Central WENO reconstructions
from their origin to the most recent

developments and applications

Matteo Semplice

Dipartimento di Scienza e Alta Tecnologia
Universita dell’Insubria

with

G. Puppo, G. Visconti, |. Cravero

A. Coco, G. Russo,

M. Castro, W. Boscheri, M. Dumbser

PDE-MANS
Granada, 14.01.2020




Goal

ou
Bt + Vi - f(u) = s(u)

® High order accurate finite volume schemes
for hyperbolic conservation (and balance) laws

® multidimensional case

e little restrictions from grid type (structured, unstructured, locally
adapted as in quad-tree, etc)




Outline

High order FV schemes
The CWENO(Z) paradigm
Uniform grid reconstructions

Unstructured, AMR and well-balanced computations




Time advancement in finite volume schemes

e Cell averages

_ 1
uj(t) = |QJ|/Q, u(t, x)dx

® Method of lines: compute the cell average of the PDE on each €2; and
get the coupled system of ODEs

d_ _
Sa(0) = Ly(@.(0)

where L; is the spatial discretization

® ADER schemes: integrate in §; x [tp, ty41] to obtain

ot =0+ K (017, X))

with K; depending on a local high order representation of the solution
at time t"




High-order flux integration

[ﬂuxes = Quadrature o R. Solver o Reconstruction]

Jo3 - ttateax = [fute) nt)d =3 [Hu(e) )

where [ is the intersection of €2; and the neighbour 2.

. Fue.)) - na)y
= |I.Ik| Z wof(u(t, xg)) - n(xq)
= il D2 wg F (u(t, xq)", u(t, x9); n(xq))

where F is a compatible Riemann Solver and
u'"/°Ut denote suitable point value reconstructions.
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High-order source terms

[SOUFCGS = Quadrature (9] Reconstruction]

® use quadrature rule

/ S(u(t,x)dx

J

= | Z wqs(u(t, xq))

= need also inner point value
reconstructions




Point-value reconstructions

Finite volume schemes
® store cell averages

® need point-value reconstructions
(possibly at very many locations in each cell)

p-wise const p-wise Pg

cell averages in €Q; RECONSTRUCTION
and neighbours

~

RJ(X) Vx € Qj

ENO very large stencils
WENO need to know the evaluation point beforehand
CWENQO — this talk
MOOD — comparison in M.S., R. Loubere — JCP, 2018




The CWENO(Z) paradigm



Essentially non-oscillatory reconstructions

Given the cell averages Uj, i € Sopt, for a bounded function u(x),

€ Copt) > .:a..

.

I
)
I

'Dopt s.t. Vi e Sopt :

1. has very good accuracy in smooth regions
2. is (wildly) oscillatory if a discontinuity is present in its stencil

3. is best replaced by a (lower accuracy) non-oscillatory alternative,
e.g. one of the Py’s defined on substencils




The CWENO master equation
Given Py € Pg and Pr,....PyeP,, g <G
freely choose d, ..., dy € (0,1) such that Zgﬂ de=1

and set Py(x) = dio (Popt(x) - 22/’:1 dkPk(X)>

Vx € cell : Pope(x) = do Po(x)+ Z dy Py (x (linear)
k=1 ‘

Vx € cell : R(x) = wo Po(x) (nonlinear)

ﬁ Levy, Puppo, Russo SISC, 2000

7



“Essentially non-oscillatory” property

0SC[P] = 3 Ax2k! /(dkP/dxk)2

k>1

smooth data OSC[P] = (v')*Ax? + lower order terms
discontinuous data OSC[P] < 1

1. assume that at least one candidate polynomial has a smooth
stencil, that is OSC[P;] < 1

2. if Py is oscillatory, then OSC[Py] < 1
3. the computation of the nonlinear weights

B d e — O
(OSC[Pi] + €)* g 2.

yields o > ak and, after the renormalization,

Qg

wp~1 while Vk#k:we=0

so that R =~ P, which is not oscillatory.



Accuracy of WENO-like reconstructions

Assume that the stencils are chosen such that
|Popt(X) — u(X)| = O(AxCT) and  |Py(X) — u(X)| = O(AxETT)

CWENO(Popt; Pr,- -, Prm) = 3 wiPk # 3, diPic = Popt

The reconstruction error can be written as

u(X) = R(X) = (u(X) = Pope(X)) + D (dk — wi) (Pu(X) — u(X))
' —_—————
—O(AxCH)? O(AxC+L) O(AxEH)

Accuracy on smooth data depends on

di — wi = O(AxC7E)




Comparison with WENO

given X € cell : Popi (X Z di(X)Pr (% (WENO)
M
Vx € cell : Pope(x) = do Po(x)+ Y diPi(x) (CWENO)
In CWENO:

v di need not be x-dependent

v dj always exist (trivially)

v dy can be chosen independently of the mesh

v/ compute wy once per cell, not once per reconstruction point

X Popt must be explicitly computed

ﬁ Cravero, Puppo, M.S., Visconti Math. Comp. (2018)
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CWENOZ reconstruction

M
Vx € cell : Pope(x) = do Po(x) + Y _ diPi(x) (linear)
k=1
s s
¢
o T
= R I —
YitSa,  © + (OSC[P,-]+5)
M
Vx € cell 1 R(x) = wo Po(x) + Z wi Pk (x) (nonlinear)
k=1

M
In CWENOZ: 7 = AOSC[Popt] + > AOSC[Py]
k=1

| @ Cravero, M.S., Visconti SINUM (2019)
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Example . :"r .

® Popt € Po(x,y) on the central 3 x 3 stencil . )

® Pyne € P1(x,y) on the 2 x 2 North-East sub-stencil .

® Pse, Pnw, Psw € Pi(x, y) similarly on 2 x 2 sub-stencils
Ona2d unlform Carte5|an grid with Ax = Ay = h,

OSC[PNE] (u +u ) + ( Us Usesc guxuxy %uyuxy uyuyy)h + O(h4)
OSC[P wl = (u +u ) ( Uy Uy %u Uy %uyuxy uyuyy)h —|—O(h4)
OSC[PS:-)] (v + }2,)h2 (+uxtiex— S Uyt +3uy Uy uyuy, ) B + O(HY)
OSC[Pg/%/] (uf + §)h2 (Ut Stxthy Uyt uyty, ) B + O(h4)
OSC[Popt] = (1 + uy)h? O(h*)

In general, Y " A =0, = |7 = \OSC[Pape] + . MOSCIP(1),] = O(H?)

k=0
but the symmetries allow an even better definition of 7:

7 = OSC[P{2] + OSC[P\),] + OSCIPY] + OSC[PL)),] — 40SC[Popt] = O(h*)



Taylor expansions of multidimensional OSC
Using the multi-index notation 8 = (f1, ..., 84),

0SClq] = Y Az /Q (954(%))2dx.
1BI>1 0

On smooth data, independently on the mesh:

Proposition

Let S be a stencil including g and let g(X) be a polynomial with
deg q(X) > g approximating a regular function u(X), then
0SClq] = (¥(q), C¥(q)) = B + Rld]
® (C dependson S

« Rlq] = o(By)
® B, depends on g but not on g(X) (and thus not on S).

ﬁ Cravero, M.S., Visconti SINUM (2019) @
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Accuracy results
= Assume that
® Pi(X),...,Pu(X) € Py and Popt(X) € P in the CWENOZ scheme
® g>GJ/2
... (technical), T-dependent, sufficient conditions on €, { so that, on
smooth data, the CWENQOZ scheme achieves the optimal order G + 1.

Corollaries

® can always find £, e for optimal convergence

® in any case, the smaller is 7, the smaller € and smaller £ are needed
to achieve optimal convergence.

From before:
1. always take 7 = Zk>0 AkOSC[Px] with Zk A =0

2. if possible, optimize your choice of Ay for your grid/stencils

/A @ Cravero, M.S., Visconti SINUM (2019)
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Uniform grid reconstructions
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CWENOZ optimal 7 in 1D (uniform grids)

Let /x = OSC[Py] and Iy = OSC[Popt]:
CWENOZ3 VvVt e R :
73 = |th + th — 2tlh| = O(AX4)
instead of 73 = O(Ax>) without using /.
CWENOZ5 vVt e R:
s = |th + 4th + tl — 6tl| = O(Ax®)

instead of 75 = O(Ax®) without using .

higher orders the optimal definition for WENOZ is also optimal for
CWENOZ.
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Is CWENOZ

Error (norm-1)
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Jiang-Shu linear transport test with CWENOZ5

Jiang-Shu test - Order 5 on 400 cells
T T T T
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A 1D Euler computation

p(x)

Shock-acoustic wave interaction - Order 3 on 800 cells
T T T T T T

Exact
—— CWENO3
— ¥ ~CWENOZDB3
—6—CWENOZ3I=1 = Ax?
e=Aax®
—© “CWENOZ31=2 = Ax?
~ 5 -CWENOZ3|=2 = Ax®
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“Adaptive order” WENO

® we have been able to include, in a reconstruction with target order G,
polynomials of degree at least G/2.

® vet, it would be beneficial to include e.g. a P in a CWENO?7. ..

Existing “adaptive order” WENO
@ are really hierarchic CWENO or hierarchic CWENQOZ
¢ example WAO(7,5,3) by Balsara, Garain, Shu (2016)

CWENOZ (CWENOZ (P P ,); CWENOZ (P, pg?;g))

@® Hierarchic = multiple nonlinear weights computations

10



CWENO(Z) with high degree gap

Let us consider on (or more) polynomials with very low degree:

M
CWENOZ(Popt; P1, ..., Ppi Q) = woPo + Y wicPk +wQ
i=1

where
1

M
d_O Popt_zdipi_éQ

i=1

Po =

and
degPopt = 2g degPy > g degQ=v<g

Accuracy on smooth data depends on
dk — wx = O(Ax€78) 6 —w=O(Ax*77)

Theorem [MS, Visconti, arXiv: 1910.03559]

@ Optimal convergence with one single non-linear weight
{="* computation can be achieved if § = O(Ax5™7).
20
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Lax shock tube with CWZ(7,5,3) and WENO — AO

Core i7-6600U © 2.60GHz Core i3-2100T © 2.50GHz
Cells | CWZ753 | WAO753 | ARBO753 | CWZ753 | WAO753 | ARBO753
200 3.108 s +10.15% | +16.04% 10.82 s +9.61% +11.67%
400 12.11 s +13.81% | +15.31% 43 s +9.00% +10.32%
800 4792 s +13.16% | +19.70% 172.2 s +9.22% +9.93%
» ‘L;l){ L(N.‘ zoom rarefaction
JF =

5-109.1045-102 0.1 011 0.1 0.12

z

zoom density peak
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[M M.S., Visconti arxiv:1910.03559
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Open-source implementation

clawldArena

* Downloadable! from zenodo.org
DOI 10.5281/zenodo.2641724

e GPL licence
® Developed with numerical experimentation in mind:
> C++ implementation with very few required libraries
- choose conservation law at compile time
- choose any combination of reconstruction, timestepper, numerical flux,
well-balancing, discretization parameters, etc at run-time

9 "The next release will contain also the “adaptive order CWENOZ" ocs



Forward-facing step at t = 2.4 with 1M dofs

CWZ3
Density
6.557
E4.926
E3.295
E] .664
0.033
CW3

@ Cravero, M.S., Visconti SINUM (2019)
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Unstructured, AMR and well-balanced computations



F
8
8
=

Attractive features of CWENQOZ

© linear coefficients di are not accuracy-bound (and always exist)

- easy to apply to unstructured and AMR meshes
- no need to employ dimensional splitting

© one computation of nonlinear weights wy and
one polynomial evaluation per reconstruction point
(vs early polynomial evaluation and one wy computations per
reconstruction point)
- better suited if many reconstruction points per cells are employed
(even on uniform grids)
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2D and 3D reconstructions for simplicial meshes
e CWENO type
® one large central stencil for a polynomial of degree > 2
e three/four directionally biased stencils for ; polynomials
® finite volume schemes, ALE framework

® also employed as a-posteriori subcell limiter for DG

ﬁ Dumbser, Boscheri, M.S., Russo J. Sci. Comput., 2017
@ Boscheri, M.S., Dumbser Comm. Comput. Phys., 2019




CWENO3 in quad-tree AMR

® Opt G ]P)2(X7y) ° o\\‘o o \
.Pla"'7P4€]Pl(Xay) ° g.

with the depicted stencils

centration
-5.226e+0Q

. 3.9448

=2.6632

| 3
Al

3815

@ M.S., Coco, Russo J. Sci. Comput., 2016
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High order accurate shallow water computations

ht+qX:0

q discharge
gt + (¢°/h + gh®)x = —ghZ,

h  water thickness {
Z bottom topography

® useful schemes are well-balanced,
i.e. preserve the steady states at machine precision
(or at least the still-water ones)
® the approach to well-balancing based on the hydrostatic reconstruction
and the Richardson extrapolation of the trapezoidal rule requires
order 3 5 7 9
inner rec. points 1 3 7 15

ﬁ Cravero, Puppo, M.S., Visconti Math. of Comp., 2018
ﬁ Cravero, M.S., Visconti SINUM (2019)
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Shallow water equations using CWENO(Z)

Convergence test on a smooth solution

a
8
®
ES
g
E

CW3 CWZ3 CW5 CWZ5
N error rate error rate error rate error rate
32 9.37e-03 6.65e-03 4.01e-04 2.58e-04

64 1.44e-03 2.70 7.48e-04 3.15 1.73e-05 4.54 9.72e-06 4.73
128 1.56e-04 3.21 6.40e-05 3.55 5.74e-07 4.91 3.15e-07 4.95
256 1.57e-05 331 7.17e-06 3.16 1.81e-08 4.98 9.99e-09 4.98
512 1.83e-06 3.10 8.80e-07 3.03 5.70e-10 4.99 3.13e-10 5.00

1024 2.29e-07 3.00 1.10e-07 3.00 1.79%e-11 5.00 9.80e-12 5.00

Ccw7 cwzr CW9 CWZ9
N error rate error rate error rate error rate
16 1.30e-03 1.63e-03 7.02e-04 6.88e-04

32 7.25e-05 4.17 6.22e-05 4.71 2.82e-05 4.64 2.38e-05 4.85
64 6.70e-07 6.76 7.44e-07 6.39 1.22e-07 7.85 1.17e-07 7.67
128 5.02e-09 7.06 6.68e-09 6.80 3.44e-10 8.47 3.15e-10 8.54
256 3.91e-11 7.00 5.37e-11 6.96 7.43e-13 8.86 6.65e-13 8.89
512 3.07e-13 6.99 4.25e-13 6.98

Well-balancing test (lake at rest with random bottom)

‘ A+ 2) 0o ‘ llalloo ‘
N=100 N=200 N=400 N=800 N=100 N=200 N=400 N=800
CW9 8.88e-16 1.33e-15 2.22e-15 2.66e-15 7.44e-16 1.43e-15 1.82e-15 2.51e-15
CW7 1.93e-15 3.31e-15 7.13e-15 1.62e-14 2.12e-15 3.05e-15 7.15e-15 1.64e-14
CW5 1.26e-15 2.59e-15 5.33e-15 1.00e-14 1.74e-15 3.08e-15 5.32e-15 9.94e-15
Ccw3 7.61le-16 1.90e-15 3.27e-15 5.48e-15 1.90e-15 3.56e-15 4.78e-15 7.66e-15

- See Puppo, MS - J Sci Comput (2016) for non-uniform grid examples



SWE: well-balancing in 2D at order 3 and 4

e CWENO reconstruction of order 3 \
e novel CWENO reconstruction of order \
4 with stencils as shown: “‘
> Popt S P3(X)y)
> Plu"'7P4 EIP)1(X7y)
or
Pla"'aP4 €P2(X7y)

12

@ Castro, M.S. Int. J. Numer. Meth. Fluids, 2018
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Tohoku tsunami simulation

4%

Dart: 21413

—— Free surface P3/P2
— Free surface data

30

2

Dart: 21418

—— Free surface P3/P2
— Free surface data
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Euler equation with gravity (1D and 2D)

® the well-balancing technique requires
high order accurate pressure averages:

= 1 = 2
P = Qo (1~ D(E) — 2P|
> @ is a gaussian quadrature rule
> need total energy Ej(x), density pj(x) and velocity vj(x)
at quadrature nodes of Q

® special well-balanced quadrature
(Gaussian x) Richardson extrapolation of trapezoidal

= very many reconstruction points per cell

= CWENO reconstructions were employed for efficiency

@ Klingenberg, Puppo, M.S. SIAM J. Sci. Comput., 2019



Summary

CWENO and CWENOZ family of reconstructions

® much more versatile than WENO

® multi-D, AMR, unstructured, many reconstruction points, ...

® may include very low order candidates to better control spurious
oscillations

CWENOZ reconstructions
® better accuracy than CWENO on smooth flows

® on par with CWENO on discontinuous flows

® now we have the optimal definition of 7

Note: present results can be used to analyze all reconstructions based on
the “CWENO master equation”, like the “WENO" reconstructions by Zhu,
Qiu, Balsara and collaborators.
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Thank you for your kind attention!

Matteo Semplice
matteo.semplice@uninsubria.it

Dipartimento di Scienza e Alta Tecnologia
Universita dell’InsubriaVia Valleggio, 11
20100 Como (ltaly)
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