The mean field and diffusive limits for weakly interacting diffusions

RISHABH S GVALANI

JOINT WORK WITH: M. G. DELGADINO (PUC-RIO), G. A. PAVLIOTIS (ICL)

IMPERIAL COLLEGE LONDON

PDE-MANS 2020, Universidad de Granada, January 2020

> Imperial College London

Outline

- Problems & Motivation
 - Many-particle systems
 - Applications
- 2 Two distinguished limits
 - Aggregate behaviour: the mean-field limit
 - The diffusive limit $\varepsilon \to 0$
- Qualitative properties
 - The space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ and its limit
 - \bullet Free energies, Γ -convergence, and gradient flows
 - The quotiented process and phase transitions
 - Summary
- The joint limits
 - The limit $N \to \infty$ followed by $\varepsilon \to 0$
 - The limit $\varepsilon \to 0$ followed by $N \to \infty$
 - Non-commutativity
- Conclusions

000

Many-particle systems

N indistinguishable interacting particles in $\Omega = \mathbb{R}^d$ etc.

$$B_{t}^{i} \qquad \qquad B_{t}^{j}$$

$$X_{t}^{i} \stackrel{N^{-1}\nabla W(X_{t}^{i} - X_{t}^{j})}{\longrightarrow} X_{t}^{j}$$

$$-\nabla V(X_{t}^{i}) \qquad -\nabla V(X_{t}^{i})$$

$$\mathrm{d}X_t^i = -\nabla V(X_t^i) - \frac{1}{N} \sum_{i \neq i}^N \nabla W(X_t^i - X_t^i) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, dB_t^i,$$

Problems & Motivation 000 Many-particle systems

N indistinguishable interacting particles in $\Omega = \mathbb{R}^d$ etc.

 $X_t^i \in \Omega$: location of the i^{th} particle, $i = 1, \dots, N$.

 X_0^i are i.i.d random variables with law $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.

$$B_{t}^{i} \qquad B_{t}^{j}$$

$$X_{t}^{i} \stackrel{N^{-1}\nabla W(X_{t}^{i} - X_{t}^{j})}{\longrightarrow} X_{t}^{j}$$

$$-\nabla V(X_{t}^{i}) \qquad -\nabla V(X_{t}^{j})$$

$$dX_t^i = -\nabla V(X_t^i) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(X_t^i - X_t^j) dt + \sqrt{2\beta^{-1}} dB_t^i,$$

Problems & Motivation Many-particle systems

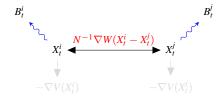
N indistinguishable interacting particles in $\Omega = \mathbb{R}^d$ etc. $X_t^i \in \Omega$: location of the i^{th} particle, $i = 1, \dots, N$. X_0^i are i.i.d random variables with law $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.

$$\begin{array}{ccc}
B_t^i & & B_t^i \\
X_t^i & & X_t^i & X_t^j \\
\downarrow & & & X_t^j \\
-\nabla V(X_t^i) & & -\nabla V(X_t^j)
\end{array}$$

$$\mathrm{d}X_t^i = -\nabla V(X_t^i) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(X_t^i - X_t^j) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, dB_t^i,$$

Problems & Motivation Many-particle systems

N indistinguishable interacting particles in $\Omega = \mathbb{R}^d$ etc. $X_t^i \in \Omega$: location of the i^{th} particle, $i = 1, \dots, N$. X_0^i are i.i.d random variables with law $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.

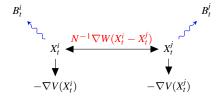


$$\mathrm{d}X_t^i = -\nabla V(X_t^i) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(X_t^i - X_t^j) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, dB_t^i,$$

Problems & Motivation Many-particle systems

Many-particle systems

N indistinguishable interacting particles in $\Omega = \mathbb{R}^d$ etc. $X_t^i \in \Omega$: location of the i^{th} particle, $i = 1, \dots, N$. X_0^i are i.i.d random variables with law $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.



$$\mathrm{d}X_t^i = -\nabla V(X_t^i) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(X_t^i - X_t^j) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, dB_t^i,$$

Many-particle systems

N indistinguishable interacting particles in $\Omega = \mathbb{R}^d$ etc. $X_t^i \in \Omega$: location of the i^{th} particle, $i = 1, \dots, N$. X_0^i are i.i.d random variables with law $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.

$$B_{t}^{i} \xrightarrow{N^{-1}\nabla W(X_{t}^{i} - X_{t}^{j})} X_{t}^{j}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$\mathrm{d}X_t^i = -\nabla V(X_t^i) - \frac{1}{N} \sum_{i \neq i}^N \nabla W(X_t^i - X_t^j) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, dB_t^i,$$

where $V, W \in C^2(\mathbb{R}^d)$, 1-periodic, even, B_t^i independent Wiener processes.

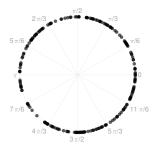
Applications

Problems & Motivation ○●○ Applications

Some applications:

- Molecules of a gas
- Opinions of individuals
- Collective motion of agents
- Particles in a granular medium
- Nonlinear synchronizing oscillators
- Liquid crystals

The Kuramoto model: $W(x) = -\sqrt{\frac{2}{L}}\cos\left(2\pi\frac{x}{L}\right)$ with $\Omega = \mathbb{S}$ (the quotiented process)



 $\beta < \beta_c$, no phase locking

 $\beta > \beta_c$, phase locking

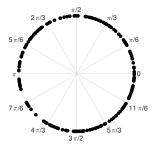
Applications

Problems & Motivation 000 Applications

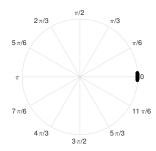
Some applications:

- Molecules of a gas
- Opinions of individuals
- Collective motion of agents
- Particles in a granular medium
- Nonlinear synchronizing oscillators
- Liquid crystals

The Kuramoto model: $W(x) = -\sqrt{\frac{2}{L}}\cos\left(2\pi\frac{x}{L}\right)$ with $\Omega = \mathbb{S}$ (the quotiented process)



 $\beta < \beta_c$, no phase locking



 $\beta > \beta_c$, phase locking

The Fokker-Planck equation

Problems & Motivation
○○
Applications

- Hamiltonian: $H^N(x_1,\ldots,x_N):=\frac{1}{2N}\sum_{i,j}W(x_i-x_j)+\sum_iV(x_i)$
- Associated Fokker–Planck/forward Kolmogorov equation for the law ν^N = Law(X¹₁,...,X^N_i):

$$\begin{cases} \partial_t \nu^N &= \beta^{-1} \Delta \nu^N + \nabla \cdot (\nabla H^N \nu^N), \quad (t, x) \in (0, \infty) \times (\mathbb{R}^d)^N \\ \nu^N(0) &= \nu_0^N = \nu_0^{\otimes N} \in \mathcal{P}((\mathbb{R}^d)^N) \end{cases}$$

Initial data i.i.d

The Fokker–Planck equation

Problems & Motivation 000 Applications

- Hamiltonian: $H^N(x_1,\ldots,x_N):=\frac{1}{2N}\sum_{i,j}W(x_i-x_j)+\sum_{i}V(x_i)$
- Associated Fokker–Planck/forward Kolmogorov equation for the law $\nu^N = \text{Law}(X_t^1, \dots, X_t^N)$:

$$\begin{cases} \partial_t \nu^N &= \beta^{-1} \Delta \nu^N + \nabla \cdot (\nabla H^N \nu^N), \quad (t,x) \in (0,\infty) \times (\mathbb{R}^d)^N \\ \nu^N(0) &= \nu_0^N = \nu_0^{\otimes N} \in \mathcal{P}((\mathbb{R}^d)^N) \end{cases}$$

The Fokker–Planck equation

Problems & Motivation
○○
Applications

- Hamiltonian: $H^N(x_1,\ldots,x_N) := \frac{1}{2N} \sum_{i,j} W(x_i-x_j) + \sum_i V(x_i)$
- Associated Fokker–Planck/forward Kolmogorov equation for the law $\nu^N = \text{Law}(X_1^1, \dots, X_r^N)$:

$$\begin{cases} \partial_t \nu^N &= \beta^{-1} \Delta \nu^N + \nabla \cdot (\nabla H^N \nu^N), \quad (t,x) \in (0,\infty) \times (\mathbb{R}^d)^N \\ \nu^N(0) &= \nu_0^N = \nu_0^{\otimes N} \in \mathcal{P}((\mathbb{R}^d)^N) \end{cases}$$

Initial data i.i.d.

Aggregate behaviour: the mean-field limit

Consider the empirical measure : $\nu^{(N)} := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i} \in \mathcal{P}(\mathbb{R}^d)$. Easier to study $\mathbb{E}\left[\nu^{(N)}\right]$:

Theorem (The mean-field limit/propagation of chaos

As
$$N \to \infty$$
, $\mathbb{E}\left[\nu^{(N)}\right]$ converges in weak-* to $\nu(t, dx) = \nu(t, x) dx$, which solves (weakly):

$$\partial_t \nu = \beta^{-1} \Delta \nu + \nabla \cdot (\nu(\nabla W \star \nu + \nabla V)) \qquad \text{(McKean-Vlasov equation)}$$

with initial datum $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$

Another interpretation: $\nu^N \to \nu^{\otimes N}$ as $N \to \infty$

- The McKean-Vlasov equation
 - ① Classical: McKean '66, Oelschläger '84, Gärtner '88, Sznitman '91 (coupling)
 - Rates of convergence: Sznitman '91, Mouhot–Mischler '13, Hauray–Mischler '14 Eberle et al. '17 (coupling)
 - 3 Singular interactions: Jabin–Wang '17, Serfaty '18

Consider the empirical measure : $\nu^{(N)}:=\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}\in \mathcal{P}(\mathbb{R}^d)$. Easier to study $\mathbb{E}\left[\nu^{(N)}\right]$:

Theorem (The mean-field limit/propagation of chaos)

As
$$N \to \infty$$
, $\mathbb{E}\left[\nu^{(N)}\right]$ converges in weak-* to $\nu(t, \mathrm{d}x) = \nu(t, x)\,\mathrm{d}x$, which solves (weakly):
$$\partial_t \nu = \beta^{-1} \Delta \nu + \nabla \cdot \left(\nu(\nabla W \star \nu + \nabla V)\right) \qquad \text{(McKean-Vlasov equation)}$$

with initial datum $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.

Another interpretation: $\nu^N \to \nu^{\otimes N}$ as $N \to \infty$.

- The McKean-Vlasov equation
 - Classical: McKean '66, Oelschläger '84, Gärtner '88, Sznitman '91 (coupling)
 - Rates of convergence: Sznitman '91, Mouhot–Mischler '13, Hauray–Mischler '14, Eberle et al. '17 (coupling)
 - 3 Singular interactions: Jabin-Wang '17, Serfaty '18

Consider the empirical measure : $\nu^{(N)}:=\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}\in \mathcal{P}(\mathbb{R}^d)$. Easier to study $\mathbb{E}\left[\nu^{(N)}\right]$:

Theorem (The mean-field limit/propagation of chaos)

As
$$N \to \infty$$
, $\mathbb{E}\left[\nu^{(N)}\right]$ converges in weak-* to $\nu(t, dx) = \nu(t, x) dx$, which solves (weakly):

$$\partial_t \nu = \beta^{-1} \Delta \nu + \nabla \cdot (\nu(\nabla W \star \nu + \nabla V)) \qquad \text{(McKean-Vlasov equation)}$$

with initial datum $\nu_0 \in \mathcal{P}(\mathbb{R}^d)$.

Another interpretation: $\nu^N \to \nu^{\otimes N}$ as $N \to \infty$.

- 1 The McKean-Vlasov equation:
 - Classical: McKean '66, Oelschläger '84, Gärtner '88, Sznitman '91 (coupling)
 - Rates of convergence: Sznitman '91, Mouhot–Mischler '13, Hauray–Mischler '14, Eberle et al. '17 (coupling)
 - Singular interactions: Jabin-Wang '17, Serfaty '18

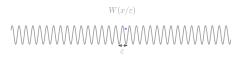
The diffusive limit $\varepsilon \to 0$

We place ourselves in the setting:

$$dX_t^{i,\varepsilon} = -\nabla V(\varepsilon^{-1}X_t^{i,\varepsilon}) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(\varepsilon^{-1}(X_t^{i,\varepsilon} - X_t^{j,\varepsilon})) dt + \sqrt{2\beta^{-1}} dB_t^i$$

with W, V chosen to be 1-periodic.

$$\rho^{\varepsilon,N}(x,t) := \varepsilon^{-Nd} \nu^N(\varepsilon^{-1}x,\varepsilon^{-2}t) \in \mathcal{P}((\mathbb{R}^d)^N)$$



We place ourselves in the setting:

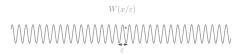
$$dX_t^{i,\varepsilon} = -\nabla V(\varepsilon^{-1}X_t^{i,\varepsilon}) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(\varepsilon^{-1}(X_t^{i,\varepsilon} - X_t^{j,\varepsilon})) dt + \sqrt{2\beta^{-1}} dB_t^i$$

with W, V chosen to be 1-periodic.

Let $\rho^{\varepsilon,N} = \text{Law}(X_t^{1,\varepsilon},\ldots,X_t^{N,\varepsilon})$ and consider the diffusive rescaling

$$\rho^{\varepsilon,N}(x,t) := \varepsilon^{-Nd} \nu^N(\varepsilon^{-1}x,\varepsilon^{-2}t) \in \mathcal{P}((\mathbb{R}^d)^N).$$

Interpretation: zooming out in space and going forward in time.



Can pass to the limit

- Bensoussan-Lions-Papanicolaou '78 (PDE approach)
- Kinnis-Varadhan '86 (Probabilistic approach)

We place ourselves in the setting:

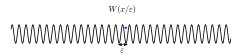
$$dX_t^{i,\varepsilon} = -\nabla V(\varepsilon^{-1}X_t^{i,\varepsilon}) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(\varepsilon^{-1}(X_t^{i,\varepsilon} - X_t^{j,\varepsilon})) dt + \sqrt{2\beta^{-1}} dB_t^i$$

with W, V chosen to be 1-periodic.

Let $\rho^{\varepsilon,N} = \text{Law}(X_t^{1,\varepsilon},\ldots,X_t^{N,\varepsilon})$ and consider the diffusive rescaling

$$\rho^{\varepsilon,N}(x,t) := \varepsilon^{-Nd} \nu^N(\varepsilon^{-1}x,\varepsilon^{-2}t) \in \mathcal{P}((\mathbb{R}^d)^N).$$

Interpretation: zooming out in space and going forward in time.



Can pass to the limit

- Bensoussan-Lions-Papanicolaou '78 (PDE approach'
- Kinnis-Varadhan '86 (Probabilistic approach)

We place ourselves in the setting:

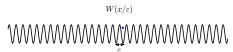
$$dX_t^{i,\varepsilon} = -\nabla V(\varepsilon^{-1}X_t^{i,\varepsilon}) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(\varepsilon^{-1}(X_t^{i,\varepsilon} - X_t^{j,\varepsilon})) dt + \sqrt{2\beta^{-1}} dB_t^i$$

with W, V chosen to be 1-periodic.

Let $\rho^{\varepsilon,N} = \text{Law}(X_t^{1,\varepsilon},\ldots,X_t^{N,\varepsilon})$ and consider the diffusive rescaling

$$\rho^{\varepsilon,N}(x,t) := \varepsilon^{-Nd} \nu^N(\varepsilon^{-1}x,\varepsilon^{-2}t) \in \mathcal{P}((\mathbb{R}^d)^N).$$

Interpretation: zooming out in space and going forward in time.



Can pass to the limit:

- Bensoussan-Lions-Papanicolaou '78 (PDE approach)
- Kipnis–Varadhan '86 (Probabilistic approach)

$$\mathrm{d}\dot{X}_t^i = -\nabla V(\dot{X}_t^i) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(\dot{X}_t^i - \dot{X}_t^j) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, d\dot{B}_t^i,$$

$\dot{X}_t^i \in \mathbb{T}^d$ and \dot{B}_t^i are \mathbb{T}^d -valued Wiener processes.

$$M_N(x) = \frac{e^{-H^N(x)}}{\int\limits_{\mathbb{T}^{dN}} e^{-H^N(y)} \, \mathrm{d}y}.$$

$$\begin{cases} \partial_t \tilde{\nu}^N &= \beta^{-1} \Delta \tilde{\nu}^N + \nabla \cdot (\nabla H^N \tilde{\nu}^N), \quad (t, x) \in (0, \infty) \times (\mathbb{T}^d)^I \\ \tilde{\nu}^N(0) &= \tilde{\nu}_0^N := \sum_{k \in \mathbb{Z}^d} \nu_0^N (k + x) \in \mathcal{P}((\mathbb{T}^d)^N) \end{cases}$$

$$\mathrm{d}\dot{X}_t^i = -\nabla V(\dot{X}_t^i) - \frac{1}{N} \sum_{i \neq j}^N \nabla W(\dot{X}_t^i - \dot{X}_t^j) \, \mathrm{d}t + \sqrt{2\beta^{-1}} \, d\dot{B}_t^i,$$

 $\dot{X}_t^i \in \mathbb{T}^d$ and \dot{B}_t^i are \mathbb{T}^d -valued Wiener processes.

This is a reversible, ergodic, diffusion process with a unique N-particle invariant measure Gibbs measure

$$M_N(x) = \frac{e^{-H^N(x)}}{\int\limits_{\mathbb{T}^{dN}} e^{-H^N(y)} \, \mathrm{d}y},$$

and the law $\tilde{\nu}^N$ evolves according to

$$\begin{cases} \partial_t \tilde{\nu}^N &= \beta^{-1} \Delta \tilde{\nu}^N + \nabla \cdot (\nabla H^N \tilde{\nu}^N), \quad (t,x) \in (0,\infty) \times (\mathbb{T}^d)^N \\ \tilde{\nu}^N(0) &= \tilde{\nu}_0^N := \sum_{k \in \mathbb{Z}^d} \nu_0^N(k+x) \in \mathcal{P}((\mathbb{T}^d)^N) \end{cases}$$

Periodic rearrangement of ν^N .

Theorem (The diffusive limit)

Consider $\rho^{\varepsilon,N}$ the solution to the rescaled Fokker–Planck equation with initial data $\rho_0^{\varepsilon,N} \in \mathcal{P}((\mathbb{R}^d)^N)$. Then, for all t > 0 the limit

$$\rho^{N,*}(t) = \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t)$$

exists. Furthermore, the curve of measures $\rho^{N,*}:[0,\infty)\to\mathcal{P}_{sym}((\mathbb{R}^d)^N)$ satisfies the heat equation

$$\partial_t \rho^{N,*} = \nabla \cdot (A^{\text{eff},N} \nabla \rho^{N,*}),$$

with initial data $\rho^{N,*}(0) = \lim_{\varepsilon \to 0} \rho_0^{\varepsilon,N}$ and where the covariance matrix is given by the Kipnis-Varadhan formula

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy,$$

with M_N the Gibbs measure of the quotiented N particle system and $\Psi^N: (\mathbb{T}^d)^N \to (\mathbb{R}^d)^N$ the unique mean zero solution to the associated corrector problem

$$\nabla \cdot (M_N \nabla \Psi^N) = -\nabla M_N.$$

Theorem (The diffusive limit)

Consider $\rho^{\varepsilon,N}$ the solution to the rescaled Fokker–Planck equation with initial data $\rho_0^{\varepsilon,N} \in \mathcal{P}((\mathbb{R}^d)^N)$. Then, for all t>0 the limit

$$\rho^{N,*}(t) = \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t)$$

exists. Furthermore, the curve of measures $\rho^{N,*}:[0,\infty)\to\mathcal{P}_{sym}((\mathbb{R}^d)^N)$ satisfies the heat equation

$$\partial_t \rho^{N,*} = \nabla \cdot (A^{\text{eff},N} \nabla \rho^{N,*}),$$

with initial data $\rho^{N,*}(0) = \lim_{\varepsilon \to 0} \rho_0^{\varepsilon,N}$ and where the covariance matrix is given by the Kipnis–Varadhan formula

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy,$$

with M_N the Gibbs measure of the quotiented N particle system and $\Psi^N: (\mathbb{T}^d)^N \to (\mathbb{R}^d)^N$ the unique mean zero solution to the associated corrector problem

$$\nabla \cdot (M_N \nabla \Psi^N) = -\nabla M_N.$$

The diffusive limit is affected by the properties of the quotiented system on the torus!

$N \to \infty + \varepsilon \to 0$?

Question: $\lim_{N\to\infty} \rho_N^{N,*} = ?$.

We already know $\rho^{\varepsilon,N} \to \rho^{\varepsilon,\otimes N}$, $N \to \infty$ where ρ^{ε} solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon \to 0} \rho^{\varepsilon,\otimes N} \to ?$.



Theorem (Delgadino-G-Pavliotis '20

Assume that the quotiented system has a phase transition at some β_c . Then for $\beta < \beta_c$

$$\lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N} = \lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}$$

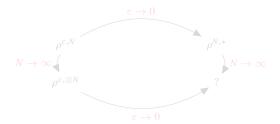
On the other hand if $\beta > \beta_c$, there exists initial data $\rho_c^{\varepsilon, \otimes N}$ such that

$$\lim_{N\to\infty}\lim_{n\to\infty}\rho^{\varepsilon,N}\neq\lim_{N\to\infty}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

The diffusive limit
$$arepsilon o 0$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$.



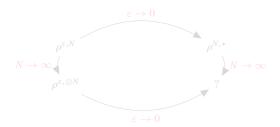
$$\lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N} = \lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}$$

$$\lim_{N\to\infty} \lim_{\varepsilon\to 0} \rho^{\varepsilon,N} \neq \lim_{\varepsilon\to 0} \lim_{N\to\infty} \rho^{\varepsilon,N}$$

The diffusive limit
$$\varepsilon \, o \, 0$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$. We already know $\rho^{\varepsilon,N} \to \rho^{\varepsilon,\otimes N}$, $N \to \infty$ where ρ^{ε} solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon \to 0} \rho^{\varepsilon, \otimes N} \to ?$.

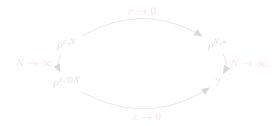


$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}=\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}\neq\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$. We already know $\rho^{\varepsilon,N} \to \rho^{\varepsilon,\otimes N}$, $N \to \infty$ where ρ^{ε} solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon \to 0} \rho^{\varepsilon, \otimes N} \to ?$.

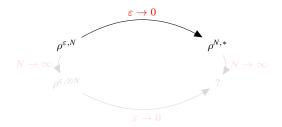


$$\lim_{N\to\infty} \lim_{\varepsilon\to 0} \rho^{\varepsilon,N} = \lim_{\varepsilon\to 0} \lim_{N\to\infty} \rho^{\varepsilon,N}$$

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}\neq\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$. We already know $\rho^{\varepsilon,N}\to \rho^{\varepsilon,\otimes N}, \quad N\to\infty$ where ρ^ε solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon\to 0} \rho^{\varepsilon,\otimes N}\to ?$.



Theorem (Delgadino-G-Pavliotis '20

Assume that the quotiented system has a phase transition at some β_c . Then for $\beta < \beta_c$

$$\lim_{N\to\infty} \lim_{\varepsilon\to 0} \rho^{\varepsilon,N} = \lim_{\varepsilon\to 0} \lim_{N\to\infty} \rho^{\varepsilon,N}$$

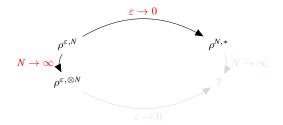
On the other hand if $\beta > \beta_c$, there exists initial data $\rho_0^{\varepsilon, \otimes N}$ such tha

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}\neq\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

The diffusive limit
$$\varepsilon\, o \, 0$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$. We already know $\rho^{\varepsilon,N} \to \rho^{\varepsilon,\otimes N}$, $N \to \infty$ where ρ^{ε} solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon \to 0} \rho^{\varepsilon, \otimes N} \to ?$.



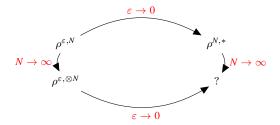
$$\lim_{N\to\infty} \lim_{\varepsilon\to 0} \rho^{\varepsilon,N} = \lim_{\varepsilon\to 0} \lim_{N\to\infty} \rho^{\varepsilon,N}$$

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}\neq\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

The diffusive limit
$$\varepsilon\, o \, 0$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$. We already know $\rho^{\varepsilon,N} \to \rho^{\varepsilon,\otimes N}$, $N \to \infty$ where ρ^{ε} solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon \to 0} \rho^{\varepsilon, \otimes N} \to ?$.



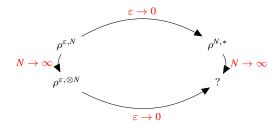
$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}=\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}\neq\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}$$

The diffusive limit
$$\varepsilon \to 0$$

$$N \to \infty + \varepsilon \to 0$$
?

Question: $\lim_{N\to\infty} \rho^{N,*} = ?$. We already know $\rho^{\varepsilon,N}\to \rho^{\varepsilon,\otimes N}$, $N\to\infty$ where ρ^ε solves the rescaled McKean–Vlasov equation. Another question : $\lim_{\varepsilon\to 0} \rho^{\varepsilon,\otimes N}\to ?$.



Theorem (Delgadino-G-Pavliotis '20)

Assume that the quotiented system has a phase transition at some β_c . Then for $\beta < \beta_c$

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}=\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}\,.$$

On the other hand if $\beta > \beta_c$, there exists initial data $\rho_0^{\varepsilon, \otimes N}$ such that

$$\lim_{N\to\infty}\lim_{\varepsilon\to 0}\rho^{\varepsilon,N}\neq\lim_{\varepsilon\to 0}\lim_{N\to\infty}\rho^{\varepsilon,N}.$$

The space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$

Due to the indistinguishability assumption on the particles their joint law is invariant under relabelling of the particles. In probability this is known as exchangeability, i.e., the law $\nu^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$.

Question: Given some $\{\rho^N\}_{n\in\mathbb{N}}\in\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ what does $\lim_{N\to\infty}\rho^N$ mean

Definition (The limit of of $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$)

Given a family $\{\rho^N\}_{N\in\mathbb{N}}$ such that $\rho^N\in\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ we say that

$$\rho^N \to X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$$
, as $N \to \infty$,

if for every $n \in \mathbb{N}$ we have

$$\rho_n^N \rightharpoonup^* X^n \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^n)$$
, as $N \to \infty$

where $X^n \in \mathcal{P}_{ ext{sym}}ig((\mathbb{R}^d)^nig)$ is defined by duality as follows

$$\langle X^n, arphi
angle = \int_{\mathcal{P}(\mathcal{P}(\mathbb{R}^d))} \int arphi \, \mathrm{d}
ho^{\otimes n} \, \, \mathrm{d} X(
ho)$$

for all $\varphi \in C_b((\mathbb{R}^d)^n)$ and $\rho_n^N = \int_{(\mathbb{R}^d)^{N-n}} \rho^N dx_{N-n+1}...dx_N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^n)$ is the n^{th} marginal of ρ^N

The space
$$\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$$

Due to the indistinguishability assumption on the particles their joint law is invariant under relabelling of the particles. In probability this is known as exchangeability, i.e., the law $\nu^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$.

Question: Given some $\{\rho^N\}_{n\in\mathbb{N}}\in\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ what does $\lim_{N\to\infty}\rho^N$ mean?

Definition (The limit of of $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$

Given a family $\{\rho^N\}_{N\in\mathbb{N}}$ such that $\rho^N\in\mathcal{P}_{\mathrm{sym}}((\mathbb{R}^d)^N)$ we say that

$$\rho^N \to X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$$
, as $N \to \infty$

if for every $n \in \mathbb{N}$ we have

$$\rho_n^N \rightharpoonup^* X^n \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^n), \text{ as } N \to \infty$$

where $X^n \in \mathcal{P}_{ ext{sym}}ig((\mathbb{R}^d)^nig)$ is defined by duality as follows

$$\langle X^n, arphi
angle = \int_{\mathcal{P}(\mathcal{P}(\mathbb{R}^d))} \int arphi \, \mathrm{d}
ho^{\otimes n} \, \, \mathrm{d} X(
ho)$$

for all $\varphi \in C_b((\mathbb{R}^d)^n)$ and $\rho_n^N = \int_{(\mathbb{R}^d)^{N-n}} \rho^N dx_{N-n+1}...dx_N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^n)$ is the n^{th} marginal of ρ^N

Due to the indistinguishability assumption on the particles their joint law is invariant under relabelling of the particles. In probability this is known as exchangeability, i.e., the law $\nu^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$.

Question: Given some $\{\rho^N\}_{n\in\mathbb{N}}\in\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ what does $\lim_{N\to\infty}\rho^N$ mean?

Definition (The limit of of $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$)

Given a family $\{\rho^N\}_{N\in\mathbb{N}}$ such that $\rho^N\in\mathcal{P}_{\mathrm{sym}}((\mathbb{R}^d)^N)$ we say that

$$\rho^N \to X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d)), \quad \text{as } N \to \infty,$$

if for every $n \in \mathbb{N}$ we have

$$\rho_n^N \rightharpoonup^* X^n \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^n)$$
, as $N \to \infty$,

where $X^n \in \mathcal{P}_{\text{sym}} ((\mathbb{R}^d)^n)$ is defined by duality as follows

$$\langle X^n, arphi
angle = \int_{\mathcal{P}(\mathcal{P}(\mathbb{R}^d))} \int arphi \, \mathrm{d}
ho^{\otimes n} \, \, \mathrm{d} X(
ho) \, ,$$

for all $\varphi \in C_b((\mathbb{R}^d)^n)$ and $\rho_n^N = \int_{(\mathbb{R}^d)^{N-n}} \rho^N dx_{N-n+1}...dx_N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^n)$ is the n^{th} marginal of ρ^N

The space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$

Another interpretation:

Definition (Empirical measure

Given some $\rho^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ we define its empirical measure $\hat{\rho}^N \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ as follows:

$$\hat{\rho}^N := T_N \# \rho^N$$

where $T^N: (\mathbb{R}^d)^N \to \mathcal{P}(\mathbb{R}^d)$ is the measurable mapping $(x_1, \dots, x_N) \mapsto N^{-1} \sum_{i=1}^N \delta_{x_i}$. Futhermore, given a family $\{\rho^N\}_{N \in \mathbb{N}}$, we have that $\rho^N \to X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ if and only if $\hat{\rho}^N \to^* X$, i.e tested against $C_b(\mathcal{P}(\mathbb{R}^d))$.

Lemma (de Finneti-Hewitt-Savage)

Given a sequence $\{\rho^N\}_{N\in\mathbb{N}}$, such that $\rho^N\in\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ for every N, assume that the sequence of the first marginals $\{\rho_1^N\}_{N\in\mathbb{N}}\in\mathcal{P}(\mathbb{R}^d)$ is tight. Then, up to subsequence, not relabelled, there exists $X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ such that $\rho^N\to X$.

Conclusion: The limit of the space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ is $\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$. Similarly the limit of $\mathcal{P}_{\text{sym}}((\mathbb{T}^d)^N)$ is $\mathcal{P}(\mathcal{P}(\mathbb{T}^d))$.

The space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$

Another interpretation:

Definition (Empirical measure)

Given some $\rho^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ we define its empirical measure $\hat{\rho}^N \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ as follows:

$$\hat{\rho}^N := T_N \# \rho^N \,,$$

where $T^N: (\mathbb{R}^d)^N \to \mathcal{P}(\mathbb{R}^d)$ is the measurable mapping $(x_1, \dots, x_N) \mapsto N^{-1} \sum_{i=1}^N \delta_{x_i}$. Futhermore, given a family $\{\rho^N\}_{N \in \mathbb{N}}$, we have that $\rho^N \to X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ if and only if $\hat{\rho}^N \rightharpoonup^* X$, i.e tested against $C_b(\mathcal{P}(\mathbb{R}^d))$.

Lemma (de Finneti–Hewitt–Savage)

Given a sequence $\{\rho^N\}_{N\in\mathbb{N}}$, such that $\rho^N\in\mathcal{P}_{sym}((\mathbb{R}^d)^N)$ for every N, assume that the sequence of the first marginals $\{\rho_1^N\}_{N\in\mathbb{N}}\in\mathcal{P}(\mathbb{R}^d)$ is tight. Then, up to subsequence, no relabelled, there exists $X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ such that $\rho^N\to X$.

Conclusion: The limit of the space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ is $\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$. Similarly the limit o $\mathcal{P}_{\text{sym}}((\mathbb{T}^d)^N)$ is $\mathcal{P}(\mathcal{P}(\mathbb{T}^d))$.

Another interpretation:

Definition (Empirical measure)

Given some $\rho^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ we define its empirical measure $\hat{\rho}^N \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ as follows:

$$\hat{\rho}^N := T_N \# \rho^N \,,$$

where $T^N: (\mathbb{R}^d)^N \to \mathcal{P}(\mathbb{R}^d)$ is the measurable mapping $(x_1, \dots, x_N) \mapsto N^{-1} \sum_{i=1}^N \delta_{x_i}$. Futhermore, given a family $\{\rho^N\}_{N\in\mathbb{N}}$, we have that $\rho^N\to X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ if and only if $\hat{\rho}^N \rightharpoonup^* X$, i.e tested against $C_b(\mathcal{P}(\mathbb{R}^d))$.

Lemma (de Finneti-Hewitt-Savage)

Given a sequence $\{\rho^N\}_{N\in\mathbb{N}}$, such that $\rho^N\in\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ for every N, assume that the sequence of the first marginals $\{\rho_1^N\}_{N\in\mathbb{N}}\in\mathcal{P}(\mathbb{R}^d)$ is tight. Then, up to subsequence, not relabelled, there exists $X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ such that $\rho^N \to X$.

Another interpretation:

Definition (Empirical measure)

Given some $\rho^N \in \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ we define its empirical measure $\hat{\rho}^N \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ as follows:

$$\hat{\rho}^N := T_N \# \rho^N \,,$$

where $T^N: (\mathbb{R}^d)^N \to \mathcal{P}(\mathbb{R}^d)$ is the measurable mapping $(x_1, \dots, x_N) \mapsto N^{-1} \sum_{i=1}^N \delta_{x_i}$. Futhermore, given a family $\{\rho^N\}_{N \in \mathbb{N}}$, we have that $\rho^N \to X \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ if and only if $\hat{\rho}^N \rightharpoonup^* X$, i.e tested against $C_b(\mathcal{P}(\mathbb{R}^d))$.

Lemma (de Finneti-Hewitt-Savage)

Given a sequence $\{\rho^N\}_{N\in\mathbb{N}}$, such that $\rho^N\in\mathcal{P}_{\text{sym}}\left((\mathbb{R}^d)^N\right)$ for every N, assume that the sequence of the first marginals $\{\rho_1^N\}_{N\in\mathbb{N}}\in\mathcal{P}(\mathbb{R}^d)$ is tight. Then, up to subsequence, not relabelled, there exists $X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ such that $\rho^N\to X$.

Conclusion: The limit of the space $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ is $\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$. Similarly the limit of $\mathcal{P}_{\text{sym}}((\mathbb{T}^d)^N)$ is $\mathcal{P}(\mathcal{P}(\mathbb{T}^d))$.

N-particle free energy, $E^N: \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N) \to (-\infty, +\infty]$:

$$E^N[\rho^N] := \frac{1}{N} \left(\beta^{-1} \int_{(\mathbb{R}^d)^N} \rho^N \log \rho^N \ \mathrm{d}x + \int_{(\mathbb{R}^d)^N} H^N(x) \ \mathrm{d}\rho^N(x) \right) \,,$$

 ν^N is a gradient flow of E^N w.r.t rescaled 2-Wasserstein distance $\frac{1}{\sqrt{N}}d_2$ on $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ (cf. Jordan-Kinderlehrer-Otto '98, Ambrosio-Gigli-Savare '08).

Mean field free energy $E_{MF}: \mathcal{P}(\mathbb{R}^d) \to (-\infty, +\infty]$:

$$E_{MF}[\rho] = \beta^{-1} \int_{\mathbb{R}^d} \rho \log(\rho) \, dx + \int_{\mathbb{R}^d} V(x) \, d\rho(x) + \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W((x-y)) \, d\rho(y) \, d\rho(x).$$

$$E^{\infty}[X] = \int_{\mathcal{P}(\mathbb{R}^d)} E_{MF}[\rho] \ dX(\rho)$$

adioni no mo

N-particle free energy, $E^N : \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N) \to (-\infty, +\infty]$:

$$E^N[\rho^N] := \frac{1}{N} \left(\beta^{-1} \int_{(\mathbb{R}^d)^N} \rho^N \log \rho^N \, dx + \int_{(\mathbb{R}^d)^N} H^N(x) \, d\rho^N(x) \right) \,,$$

 ν^N is a gradient flow of E^N w.r.t rescaled 2-Wasserstein distance $\frac{1}{\sqrt{N}}d_2$ on $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ (cf. Jordan–Kinderlehrer–Otto '98, Ambrosio–Gigli-Savare '08). Mean field free energy $E_{MF}: \mathcal{P}(\mathbb{R}^d) \to (-\infty, +\infty]$:

$$E_{MF}[\rho] = \beta^{-1} \int_{\mathbb{R}^d} \rho \log(\rho) \, dx + \int_{\mathbb{R}^d} V(x) \, d\rho(x) + \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W((x-y)) \, d\rho(y) \, d\rho(x).$$

u is a gradient flow of E_{MF} w.r.t 2-Wasserstein distance d_2 on $\mathcal{P}(\mathbb{R}^d)$.

Lemma (Messer-Spohn '82'

The N-particle free energy E^N Γ -converges to $E^\infty: \mathcal{P}(\mathcal{P}(\mathbb{R}^d)) \to (-\infty, +\infty]$, where

$$E^{\infty}[X] = \int_{\mathcal{P}(\mathbb{R}^d)} E_{MF}[\rho] \ \mathrm{d}X(\rho)$$

Gradient flows

N-particle free energy, $E^N: \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N) \to (-\infty, +\infty]$:

$$E^N[\rho^N] := \frac{1}{N} \left(\beta^{-1} \int_{(\mathbb{R}^d)^N} \rho^N \log \rho^N \ \mathrm{d}x + \int_{(\mathbb{R}^d)^N} H^N(x) \ \mathrm{d}\rho^N(x) \right) \,,$$

 ν^N is a gradient flow of E^N w.r.t rescaled 2-Wasserstein distance $\frac{1}{\sqrt{N}}d_2$ on $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ (cf. Jordan-Kinderlehrer-Otto '98, Ambrosio-Gigli-Savare '08). Mean field free energy $E_{MF}: \mathcal{P}(\mathbb{R}^d) \to (-\infty, +\infty]$:

$$E_{MF}[\rho] = \beta^{-1} \int_{\mathbb{R}^d} \rho \log(\rho) \, dx + \int_{\mathbb{R}^d} V(x) \, d\rho(x) + \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W((x-y)) \, d\rho(y) \, d\rho(x).$$

 ν is a gradient flow of E_{MF} w.r.t 2-Wasserstein distance d_2 on $\mathcal{P}(\mathbb{R}^d)$.

Lemma (Messer–Spohn '82)

The N-particle free energy E^N Γ -converges to $E^\infty: \mathcal{P}(\mathcal{P}(\mathbb{R}^d)) \to (-\infty, +\infty]$, where

$$E^{\infty}[X] = \int_{\mathcal{P}(\mathbb{R}^d)} E_{MF}[\rho] \ \mathrm{d}X(
ho) \,.$$

Gradient flows

N-particle free energy, $E^N : \mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N) \to (-\infty, +\infty]$:

$$E^N[\rho^N] := \frac{1}{N} \left(\beta^{-1} \int_{(\mathbb{R}^d)^N} \rho^N \log \rho^N \ \mathrm{d}x + \int_{(\mathbb{R}^d)^N} H^N(x) \ \mathrm{d}\rho^N(x) \right) \,,$$

 ν^N is a gradient flow of E^N w.r.t rescaled 2-Wasserstein distance $\frac{1}{\sqrt{N}}d_2$ on $\mathcal{P}_{\text{sym}}((\mathbb{R}^d)^N)$ (cf. Jordan–Kinderlehrer–Otto '98, Ambrosio–Gigli-Savare '08). Mean field free energy $E_{MF}: \mathcal{P}(\mathbb{R}^d) \to (-\infty, +\infty]$:

$$E_{MF}[\rho] = \beta^{-1} \int_{\mathbb{R}^d} \rho \log(\rho) \, dx + \int_{\mathbb{R}^d} V(x) \, d\rho(x) + \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W((x-y)) \, d\rho(y) \, d\rho(x).$$

 ν is a gradient flow of E_{MF} w.r.t 2-Wasserstein distance d_2 on $\mathcal{P}(\mathbb{R}^d)$.

Lemma (Messer-Spohn '82)

The N-particle free energy E^N Γ -converges to $E^\infty: \mathcal{P}(\mathcal{P}(\mathbb{R}^d)) \to (-\infty, +\infty]$, where

$$E^{\infty}[X] = \int_{\mathcal{P}(\mathbb{R}^d)} E_{MF}[\rho] \ \mathrm{d}X(
ho) \,.$$

Similar analysis can be carried out for the quotiented system: \tilde{E}^N , \tilde{E}_{MF} with particles living in \mathbb{T}^d . We consider the periodic N-particle energy \tilde{E}^N and the periodic mean field energy \tilde{E}_{MF} . Then:

Lemma (Messer-Spohn '82

The N-particle free energy \tilde{E}^N Γ -converges to $\tilde{E}^\infty : \mathcal{P}(\mathcal{P}(\mathbb{T}^d)) \to (-\infty, +\infty]$, where

$$ilde{E}^{\infty}[X] = \int_{\mathcal{P}(\mathbb{T}^d)} ilde{E}_{MF}[
ho] \; \mathrm{d}X(ilde{
u})$$

As a consequence, if $\{M_N\}_{N\in\mathbb{N}}$ is the sequence of minimisers of E^N (namely the sequence of Gibbs measures), then any accumulation point $X \in \mathcal{P}(\mathcal{P}(\mathbb{T}^d))$ of this sequence is a minimiser of \check{E}^{∞} .

Theorem (Mean field limit, Carrillo-Delgadino-Pavliotis '19

Fix some t > 0, *then*

$$\lim_{N\to\infty}\nu^N(t)=X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$$

Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: \tilde{E}^N , \tilde{E}_{MF} with particles living in \mathbb{T}^d . We consider the periodic N-particle energy \tilde{E}^N and the periodic mean field energy \tilde{E}_{MF} . Then:

Lemma (Messer-Spohn '82)

The N-particle free energy \tilde{E}^N Γ -converges to $\tilde{E}^\infty: \mathcal{P}(\mathcal{P}(\mathbb{T}^d)) \to (-\infty, +\infty]$, where

$$ilde{E}^{\infty}[X] = \int_{\mathcal{P}(\mathbb{T}^d)} ilde{E}_{MF}[
ho] \; \mathrm{d}X(ilde{
u}) \, .$$

As a consequence, if $\{M_N\}_{N\in\mathbb{N}}$ is the sequence of minimisers of E^N (namely the sequence of Gibbs measures), then any accumulation point $X \in \mathcal{P}(\mathcal{P}(\mathbb{T}^d))$ of this sequence is a minimiser of \tilde{E}^{∞} .

Theorem (Mean field limit, Carrillo–Delgadino–Pavliotis '19)

Fix some t > 0, *then*

$$\lim_{N\to\infty}\nu^N(t)=X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$$

Similar analysis can be carried out for the quotiented system: \tilde{E}^N , \tilde{E}_{MF} with particles living in \mathbb{T}^d . We consider the periodic N-particle energy \tilde{E}^N and the periodic mean field energy \tilde{E}_{MF} . Then:

Lemma (Messer-Spohn '82)

The N-particle free energy \tilde{E}^N Γ -converges to $\tilde{E}^\infty: \mathcal{P}(\mathcal{P}(\mathbb{T}^d)) \to (-\infty, +\infty]$, where

$$ilde{E}^{\infty}[X] = \int_{\mathcal{P}(\mathbb{T}^d)} ilde{E}_{MF}[
ho] \; \mathrm{d}X(ilde{
u}) \, .$$

As a consequence, if $\{M_N\}_{N\in\mathbb{N}}$ is the sequence of minimisers of \tilde{E}^N (namely the sequence of Gibbs measures), then any accumulation point $X\in\mathcal{P}(\mathcal{P}(\mathbb{T}^d))$ of this sequence is a minimiser of \tilde{E}^∞ .

Theorem (Mean field limit, Carrillo–Delgadino–Pavliotis '19)

Fix some t > 0, then

$$\lim_{N\to\infty}\nu^N(t)=X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$$

Similar analysis can be carried out for the quotiented system: \tilde{E}^N , \tilde{E}_{MF} with particles living in \mathbb{T}^d . We consider the periodic N-particle energy \tilde{E}^N and the periodic mean field energy \tilde{E}_{MF} . Then:

Lemma (Messer-Spohn '82)

The N-particle free energy \tilde{E}^N Γ -converges to $\tilde{E}^\infty: \mathcal{P}(\mathcal{P}(\mathbb{T}^d)) \to (-\infty, +\infty]$, where

$$ilde{E}^{\infty}[X] = \int_{\mathcal{P}(\mathbb{T}^d)} ilde{E}_{MF}[
ho] \; \mathrm{d}X(ilde{
u}) \, .$$

As a consequence, if $\{M_N\}_{N\in\mathbb{N}}$ is the sequence of minimisers of \tilde{E}^N (namely the sequence of Gibbs measures), then any accumulation point $X\in\mathcal{P}(\mathcal{P}(\mathbb{T}^d))$ of this sequence is a minimiser of \tilde{E}^∞ .

Theorem (Mean field limit, Carrillo–Delgadino–Pavliotis '19)

Fix some t > 0, then,

$$\lim_{N\to\infty}\nu^N(t)=X\in\mathcal{P}(\mathcal{P}(\mathbb{R}^d))$$

The quotiented process and phase transitions

Phase transitions

Consider the periodic McKean-Vlasov equation

$$\begin{cases} \partial_t \tilde{\nu} = \beta^{-1} \Delta \tilde{\nu} + \nabla \cdot (\tilde{\nu} (\nabla W \star \tilde{\nu} + \nabla V)) & (t, x) \in (0, \infty) \times \mathbb{T}^c \\ \tilde{\nu}(0) = \tilde{\nu}_0 = \sum_{k \in \mathbb{Z}^d} \nu_0(k + x) \,. \end{cases}$$

Question: What is a phase transition?

Definition (Phase transition)

The periodic mean field McKean–Vlasov equation is said to undergo a phase transition at some $0 < \beta_c < \infty$ if

- ① For $\beta < \beta_c$, there exists a unique steady state.
- ② For $\beta > \beta_c$, there exist at least two steady states

The temperature β_c is referred to as the point of phase transition or the critical temperature.

Example (noisy Kuramoto model)

Let d=1, $W=-\cos(2\pi x)$, and V=0. Then for $\beta\leq 2$, $\tilde{\nu}_{\infty}\equiv 1$ is the unique minimiser of \tilde{E}_{MF} and steady state. For $\beta>2$, the steady states are given by $\tilde{\nu}_{\infty}\equiv 1$ and the family of translates of some measure $\tilde{\nu}_{\beta}^{\min}$. Moreover for $\beta>2$, $\tilde{\nu}_{\beta}^{\min}$ (and its translates) are the only minimisers of the periodic mean field energy \tilde{E}_{MF} . Thus, $\beta_c=2$ is the critical temperature.

see Carrillo-G-Pavliotis-Schlichting '19 for a detailed study.

Consider the periodic McKean–Vlasov equation:

$$\begin{cases} \partial_t \tilde{\nu} = \beta^{-1} \Delta \tilde{\nu} + \nabla \cdot (\tilde{\nu} (\nabla W \star \tilde{\nu} + \nabla V)) & (t, x) \in (0, \infty) \times \mathbb{T}^d \\ \tilde{\nu}(0) = \tilde{\nu}_0 = \sum_{k \in \mathbb{Z}^d} \nu_0(k + x) \,. \end{cases}$$

Consider the periodic McKean–Vlasov equation:

$$\begin{cases} \partial_t \tilde{\nu} = \beta^{-1} \Delta \tilde{\nu} + \nabla \cdot (\tilde{\nu} (\nabla W \star \tilde{\nu} + \nabla V)) & (t, x) \in (0, \infty) \times \mathbb{T}^d \\ \tilde{\nu}(0) = \tilde{\nu}_0 = \sum_{k \in \mathbb{Z}^d} \nu_0(k + x) \,. \end{cases}$$

Question: What is a phase transition?

Consider the periodic McKean–Vlasov equation:

$$\begin{cases} \partial_t \tilde{\nu} = \beta^{-1} \Delta \tilde{\nu} + \nabla \cdot (\tilde{\nu} (\nabla W \star \tilde{\nu} + \nabla V)) & (t, x) \in (0, \infty) \times \mathbb{T}^d \\ \tilde{\nu}(0) = \tilde{\nu}_0 = \sum_{k \in \mathbb{Z}^d} \nu_0(k + x) \,. \end{cases}$$

Question: What is a phase transition?

Definition (Phase transition)

The periodic mean field McKean-Vlasov equation is said to undergo a phase transition at some $0 < \beta_c < \infty$ if

- **1** For $\beta < \beta_c$, there exists a unique steady state.
- 2 For $\beta > \beta_c$, there exist at least two steady states.

The temperature β_c is referred to as the point of phase transition or the critical temperature.

Consider the periodic McKean–Vlasov equation:

$$\begin{cases} \partial_t \tilde{\nu} = \beta^{-1} \Delta \tilde{\nu} + \nabla \cdot (\tilde{\nu} (\nabla W \star \tilde{\nu} + \nabla V)) & (t, x) \in (0, \infty) \times \mathbb{T}^d \\ \tilde{\nu}(0) = \tilde{\nu}_0 = \sum_{k \in \mathbb{Z}^d} \nu_0 (k + x) \,. \end{cases}$$

Question: What is a phase transition?

Definition (Phase transition)

The periodic mean field McKean-Vlasov equation is said to undergo a phase transition at some $0 < \beta_c < \infty$ if

- **1** For $\beta < \beta_c$, there exists a unique steady state.
- 2 For $\beta > \beta_c$, there exist at least two steady states.

The temperature β_c is referred to as the point of phase transition or the critical temperature.

Example (noisy Kuramoto model)

Let d=1, $W=-\cos(2\pi x)$, and V=0. Then for $\beta \leq 2$, $\tilde{\nu}_{\infty} \equiv 1$ is the unique minimiser of \tilde{E}_{MF} and steady state. For $\beta > 2$, the steady states are given by $\tilde{\nu}_{\infty} \equiv 1$ and the family of translates of some measure $\tilde{\nu}_{\beta}^{\min}$. Moreover for $\beta > 2$, $\tilde{\nu}_{\beta}^{\min}$ (and its translates) are the only minimisers of the periodic mean field energy \tilde{E}_{MF} . Thus, $\beta_c = 2$ is the critical temperature.

Consider the periodic McKean–Vlasov equation:

$$\begin{cases} \partial_t \tilde{\nu} = \beta^{-1} \Delta \tilde{\nu} + \nabla \cdot (\tilde{\nu} (\nabla W \star \tilde{\nu} + \nabla V)) & (t, x) \in (0, \infty) \times \mathbb{T}^d \\ \tilde{\nu}(0) = \tilde{\nu}_0 = \sum_{k \in \mathbb{Z}^d} \nu_0 (k + x) \,. \end{cases}$$

Question: What is a phase transition?

Definition (Phase transition)

The periodic mean field McKean-Vlasov equation is said to undergo a phase transition at some $0 < \beta_c < \infty$ if

- **1** For $\beta < \beta_c$, there exists a unique steady state.
- 2 For $\beta > \beta_c$, there exist at least two steady states.

The temperature β_c is referred to as the point of phase transition or the critical temperature.

Example (noisy Kuramoto model)

Let d=1, $W=-\cos(2\pi x)$, and V=0. Then for $\beta \leq 2$, $\tilde{\nu}_{\infty} \equiv 1$ is the unique minimiser of \tilde{E}_{MF} and steady state. For $\beta > 2$, the steady states are given by $\tilde{\nu}_{\infty} \equiv 1$ and the family of translates of some measure $\tilde{\nu}_{\beta}^{\min}$. Moreover for $\beta > 2$, $\tilde{\nu}_{\beta}^{\min}$ (and its translates) are the only minimisers of the periodic mean field energy \tilde{E}_{MF} . Thus, $\beta_c = 2$ is the critical temperature.

see Carrillo-G-Pavliotis-Schlichting '19 for a detailed study.

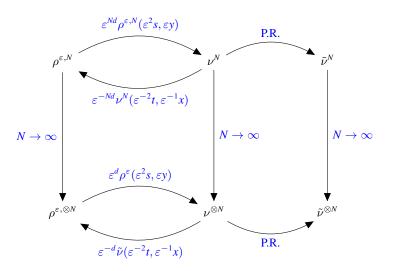
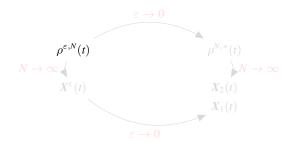
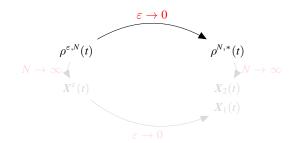
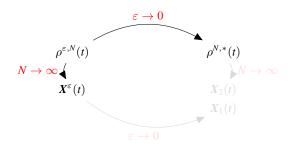
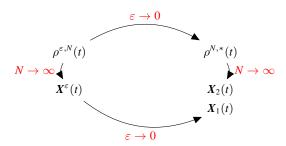


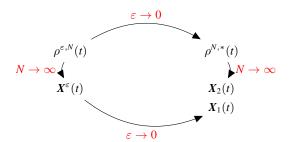
Figure: A schematic of the notation. The P.R. denotes periodic rearrangement.



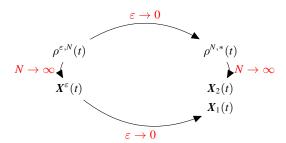








Question: Is $X_1 = X_2$?



0000000

Question: Is $X_1 = X_2$?

Summary

Non-commutativity conjectured by Gomes-Pavliotis '18 based on numerics in slightly different setting.

$$N \to \infty$$
 then $\varepsilon \to 0$

Theorem (Delgadino-G-Pavliotis '20)

Consider the set of initial data given by $\{\rho_0^{\varepsilon}\}_{{\varepsilon}>0}\subset \mathcal{P}(\mathbb{R}^d)$, and consider the periodic rearrangement at scale $\varepsilon > 0$, i.e.

$$\tilde{\nu}_0^{\varepsilon}(A) = \varepsilon^d \sum_{k \in \mathbb{Z}^d} \rho_0^{\varepsilon}(\varepsilon(A+k)) \qquad \text{for } \varepsilon > 0 \ .$$

Assume that there exists C > 0, p > 1 and $\tilde{\nu}^* \in \mathcal{P}(\mathbb{T}^d)$ such that $\tilde{\nu}^{\varepsilon}(t)$, with initial data $\tilde{\nu}_{0}^{\varepsilon}(x)$, satisfies

$$\sup_{\varepsilon>0} d_2^2(\tilde{\nu}^{\varepsilon}(t), \tilde{\nu}^*) \le Ct^{-p}.$$

Then.

$$\lim_{\varepsilon \to 0} d_2^2(S_t^{\varepsilon} \rho_0^{\varepsilon}, S_t^* \rho_0^*) = 0,$$

where S_t^{ε} is the solution semigroup associated to the rescaled PDE on \mathbb{R}^d , $\rho_0^* \in \mathcal{P}(\mathbb{R}^d)$ is the weak-* limit of ρ_0^{ε} , and S_t^* is the solution semigroup of the heat equation

$$\partial_t \rho = \nabla \cdot (A_*^{\mathrm{eff}} \nabla \rho),$$

where the covariance matrix

$$A_*^{\mathrm{eff}} = \beta^{-1} \int_{\mathbb{T}^d} (I + \nabla \Psi^*(y)) \ \mathrm{d}\tilde{\nu}^*(y) \,.$$

 $N \to \infty$ then $\varepsilon \to 0$

Theorem (Delgadino-G-Pavliotis '20)

 $\Psi^*: \mathbb{T}^d \to \mathbb{R}^d$ is the solution to the associated corrector problem

$$\nabla \cdot (\tilde{\nu}^* \nabla \Psi^*) = -\nabla \tilde{\nu}^*.$$

Furthermore, assume that $X^{\varepsilon}(t)$ is the mean field limit and that $\lim_{N\to\infty} \rho_0^{\varepsilon,N} = X_0^{\varepsilon} = \delta_{\rho_0^{\varepsilon}}$. Then it holds that:

$$X_1(t) = \lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N} = \lim_{\varepsilon \to 0} X(t)^{\varepsilon} = S_t^* \# X_0,$$

where $X_0 = \delta_{\rho_0^*}$.

The joint limits

Theorem (Delgadino-G-Pavliotis '20)

Assume that the periodic mean field energy \tilde{E}_{MF} admits a unique minimiser $\tilde{\nu}^{\min}$, then we have that $\rho^{N,*}$ satisfies, for any fixed t > 0,

$$\lim_{N\to\infty}\rho^{N,*}(t)=X_2(t)=S_t^{\min}\#X_0,$$

where $X_0 \in \mathcal{P}(\mathcal{P}(\mathbb{R}^d))$ is the limit of $\rho^{N,*}(0)$, and $S_t^{\min}: \mathcal{P}(\mathbb{R}^d) \to \mathcal{P}(\mathbb{R}^d)$ is the solution semigroup of the heat equation

$$\partial_t \rho = \nabla \cdot (A_{\min}^{\mathrm{eff}} \nabla \rho),$$

where the covariance matrix

$$A_{\min}^{\text{eff}} = \beta^{-1} \int_{\mathbb{T}^d} (I + \nabla \Psi^{\min}(y)) \ d\tilde{\nu}^{\min}(y) ,$$

with $\Psi^{\min}: \mathbb{T}^d \to \mathbb{R}^d$, the solution to the associated corrector problem

$$\nabla \cdot (\tilde{\nu}^{\min} \nabla \Psi^{\min}) = -\nabla \tilde{\nu}^{\min} \,.$$

It follows then, that for any fixed t > 0, the solution $\rho^{\varepsilon,N}(t)$ satisfies

$$X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t) = \lim_{N \to \infty} \rho^{N,*}(t) = S_t^{\min} \# X_0.$$

- The limit $X_1(t)$ sees the long time behaviour of $\tilde{\nu}$ and thus steady states.

$$\lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}(t) = X_1(t) = S_t^* \# X_0 \neq S_t^{\min} \# X_0 = X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t)$$

- The limit $X_1(t)$ sees the long time behaviour of $\tilde{\nu}$ and thus steady states.

$$\lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}(t) = X_1(t) = S_t^* \# X_0 \neq S_t^{\min} \# X_0 = X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t)$$

- The limit $X_1(t)$ sees the long time behaviour of $\tilde{\nu}$ and thus steady states.
- The limit $X_2(t)$ sees minimisers of \tilde{E}_{MF} .

$$\lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}(t) = X_1(t) = S_t^* \# X_0 \neq S_t^{\min} \# X_0 = X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t)$$

Non-commutativity

- The limit $X_1(t)$ sees the long time behaviour of $\tilde{\nu}$ and thus steady states.
- The limit $X_2(t)$ sees minimisers of \tilde{E}_{MF} .

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with $V = -\eta \cos(2\pi x)$, $W = -\cos(2\pi x)$ with $\eta \in (0, 1)$. Then the mean field model on the torus has a phase transition at some $0 < \beta_c < \infty$. It has at least two steady states for $\beta > \beta_c$, $\tilde{\nu}^*$ and $\tilde{\nu}^{\min}$ the minimiser of \tilde{E}_{MF} .

Additionally, for $\beta > \beta_c$ and $\rho_0^{\varepsilon,N} = (\rho_0^{\varepsilon})^{\otimes N}$ such that $\tilde{\nu}^* = \sum_{k \in \mathbb{Z}^d} \varepsilon^d \rho_0^{\varepsilon}(\varepsilon x)$ we have that

$$\lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}(t) = X_1(t) = S_t^* \# X_0 \neq S_t^{\min} \# X_0 = X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t)$$

Non-commutativity

- The limit $X_1(t)$ sees the long time behaviour of $\tilde{\nu}$ and thus steady states.
- The limit $X_2(t)$ sees minimisers of \tilde{E}_{MF} .

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with $V = -\eta \cos(2\pi x)$, $W = -\cos(2\pi x)$ with $\eta \in (0,1)$. Then the mean field model on the torus has a phase transition at some $0 < \beta_c < \infty$. It has at least two steady states for $\beta > \beta_c$, $\tilde{\nu}^*$ and $\tilde{\nu}^{\min}$ the minimiser of \tilde{E}_{MF} .

$$\lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}(t) = X_1(t) = S_t^* \# X_0 \neq S_t^{\min} \# X_0 = X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t).$$

Non-commutativity

- The limit $X_1(t)$ sees the long time behaviour of $\tilde{\nu}$ and thus steady states.
- The limit $X_2(t)$ sees minimisers of \tilde{E}_{MF} .

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with $V = -\eta \cos(2\pi x)$, $W = -\cos(2\pi x)$ with $\eta \in (0,1)$. Then the mean field model on the torus has a phase transition at some $0 < \beta_c < \infty$. It has at least two steady states for $\beta > \beta_c$, $\tilde{\nu}^*$ and $\tilde{\nu}^{\min}$ the minimiser of \tilde{E}_{MF} .

Additionally, for $\beta > \beta_c$ and $\rho_0^{\varepsilon,N} = (\rho_0^{\varepsilon})^{\otimes N}$ such that $\tilde{\nu}^* = \sum_{k \in \mathbb{Z}^d} \varepsilon^d \rho_0^{\varepsilon}(\varepsilon x)$ we have that

$$\lim_{\varepsilon \to 0} \lim_{N \to \infty} \rho^{\varepsilon,N}(t) = X_1(t) = S_t^* \# X_0 \neq S_t^{\min} \# X_0 = X_2(t) = \lim_{N \to \infty} \lim_{\varepsilon \to 0} \rho^{\varepsilon,N}(t).$$

- Pass to the mean field limit (using CDP'19) to obtain $X^{\varepsilon}(t)$.

$$\nabla \cdot (\tilde{\mu}^{\varepsilon}(t)\nabla \chi) = -\nabla(\tilde{\mu}^{\varepsilon}), \quad \tilde{\mu}^{\varepsilon}(t) \sim \exp(-\beta(W \star \tilde{\nu}(t) - V))$$

$$\|\chi_i\|_{C^m(\mathbb{T}^d)} \lesssim 1$$

$$\|\partial_t \chi_i\|_{C^m(\mathbb{T}^d)} \lesssim \sum_{m=1}^k d_2^m(\tilde{\nu}(t), \tilde{\nu}^*)$$

- Using coupling techniques (a' la Eberle et al.) prove an initial data dependent version of

- Pass to the mean field limit (using CDP'19) to obtain $X^{\varepsilon}(t)$.
- For the associated mean field SDE on the torus consider a moving corrector problem:

$$\nabla \cdot (\tilde{\mu}^{\varepsilon}(t)\nabla \chi) = -\nabla(\tilde{\mu}^{\varepsilon}), \quad \tilde{\mu}^{\varepsilon}(t) \sim \exp(-\beta(W \star \tilde{\nu}(t) - V))$$

and obtain time-dependent estimates:

$$\begin{split} &\|\chi_i\|_{C^m(\mathbb{T}^d)} \lesssim 1 \\ &\|\partial_t \chi_i\|_{C^m(\mathbb{T}^d)} \lesssim \sum_{m=1}^k d_2^m(\tilde{\nu}(t), \tilde{\nu}^*) \,. \end{split}$$

- Using coupling techniques (a' la Eberle et al.) prove an initial data dependent version of

- Pass to the mean field limit (using CDP'19) to obtain $X^{\varepsilon}(t)$.
- For the associated mean field SDE on the torus consider a moving corrector problem:

$$\nabla \cdot (\tilde{\mu}^{\varepsilon}(t)\nabla \chi) = -\nabla(\tilde{\mu}^{\varepsilon}), \quad \tilde{\mu}^{\varepsilon}(t) \sim \exp(-\beta(W \star \tilde{\nu}(t) - V))$$

and obtain time-dependent estimates:

$$\begin{split} &\|\chi_i\|_{C^m(\mathbb{T}^d)} \lesssim 1 \\ &\|\partial_t \chi_i\|_{C^m(\mathbb{T}^d)} \lesssim \sum_{m=1}^k d_2^m(\tilde{\nu}(t), \tilde{\nu}^*) \,. \end{split}$$

- Using coupling techniques (a' la Eberle et al.) prove an initial data dependent version of the martingale CLT.

- Pass to the mean field limit (using CDP'19) to obtain $X^{\varepsilon}(t)$.
- For the associated mean field SDE on the torus consider a moving corrector problem:

$$\nabla \cdot (\tilde{\mu}^{\varepsilon}(t)\nabla \chi) = -\nabla (\tilde{\mu}^{\varepsilon}) \,, \quad \tilde{\mu}^{\varepsilon}(t) \sim \exp(-\beta (W \star \tilde{\nu}(t) - V))$$

and obtain time-dependent estimates:

$$\begin{split} &\|\chi_i\|_{C^m(\mathbb{T}^d)} \lesssim 1 \\ &\|\partial_t \chi_i\|_{C^m(\mathbb{T}^d)} \lesssim \sum_{m=1}^k d_2^m(\tilde{\nu}(t), \tilde{\nu}^*) \,. \end{split}$$

- Using coupling techniques (a' la Eberle et al.) prove an initial data dependent version of the martingale CLT.
- Pass to the limit as $\varepsilon \to 0$.

The joint limits

Sketch of proof for $\varepsilon \to 0$ followed by $N \to \infty$

• Need to pass to the limit in the diffusion matrix $A^{\text{eff},N}$:

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy$$

$$\begin{split} & \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ (M_N - M_{N-1}(M_N)_1) \ dy \\ & = \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) M_{N-1} \ dy \\ & \leq \left\| I + \nabla \Psi^N \right\|_{L^2(M_{N-1})} \left\| \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) \right\|_{L^2(M_{N-1})} \end{split}$$

- The function $M_N/(M_{N-1})$ is symmetric in all but one of its variables. Use techniques due to Lions pass to $N \to \infty$ on $C(\mathcal{P}(\mathbb{T}^d))$. Similarly pass to $N \to \infty$ to obtain $M_{N-1} \to \delta_{\widetilde{\nu}^{\min}} \in \mathcal{P}(\mathcal{P}(\mathbb{T})^d)$.
- Enough information to pass to the limit in the PDE.

Sketch of proof for $\varepsilon \to 0$ followed by $N \to \infty$

Need to pass to the limit in the diffusion matrix A^{eff,N}:

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy.$$

$$\begin{split} & \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ (M_N - M_{N-1}(M_N)_1) \ \mathrm{d}y \\ & = \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) M_{N-1} \ \mathrm{d}y \\ & \leq \left\| I + \nabla \Psi^N \right\|_{L^2(M_{N-1})} \left\| \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) \right\|_{L^2(M_{N-1})} \end{split}$$

- The function $M_N/(M_{N-1})$ is symmetric in all but one of its variables. Use techniques due to Lions pass to $N \to \infty$ on $C(\mathcal{P}(\mathbb{T}^d))$. Similarly pass to $N \to \infty$ to obtain $M_{N-1} \to \delta_{\tilde{\nu}^{\min}} \in \mathcal{P}(\mathcal{P}(\mathbb{T})^d)$.
- Enough information to pass to the limit in the PDE.

• Need to pass to the limit in the diffusion matrix $A^{\text{eff},N}$:

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy.$$

$$\begin{split} & \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ (M_N - M_{N-1}(M_N)_1) \ dy \\ & = \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) M_{N-1} \ dy \\ & \leq \left\| I + \nabla \Psi^N \right\|_{L^2(M_{N-1})} \left\| \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) \right\|_{L^2(M_{N-1})} \ . \end{split}$$

- The function $M_N/(M_{N-1})$ is symmetric in all but one of its variables. Use techniques due to Lions pass to $N \to \infty$ on $C(\mathcal{P}(\mathbb{T}^d))$. Similarly pass to $N \to \infty$ to obtain $M_{N-1} \to \delta_{\bar{\rho}\min} \in \mathcal{P}(\mathcal{P}(\mathbb{T})^d)$.
- Enough information to pass to the limit in the PDE.

• Need to pass to the limit in the diffusion matrix $A^{\text{eff},N}$:

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy.$$

$$\begin{split} & \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ (M_N - M_{N-1}(M_N)_1) \ \mathrm{d}y \\ & = \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) M_{N-1} \ \mathrm{d}y \\ & \leq \left\| I + \nabla \Psi^N \right\|_{L^2(M_{N-1})} \left\| \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) \right\|_{L^2(M_{N-1})} \,. \end{split}$$

- The function $M_N/(M_{N-1})$ is symmetric in all but one of its variables. Use techniques due to Lions pass to $N \to \infty$ on $C(\mathcal{P}(\mathbb{T}^d))$. Similarly pass to $N \to \infty$ to obtain $M_{N-1} \to \delta_{\text{cmin}} \in \mathcal{P}(\mathcal{P}(\mathbb{T})^d).$

• Need to pass to the limit in the diffusion matrix $A^{\text{eff},N}$:

$$A^{\text{eff},N} = \beta^{-1} \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) M_N(y) dy.$$

$$\begin{split} & \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ (M_N - M_{N-1}(M_N)_1) \ \mathrm{d}y \\ & = \int_{(\mathbb{T}^d)^N} (I + \nabla \Psi^N(y)) \ \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) M_{N-1} \ \mathrm{d}y \\ & \leq \left\| I + \nabla \Psi^N \right\|_{L^2(M_{N-1})} \left\| \left(\frac{M_N}{M_{N-1}} - (M_N)_1 \right) \right\|_{L^2(M_{N-1})} \,. \end{split}$$

- The function $M_N/(M_{N-1})$ is symmetric in all but one of its variables. Use techniques due to Lions pass to $N \to \infty$ on $C(\mathcal{P}(\mathbb{T}^d))$. Similarly pass to $N \to \infty$ to obtain $M_{N-1} \to \delta_{\text{cmin}} \in \mathcal{P}(\mathcal{P}(\mathbb{T})^d).$
- Enough information to pass to the limit in the PDE.

- The order matters
- Diffusive + mean field limit for hypoelliptic systems?
- Second-order characterisation of $N \to \infty$ limit.

- The order matters.
- Diffusive + mean field limit for hypoelliptic systems?
- Second-order characterisation of $N \to \infty$ limit.

- The order matters.
- Diffusive + mean field limit for hypoelliptic systems?
- Second-order characterisation of $N \to \infty$ limit.

- The order matters.
- Diffusive + mean field limit for hypoelliptic systems?
- Second-order characterisation of $N \to \infty$ limit.

Conclusions

References

 M. G. Delgadino, R. S. Gvalani, & G. A. Pavliotis, On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions, submitted, arXiv:2001.03920.

I nank you

References

 M. G. Delgadino, R. S. Gvalani, & G. A. Pavliotis, On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions, submitted, arXiv:2001.03920.

Thank you.