)$ for sufficiently large s' > 0, the choice $t_0 = 0$ is valid with constant depending on such initial regularity.

The constants are all independent of $\varepsilon \in [0, \varepsilon_0]$.

Fundamental observation

Corollary

Consider $0 \leqslant f_0 \in L^1_{s_{\gamma}}(\mathbb{R}^3)$ satisfying (3). Then, for any solution $f(t) = f_{\varepsilon}(t)$ to (2) given by Theorem 1, it holds

$$\sup_{t\geqslant t_0}\|f(t)\|_{\infty}\leqslant C_{t_0}\,,\qquad\forall\,t_0>0.$$

The constant C_{t_0} only depends on $M(f_0)$, $E(f_0)$, S_0 , s, and t_0 .

Consequently, for any $\kappa_0 \in (0,1)$ there exists $\varepsilon_* > 0$ depending only on κ_0 , $M(f_0)$, $E(f_0)$, and S_0 , such that

$$\inf_{v \in \mathbb{R}^3} \left(1 - \varepsilon \, f(t, v) \right) \geqslant \kappa_0, \qquad \forall \, \varepsilon \in (0, \varepsilon_\star), \, t \geqslant 1. \tag{4}$$

▶ This is the lower bound which would had turn useful for the moment estimates.....

For $\varepsilon < \varepsilon_{\star}$, solution is uniformly far away from the degenerate steady state

$$F_{\varepsilon}(v) = \varepsilon^{-1} \mathbf{1}_{R_{\varepsilon}}.$$

Convergence to equilibrium : non quantitative result

Theorem

Consider $0 \leqslant f_0 \in L^1_{s_{\gamma}}(\mathbb{R}^3)$ satisfying (3) and let f = f(t,v) be the previously obtained solution to the LFD equation. Let $\mathcal{M}_{\varepsilon}$ be the unique Fermi-Dirac statistics satisfying

$$\int_{\mathbb{R}^3} f_0(v) \left(\begin{array}{c} 1 \\ v \\ |v|^2 \end{array} \right) dv = \int_{\mathbb{R}^3} \mathcal{M}_\varepsilon(v) \left(\begin{array}{c} 1 \\ v \\ |v|^2 \end{array} \right) dv = \left(\begin{array}{c} \varrho \\ 0 \\ 3\varrho \, E \end{array} \right)$$

with $\varepsilon < \frac{4\pi}{3} \frac{(5E)^{\frac{3}{2}}}{\varrho}$. Then,

$$\lim_{t\to\infty}\|f(t)-\mathcal{M}_{\varepsilon}\|_{L^1_2}=0.$$

Idea of the proof. Consider a sequence $\{t_n\}_{n\in\mathbb{N}}$ of positive real numbers with $\lim_n t_n=\infty$. The family $\{f(t_n)\}_{n\in\mathbb{N}}$ is relatively compact in $H^1_p(\mathbb{R}^3)$ for any $p\geqslant 0$. One can extract a subsequence, still denoted $\{t_n\}_n$, and $F_\infty\in H^1_p(\mathbb{R}^3)$ such that

$$\lim_{n\to\infty}\|f(t_n)-F_\infty\|_{H^1_p}=0.$$

It remains to show that $F_{\infty}=\mathcal{M}_{\varepsilon}$. Ref.: Carrillo, Laurençot & Rosado (2009).

Quantitative convergence to equilibrium

How to make the convergence quantitative. We will need some additional assumption on E,ϱ of the form

$$\varepsilon\leqslant c\,\frac{4\pi}{3}\frac{(5E)^{\frac{3}{2}}}{\varrho}$$

We will combine

- Close-to-equilibrium analysis (Spectral gap estimate)
- Far from equilibrium analysis (Entropy/entropy production estimate).

The linearized operator

Consider $0 \leqslant f_0 \in L^1_{s_0}(\mathbb{R}^3)$, with $s_0 > 2$, satisfying (3). Let $\varepsilon \in (0, \varepsilon_0]$ and f = f(t, v) be the previously obtained weak solution to the LFD equation, and let $\mathcal{M}_{\varepsilon}$ be the unique Fermi-Dirac statistics with same mass, momentum and energy as $f(t, \cdot)$.

We introduce the fluctuation $f = \mathcal{M}_{\varepsilon} + g$. Then,

$$\partial_t g = \mathscr{L}_{\varepsilon} g + \Gamma_{\varepsilon}(g),$$

where

$$\begin{split} \mathscr{L}_{\varepsilon}(g) &= \nabla \cdot \int_{\mathbb{R}^{3}} \mathsf{a}(v - v_{*}) \left[\mathfrak{m}_{*} \nabla g - \mathfrak{m} \left(\nabla g \right)_{*} \right] dv_{*} \\ &+ \nabla \cdot \int_{\mathbb{R}^{3}} \mathsf{a}(v - v_{*}) \left[g_{*} \left(1 - 2 \varepsilon \mathcal{M}_{\varepsilon} \right)_{*} \nabla \mathcal{M}_{\varepsilon} - g \left(1 - 2 \varepsilon \mathcal{M}_{\varepsilon} \right) \left(\nabla \mathcal{M}_{\varepsilon} \right)_{*} \right] dv_{*} \,. \end{split}$$
 with $\mathfrak{m}(v) = \mathcal{M}_{\varepsilon}(v) (1 - \varepsilon \mathcal{M}_{\varepsilon}(v)).$

Spectral gap for the linearized operator

Theorem

There exists an explicit $\varepsilon^{\dagger} > 0$ such that, for any $\varepsilon \in (0, \varepsilon^{\dagger})$ there exists $k_{\varepsilon}^{\dagger} > 0$ such that for any $k > k_{\varepsilon}^{\dagger}$ the linearized operator $\mathscr{L}_{\varepsilon}$ around the Fermi-Dirac statistics $\mathcal{M}_{\varepsilon}$ generates a C_0 -semigroup $(\mathbf{S}_{\varepsilon}(t))_{t\geqslant 0}$ in L_k^2 . Furthermore, for any $g \in L_k^2$,

$$\left\| \mathbf{S}_{\varepsilon}(t)g - \mathbb{P}_{\varepsilon}g \right\|_{L^{2}_{k}} \leqslant C_{0} \exp(-\lambda_{\varepsilon} t) \left\| g - \mathbb{P}_{\varepsilon}g \right\|_{L^{2}_{k}}, \quad \forall t \geqslant 0,$$

for some explicit constant $C_0>0$ (independent of ε) where $\lambda_\varepsilon>0$ is the spectral gap of \mathcal{L}_ε which can be estimated explicitly. The operator \mathbb{P}_ε is the spectral projection on $\operatorname{Ker}(\mathscr{L}_\varepsilon)$.

This is an extension of the result of Lemou (2000) which makes the spectral gap *quantitative*.

Spectral gap estimate

Several main steps:

- 1. Lower bound for the Dirichlet form in natural space $L^2(\mathfrak{m})$.
- 2. No loss of generality to consider maxwell molecules interactions $\gamma=0$ by a suitable comparison argument.
- 3. The Dirichlet form reads

$$\mathcal{D}_{\varepsilon,2}(h) = \frac{1}{2} \int_{\mathbb{R}^6} \mathfrak{m} \, \mathfrak{m}_* |v - v_*|^2 \left| \Pi(v - v_*) \left(\nabla h - \nabla h_* \right) \right|^2 dv dv_*, \qquad h \in L^2(\mathfrak{m})$$

and there is $\lambda_{\gamma}(arepsilon)>0$ such that

$$\mathcal{D}_{\varepsilon,2}(h) \geqslant \lambda_{\gamma}(\varepsilon) \|h\|_{L^2(\mathfrak{m})},$$

whenever
$$\int_{\mathbb{R}^3} h(v)\mathfrak{m}(v) \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dv = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
.

4. Extend the spectral result and decay of the semigroup to the space $L^2(\langle \cdot \rangle^k)$ by enlargement and factorisation method, see Gualdani, Mischler, Mouhot (2018).

Spectral gap estimate

For the 3rd step: idea of the proof borrowed from computations of Villani-Desvillettes (2000) and Desvillettes (2015) for the *production of entropy* of the Landau operator.

Write
$$\mathcal{D}_{\varepsilon,2}(h) = \frac{1}{2} \int_{\mathbb{R}^6} \mathfrak{m} \, \mathfrak{m}_* |v-v_*|^2 |R_h(v,v_*)|^2 \, dv dv_*$$
 with
$$R_h(v,v_*) = \Pi(v-v_*) \left(\nabla h - \nabla h_*\right) = \nabla h - \nabla h_* - \lambda_h \left(v-v_*\right)$$

for some suitable $\lambda_h(v,v_*)$. For any circular permutation (i,k,k) of (1,2,3), it holds

$$\left((v - v_*) \wedge R_h(v, v_*) \right)_k = (v - v_*)_j \left(\partial_i h - \partial_i h_* \right) - (v - v_*)_i \left(\partial_j h - \partial_j h_* \right).$$

Multiply this vectorial identity by $\varphi^\ell(v_*)$ and integrate over \mathbb{R}^3 to get a suitable system which is solved with Cramer's rule to express $\partial_j h$ in terms of R_h . Contrast with the approach used for classical Landau where the spectral gap is deduced from the one of the Boltzmann operator in the grazing collision limit (see Baranger-Mouhot, 2003).

Quantitative convergence to equilibrium

The spectral result and decay of semigroup yields an explicit convergence to $\mathcal{M}_{\varepsilon}$ for *close-to-equilibrium* initial data.

• Tool to extend this to *far-from-equilibrium* initial data is the entropy production.

Lemma

Fix $\varepsilon > 0$ and let $0 \leqslant f \leqslant \varepsilon^{-1}$ be a function such that

$$\inf_{v\in\mathbb{R}^3}\left(1-\varepsilon\,f(v)\right)=\kappa_0>0\,.$$

Then,

$$\kappa_0^2 \mathscr{D}_0(f) \leqslant 2 \mathscr{D}_{\varepsilon}(f) + \frac{4\varepsilon^2}{\kappa_0} \int_{\mathbb{R}^6} f f_* \left| v - v_* \right|^{\gamma+2} \left| \nabla f(v) \right|^2 dv dv_*,$$

where $\mathcal{D}_0(f)$ is the entropy production for the classical Landau operator. For the solutions to LFD:

$$\kappa_0^2 \mathscr{D}_0(f(t)) \leqslant 2 \mathscr{D}_{\varepsilon}(f(t)) + C_1 \varepsilon^2, \qquad \forall \, \varepsilon \in (0, \varepsilon_\star) \,, \, \, t \geqslant 1,$$

with $\varepsilon \in (0, \varepsilon^{\dagger})$.

Notice that the Fermi-Dirac entropy

$$\mathcal{S}_{arepsilon}(f) = -rac{1}{arepsilon} \int_{\mathbb{R}^3} \left(arepsilon \log(arepsilon f) + (1-arepsilon f) \log(1-arepsilon f)
ight) dv$$

does not converge as arepsilon o 0 to the Boltzmann entropy

$$H(f) = \int_{\mathbb{R}^3} f \log f dv.$$

However, the relative entropy do converge

$$\mathcal{H}_{\varepsilon}(f|g) := \mathcal{S}_{\varepsilon}(f) - \mathcal{S}_{\varepsilon}(g) \underset{\varepsilon \to 0}{\longrightarrow} \mathcal{H}_{0}(f|g) = \mathcal{H}(f) - \mathcal{H}(g)$$

if f, g share same mass.

This allows to exploit the entropy production estimate for Landau operator

$$\mathscr{D}_0(f)\geqslant \min\left(\lambda_1\mathcal{H}_0(f|M_f)\,;\,\lambda_2\mathcal{H}_0(f|M_f)^{1+\frac{\gamma}{2}}\right).$$

established in Desvillettes-Villani (2000).

Evolution of the relative entropy

Theorem

Consider $0 \le f_0 \in L^1_{s_0}(\mathbb{R}^3)$, with $s_0 > 2$, satisfying (3) and a solution f(t,v) to (2) with $\varepsilon \in (0,\varepsilon_0]$ given by Theorem 1. Then, there exist $\varepsilon_\star \in (0,\varepsilon_0]$, $\lambda_0 > 0$, and $C_0 > 0$ such that

$$\frac{d}{dt}\mathcal{H}_{\varepsilon}(f(t)|\mathcal{M}_{\varepsilon})\leqslant -\lambda_0\min\left(\mathcal{H}_{\varepsilon}(f(t)|\mathcal{M}_{\varepsilon})\,;\,\mathcal{H}_{\varepsilon}(f(t)|\mathcal{M}_{\varepsilon})^{1+\frac{\gamma}{2}}\right)+C_0\varepsilon^{1+\frac{\gamma}{2}},$$

for any $\varepsilon \in (0, \varepsilon_\star)$ and any $t \geqslant 1$. As a consequence, there is a positive constant $C_1 > 0$ such that

$$\mathcal{H}_{arepsilon}(f(t)|\mathcal{M}_{arepsilon})\leqslant C_1\left((1+t)^{-rac{2}{\gamma}}+arepsilon^{1+rac{2}{\gamma}}
ight) \qquad orall\ t\geqslant 1,\ \ arepsilon\in (0,arepsilon_{\star}).$$

Combining this with the close-to-equilibrium convergence, we easily deduce

Theorem

Consider $0 \leqslant f_0 \in L^1_{s_{\gamma}}(\mathbb{R}^3) \cap L^2_k(\mathbb{R}^3)$, with $s_{\gamma} = \max\{\frac{3\gamma}{2} + 2, 4 - \gamma\}$ and $k > k_{\varepsilon}^{\dagger}$, satisfying (3). Let $\varepsilon \in (0, \varepsilon_0]$ and f be a weak solution to (2). Then, there exists $\varepsilon^{\ddagger} \in (0, \varepsilon^{\dagger})$ such that for any $\varepsilon \in (0, \varepsilon^{\ddagger})$

$$||f(t) - \mathcal{M}_{\varepsilon}||_{L^{1}_{2}} \leqslant C \exp(-\lambda_{\varepsilon} t), \quad \forall t \geqslant 0,$$
 (5)

where $\lambda_{\varepsilon} > 0$ is the explicit spectral gap of $\mathscr{L}_{\varepsilon}$. The constant C > 0 depends also on $M(f_0)$, $E(f_0)$, S_0 , γ but not on ε .

Comments

- All the obtained estimates are uniform in terms of ε and allows to recover the results known for Landau equation
- Actually, the only place in which we use the knowledge of the result for Landau operator is the final step which used the estimate of Desvillettes-Villani for $\mathcal{D}_0(f)$.
- It is actually possible to adapt the proof of Desvillettes-Villani for Maxwell-molecules to provide a direct estimate

$$\mathscr{D}_{\varepsilon}(f) \geqslant \lambda_{\varepsilon} \mathcal{H}_{\varepsilon}(f|\mathcal{M}_{\varepsilon})$$

with $\lambda_{\varepsilon}>0$ as soon as $\varepsilon\in(0,\varepsilon_1)$ (Alonso, Bagland, L. work in progress).

Perspectives

- Investigate the link between the entropy dissipation for Landau-Fermi-Dirac and that of Boltzmann-Fermi-Dirac (link with Cercignani's conjecture for Boltzmann-Fermi-Dirac).
- Landau-Fermi-Dirac for Coulomb interactions.