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Many-particle systems

Many-particle systems

N indistinguishable interacting particles in Ω = Rd etc.
Xi

t ∈ Ω: location of the ith particle, i = 1, . . . ,N.
Xi

0 are i.i.d random variables with law ν0 ∈ P(Rd).

Xi
t Xj

t

N−1∇W(Xi
t − Xj

t)

Bj
tBi

t

−∇V(Xi
t) −∇V(Xj

t)

dXi
t = −∇V(Xi

t)−
1
N

N∑
i 6=j

∇W(Xi
t − Xj

t) dt +
√

2β−1 dBi
t ,

where V,W ∈ C2(Rd), 1-periodic, even, Bi
t independent Wiener processes.
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Applications

Applications

Some applications:
Molecules of a gas
Opinions of individuals
Collective motion of agents
Particles in a granular medium
Nonlinear synchronizing oscillators
Liquid crystals

The Kuramoto model: W(x) = −
√

2
L cos

(
2π x

L

)
with Ω = S (the quotiented process)
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Applications

The Fokker–Planck equation

Hamiltonian: HN(x1, . . . , xN) := 1
2N

∑
i,j W(xi − xj) +

∑
i V(xi)

Associated Fokker–Planck/forward Kolmogorov equation for the law
νN = Law(X1

t , . . . ,X
N
t ):{

∂tνN = β−1∆νN +∇ · (∇HNνN), (t, x) ∈ (0,∞)× (Rd)N

νN(0) = νN
0 = ν⊗N

0 ∈ P((Rd)N)

Initial data i.i.d.
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Aggregate behaviour: the mean-field limit

Aggregate behaviour: the mean-field limit

Consider the empirical measure : ν(N) := 1
N

∑N
i=1 δXi

t
∈ P(Rd). Easier to study E

[
ν(N)

]
:

Theorem (The mean-field limit/propagation of chaos)

As N →∞, E
[
ν(N)

]
converges in weak-? to ν(t, dx) = ν(t, x) dx, which solves (weakly):

∂tν = β−1∆ν +∇ · (ν(∇W ? ν +∇V)) (McKean–Vlasov equation)

with initial datum ν0 ∈ P(Rd).

Another interpretation: νN → ν⊗N as N →∞.

1 The McKean–Vlasov equation:

1 Classical: McKean ’66, Oelschläger ’84, Gärtner ’88, Sznitman ’91 (coupling)
2 Rates of convergence: Sznitman ’91, Mouhot–Mischler ’13, Hauray–Mischler ’14,

Eberle et al. ’17 (coupling)
3 Singular interactions: Jabin–Wang ’17, Serfaty ’18
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The diffusive limit ε → 0

The diffusive limit ε→ 0

We place ourselves in the setting:

dXi,ε
t = −∇V(ε−1Xi,ε

t )−
1
N

N∑
i6=j

∇W(ε−1(Xi,ε
t − Xj,ε

t )) dt +
√

2β−1 dBi
t

with W,V chosen to be 1-periodic.
Let ρε,N = Law(X1,ε

t , . . . ,XN,ε
t ) and consider the diffusive rescaling

ρε,N(x, t) := ε−NdνN(ε−1x, ε−2t) ∈ P((Rd)N) .

Interpretation: zooming out in space and going forward in time.

Can pass to the limit:
Bensoussan–Lions–Papanicolaou ’78 (PDE approach)

Kipnis–Varadhan ’86 (Probabilistic approach)
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The diffusive limit ε → 0

The quotiented N-particle system

dẊi
t = −∇V(Ẋi

t)−
1
N

N∑
i 6=j

∇W(Ẋi
t − Ẋj

t) dt +
√

2β−1 dḂi
t ,

Ẋi
t ∈ Td and Ḃi

t are Td-valued Wiener processes.
This is a reversible, ergodic, diffusion process with a unique N-particle invariant measure Gibbs
measure

MN(x) =
e−HN(x)∫

TdN
e−HN(y) dy

,

and the law ν̃N evolves according to{
∂tν̃N = β−1∆ν̃N +∇ · (∇HN ν̃N), (t, x) ∈ (0,∞)× (Td)N

ν̃N(0) = ν̃N
0 :=

∑
k∈Zd νN

0 (k + x) ∈ P((Td)N)

Periodic rearrangement of νN .
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Ẋi
t ∈ Td and Ḃi
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The diffusive limit ε → 0

ε→ 0

Theorem (The diffusive limit)

Consider ρε,N the solution to the rescaled Fokker–Planck equation with initial data
ρε,N0 ∈ P((Rd)N). Then, for all t > 0 the limit

ρN,∗(t) = lim
ε→0

ρε,N(t)

exists. Furthermore, the curve of measures ρN,∗ : [0,∞)→ Psym((Rd)N) satisfies the heat
equation

∂tρ
N,∗ = ∇ · (Aeff,N∇ρN,∗) ,

with initial data ρN,∗(0) = limε→0 ρ
ε,N
0 and where the covariance matrix is given by the

Kipnis–Varadhan formula

Aeff,N = β−1
∫
(Td)N

(I +∇ΨN(y)) MN(y) dy ,

with MN the Gibbs measure of the quotiented N particle system and ΨN :
(
Td
)N →

(
Rd
)N the

unique mean zero solution to the associated corrector problem

∇ · (MN∇ΨN) = −∇MN .

The diffusive limit is affected by the properties of the quotiented system on the torus!
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The diffusive limit ε → 0

N → ∞ + ε→ 0?

Question: limN→∞ ρN,∗ =?.
We already know ρε,N → ρε,⊗N , N →∞ where ρε solves the rescaled McKean–Vlasov
equation. Another question : limε→0 ρ

ε,⊗N →?.

ρε,N ρN,∗

ε→ 0

ρε,⊗N

N →∞

?

N →∞

ε→ 0

Theorem (Delgadino–G–Pavliotis ’20)

Assume that the quotiented system has a phase transition at some βc. Then for β < βc

lim
N→∞

lim
ε→0

ρε,N = lim
ε→0

lim
N→∞

ρε,N .

On the other hand if β > βc, there exists initial data ρε,⊗N
0 such that

lim
N→∞

lim
ε→0

ρε,N 6= lim
ε→0

lim
N→∞

ρε,N .
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The spacePsym((Rd)N) and its limit

The space Psym((Rd)N)

Due to the indistinguishability assumption on the particles their joint law is invariant under
relabelling of the particles. In probability this is known as exchangeability, i.e., the law
νN ∈ Psym

(
(Rd)N

)
.

Question: Given some {ρN}n∈N ∈ Psym((Rd)N) what does lim
N→∞

ρN mean?

Definition (The limit of of Psym((Rd)N))

Given a family {ρN}N∈N such that ρN ∈ Psym((Rd)N) we say that

ρN → X ∈ P(P(Rd)) , as N →∞ ,

if for every n ∈ N we have

ρN
n ⇀

∗ Xn ∈ Psym
(
(Rd)n) , as N →∞ ,

where Xn ∈ Psym
(
(Rd)n

)
is defined by duality as follows

〈Xn, ϕ〉 =

∫
P(P(Rd))

∫
ϕ dρ⊗n dX(ρ) ,

for all ϕ ∈ Cb((Rd)n) and ρN
n =

∫
(Rd)N−n ρ

N dxN−n+1...dxN ∈ Psym
(
(Rd)n

)
is the nth

marginal of ρN
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The spacePsym((Rd)N) and its limit

The space Psym((Rd)N)

Another interpretation:

Definition (Empirical measure)

Given some ρN ∈ Psym((Rd)N) we define its empirical measure ρ̂N ∈ P(P(Rd)) as follows:

ρ̂N := TN#ρN ,

where TN : (Rd)N → P(Rd) is the measurable mapping (x1, . . . , xN) 7→ N−1∑N
i=1 δxi .

Futhermore, given a family {ρN}N∈N, we have that ρN → X ∈ P(P(Rd)) if and only if
ρ̂N ⇀∗ X, i.e tested against Cb(P(Rd)).

Lemma (de Finneti–Hewitt–Savage)

Given a sequence {ρN}N∈N, such that ρN ∈ Psym
(
(Rd)N

)
for every N, assume that the

sequence of the first marginals {ρN
1 }N∈N ∈ P(Rd) is tight. Then, up to subsequence, not

relabelled, there exists X ∈ P(P(Rd)) such that ρN → X.

Conclusion: The limit of the space Psym((Rd)N) is P(P(Rd)). Similarly the limit of
Psym((Td)N) is P(P(Td)).
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Free energies, Γ-convergence, and gradient flows

Gradient flows

N-particle free energy, EN : Psym((Rd)N)→ (−∞,+∞]:

EN [ρN ] :=
1
N

(
β−1

∫
(Rd)N

ρN log ρN dx +

∫
(Rd)N

HN(x) dρN(x)

)
,

νN is a gradient flow of EN w.r.t rescaled 2-Wasserstein distance 1√
N

d2 on Psym((Rd)N) (cf.
Jordan–Kinderlehrer–Otto ’98, Ambrosio–Gigli-Savare ’08).
Mean field free energy EMF : P(Rd)→ (−∞,+∞]:

EMF[ρ] = β−1
∫
Rd
ρ log(ρ) dx +

∫
Rd

V(x) dρ(x) +
1
2

∫∫
Rd×Rd

W((x− y)) dρ(y) dρ(x).

ν is a gradient flow of EMF w.r.t 2-Wasserstein distance d2 on P(Rd).

Lemma (Messer–Spohn ’82)

The N-particle free energy EN Γ-converges to E∞ : P(P(Rd))→ (−∞,+∞], where

E∞[X] =

∫
P(Rd)

EMF[ρ] dX(ρ) .
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Free energies, Γ-convergence, and gradient flows

Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: ẼN , ẼMF with particles living in
Td . We consider the periodic N-particle energy ẼN and the periodic mean field energy ẼMF .
Then:

Lemma (Messer–Spohn ’82)

The N-particle free energy ẼN Γ-converges to Ẽ∞ : P(P(Td))→ (−∞,+∞], where

Ẽ∞[X] =

∫
P(Td)

ẼMF[ρ] dX(ν̃) .

As a consequence, if {MN}N∈N is the sequence of minimisers of ẼN (namely the sequence of
Gibbs measures), then any accumulation point X ∈ P(P(Td)) of this sequence is a minimiser
of Ẽ∞.

Theorem (Mean field limit, Carrillo–Delgadino–Pavliotis ’19)

Fix some t > 0, then,
lim

N→∞
νN(t) = X ∈ P(P(Rd))

Furthermore, we have that the curve X : [0,∞)→ P(P(Rd)) is a gradient flow of E∞ under
the 2-Wasserstein metric D2.
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Td . We consider the periodic N-particle energy ẼN and the periodic mean field energy ẼMF .
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Gibbs measures), then any accumulation point X ∈ P(P(Td)) of this sequence is a minimiser
of Ẽ∞.
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of Ẽ∞.

Theorem (Mean field limit, Carrillo–Delgadino–Pavliotis ’19)

Fix some t > 0, then,
lim

N→∞
νN(t) = X ∈ P(P(Rd))

Furthermore, we have that the curve X : [0,∞)→ P(P(Rd)) is a gradient flow of E∞ under
the 2-Wasserstein metric D2.



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Free energies, Γ-convergence, and gradient flows

Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: ẼN , ẼMF with particles living in
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The quotiented process and phase transitions

Phase transitions

Consider the periodic McKean–Vlasov equation:{
∂tν̃ = β−1∆ν̃ +∇ · (ν̃(∇W ? ν̃ +∇V)) (t, x) ∈ (0,∞)× Td

ν̃(0) = ν̃0 =
∑

k∈Zd ν0(k + x) .

Question: What is a phase transition?

Definition (Phase transition)

The periodic mean field McKean–Vlasov equation is said to undergo a phase transition at some
0 < βc <∞ if

1 For β < βc, there exists a unique steady state.

2 For β > βc, there exist at least two steady states.

The temperature βc is referred to as the point of phase transition or the critical temperature.

Example (noisy Kuramoto model)

Let d = 1, W = − cos(2πx), and V = 0. Then for β ≤ 2, ν̃∞ ≡ 1 is the unique minimiser of
ẼMF and steady state. For β > 2, the steady states are given by ν̃∞ ≡ 1 and the family of
translates of some measure ν̃min

β . Moreover for β > 2, ν̃min
β (and its translates) are the only

minimisers of the periodic mean field energy ẼMF . Thus, βc = 2 is the critical temperature.

see Carrillo–G–Pavliotis–Schlichting ’19 for a detailed study.
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β (and its translates) are the only

minimisers of the periodic mean field energy ẼMF . Thus, βc = 2 is the critical temperature.

see Carrillo–G–Pavliotis–Schlichting ’19 for a detailed study.
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Phase transitions
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Summary

ρε,N νN

εNdρε,N(ε2s, εy)

ε−NdνN(ε−2t, ε−1x)

ρε,⊗N

N → ∞

ν⊗N

N → ∞

εdρε(ε2s, εy)

ε−dν̃(ε−2t, ε−1x)

ν̃N

P.R.

ν̃⊗N

N → ∞

P.R.

Figure: A schematic of the notation. The P.R. denotes periodic rearrangement.
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Summary

ρε,N(t) ρN,∗(t)

ε→ 0

Xε(t)

N → ∞
X2(t)

X1(t)

N → ∞

ε→ 0

Question: Is X1 = X2?
Non-commutativity conjectured by Gomes–Pavliotis ’18 based on numerics in
slightly different setting.
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The limit N → ∞ followed by ε → 0

N → ∞ then ε→ 0

Theorem (Delgadino–G–Pavliotis ’20)

Consider the set of initial data given by {ρε0}ε>0 ⊂ P(Rd), and consider the periodic
rearrangement at scale ε > 0 , i.e.

ν̃ε0 (A) = εd
∑
k∈Zd

ρε0 (ε(A + k)) for ε > 0 .

Assume that there exists C > 0, p > 1 and ν̃∗ ∈ P(Td) such that ν̃ε(t), with initial data
ν̃ε0 (x), satisfies

sup
ε>0

d2
2(ν̃ε(t), ν̃∗) ≤ Ct−p .

Then,
lim
ε→0

d2
2(Sεt ρ

ε
0 , S
∗
t ρ
∗
0 ) = 0,

where Sεt is the solution semigroup associated to the rescaled PDE on Rd , ρ∗0 ∈ P(Rd) is the
weak-∗ limit of ρε0 , and S∗t is the solution semigroup of the heat equation

∂tρ = ∇ · (Aeff
∗ ∇ρ),

where the covariance matrix

Aeff
∗ = β−1

∫
Td

(I +∇Ψ∗(y)) dν̃∗(y) .
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The limit N → ∞ followed by ε → 0

N → ∞ then ε→ 0

Theorem (Delgadino–G–Pavliotis ’20)

Ψ∗ : Td → Rd is the solution to the associated corrector problem

∇ · (ν̃∗∇Ψ∗) = −∇ν̃∗.

Furthermore, assume that Xε(t) is the mean field limit and that limN→∞ ρε,N0 = Xε0 = δρε0 .
Then it holds that:

X1(t) = lim
ε→0

lim
N→∞

ρε,N = lim
ε→0

X(t)ε = S∗t #X0 ,

where X0 = δρ∗0
.
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The limit ε → 0 followed by N → ∞

ε→ 0 then N → ∞

Theorem (Delgadino–G–Pavliotis ’20)

Assume that the periodic mean field energy ẼMF admits a unique minimiser ν̃min, then we have
that ρN,∗ satisfies, for any fixed t > 0,

lim
N→∞

ρN,∗(t) = X2(t) = Smin
t #X0,

where X0 ∈ P(P(Rd)) is the limit of ρN,∗(0), and Smin
t : P(Rd)→ P(Rd) is the solution

semigroup of the heat equation
∂tρ = ∇ · (Aeff

min∇ρ),

where the covariance matrix

Aeff
min = β−1

∫
Td

(I +∇Ψmin(y)) dν̃min(y) ,

with Ψmin : Td → Rd , the solution to the associated corrector problem

∇ · (ν̃min∇Ψmin) = −∇ν̃min .

It follows then, that for any fixed t > 0, the solution ρε,N(t) satisfies

X2(t) = lim
N→∞

lim
ε→0

ρε,N(t) = lim
N→∞

ρN,∗(t) = Smin
t #X0 .



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Non-commutativity

Non-commutativity

The limit X1(t) sees the long time behaviour of ν̃ and thus steady states.

The limit X2(t) sees minimisers of ẼMF .

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with V = −η cos(2πx),W = − cos(2πx) with η ∈ (0, 1). Then the mean
field model on the torus has a phase transition at some 0 < βc <∞. It has at least two steady
states for β > βc, ν̃∗ and ν̃min the minimiser of ẼMF .

Additionally, for β > βc and ρε,N0 = (ρε0 )⊗N such that ν̃∗ =
∑

k∈Zd εdρε0 (εx) we have that

lim
ε→0

lim
N→∞

ρε,N(t) = X1(t) = S∗t #X0 6= Smin
t #X0 = X2(t) = lim

N→∞
lim
ε→0

ρε,N(t) .
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Additionally, for β > βc and ρε,N0 = (ρε0 )⊗N such that ν̃∗ =
∑

k∈Zd εdρε0 (εx) we have that

lim
ε→0

lim
N→∞

ρε,N(t) = X1(t) = S∗t #X0 6= Smin
t #X0 = X2(t) = lim

N→∞
lim
ε→0

ρε,N(t) .



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Non-commutativity

Sketch of proof for N → ∞ followed by ε→ 0

Pass to the mean field limit (using CDP’19) to obtain Xε(t).

For the associated mean field SDE on the torus consider a moving corrector problem:

∇ · (µ̃ε(t)∇χ) = −∇(µ̃ε) , µ̃ε(t) ∼ exp(−β(W ? ν̃(t)− V))

and obtain time-dependent estimates:

‖χi‖Cm(Td) . 1

‖∂tχi‖Cm(Td) .
k∑

m=1

dm
2 (ν̃(t), ν̃∗) .

Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of
the martingale CLT.

Pass to the limit as ε→ 0.



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Non-commutativity

Sketch of proof for N → ∞ followed by ε→ 0

Pass to the mean field limit (using CDP’19) to obtain Xε(t).

For the associated mean field SDE on the torus consider a moving corrector problem:

∇ · (µ̃ε(t)∇χ) = −∇(µ̃ε) , µ̃ε(t) ∼ exp(−β(W ? ν̃(t)− V))

and obtain time-dependent estimates:

‖χi‖Cm(Td) . 1

‖∂tχi‖Cm(Td) .
k∑

m=1

dm
2 (ν̃(t), ν̃∗) .

Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of
the martingale CLT.

Pass to the limit as ε→ 0.



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Non-commutativity

Sketch of proof for N → ∞ followed by ε→ 0

Pass to the mean field limit (using CDP’19) to obtain Xε(t).

For the associated mean field SDE on the torus consider a moving corrector problem:

∇ · (µ̃ε(t)∇χ) = −∇(µ̃ε) , µ̃ε(t) ∼ exp(−β(W ? ν̃(t)− V))

and obtain time-dependent estimates:

‖χi‖Cm(Td) . 1

‖∂tχi‖Cm(Td) .
k∑

m=1

dm
2 (ν̃(t), ν̃∗) .

Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of
the martingale CLT.

Pass to the limit as ε→ 0.



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Non-commutativity

Sketch of proof for N → ∞ followed by ε→ 0

Pass to the mean field limit (using CDP’19) to obtain Xε(t).

For the associated mean field SDE on the torus consider a moving corrector problem:

∇ · (µ̃ε(t)∇χ) = −∇(µ̃ε) , µ̃ε(t) ∼ exp(−β(W ? ν̃(t)− V))

and obtain time-dependent estimates:

‖χi‖Cm(Td) . 1

‖∂tχi‖Cm(Td) .
k∑

m=1

dm
2 (ν̃(t), ν̃∗) .

Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of
the martingale CLT.

Pass to the limit as ε→ 0.



Problems & Motivation Two distinguished limits Qualitative properties The joint limits Conclusions

Non-commutativity

Sketch of proof for ε→ 0 followed by N → ∞

Need to pass to the limit in the diffusion matrix Aeff,N:

Aeff,N = β−1
∫
(Td)N

(I +∇ΨN(y)) MN(y) dy .

Key idea MN ≈ MN−1(MN)1 as N →∞ + natural uniform in N estimate on ΨN :∫
(Td)N

(I +∇ΨN(y)) (MN −MN−1(MN)1) dy

=

∫
(Td)N

(I +∇ΨN(y))

(
MN

MN−1
− (MN)1

)
MN−1 dy

≤
∥∥I +∇ΨN∥∥

L2(MN−1)

∥∥∥∥( MN

MN−1
− (MN)1

)∥∥∥∥
L2(MN−1)

.

The function MN/(MN−1) is symmetric in all but one of its variables. Use techniques due
to Lions pass to N →∞ on C(P(Td)). Similarly pass to N →∞ to obtain
MN−1 → δν̃min ∈ P(P(T)d).

Enough information to pass to the limit in the PDE.
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