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Many-particle systems

Many-particle systems

N indistinguishable interacting particles in = R? etc.
X! € Q: location of the i particle, i = 1,...,N.
X, are i.i.d random variables with law vy € P(RY).

B] B,
W N=IVW (X - X)) o
X «——>» X

v v

—VV(xi) —VV(X])

N
. . 1 . ; .
dX; = —-vv(x}) — v § VWX, —X{) dt + /28~ dB;,
i#

where V, W € CZ(R‘I ), 1-periodic, even, Bi independent Wiener processes.
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Some applications:

@ Molecules of a gas
Opinions of individuals
Collective motion of agents
Particles in a granular medium

Nonlinear synchronizing oscillators

Liquid crystals
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Some applications:
@ Molecules of a gas
@ Opinions of individuals
@ Collective motion of agents
@ Particles in a granular medium
@ Nonlinear synchronizing oscillators

@ Liquid crystals

Qualitati

The Kuramoto model: W(x) = —\/% cos (2m%) with Q = S (the quotiented process)
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Applications

The Fokker—Planck equation

@ Hamiltonian: HY (xi, ..., xy) := ﬁ 2o Wi —x) + 32, Vx)

@ Associated Fokker—Planck/forward Kolmogorov equation for the law
VN =TLaw(X],...,XN):

N =B71AVN + V- (VHENVY),  (1,x) € (0,00) x (RHN
W) =) =@ e P(RHY)

@ Initial data i.i.d.



Consider the empirical measure : () := % SV i € P(RY). Easier to study E [v™M)]:

i=1
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Aggregate behaviour: the mean-field limit

Consider the empirical measure : () := % >y, Oyi € P(RY). Easier to study E [v™M)]:

Theorem (The mean-field limit/propagation of chaos)
AsN — oo, E [V(N)] converges in weak-* to v(t,dx) = v(t,x) dx, which solves (weakly):

v =B"1Av + V- (W(VWxv + VV)) (McKean-Vlasov equation)

with initial datum vy € P(RY).

Another interpretation: ¥ — v®N as N — oo.
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e behaviour: the mean-field limit

Aggregate behaviour: the mean-field limit

Consider the empirical measure : () := % >y, Oyi € P(RY). Easier to study E [v™M)]:

Theorem (The mean-field limit/propagation of chaos)
AsN — oo, E [V(N)] converges in weak-* to v(t,dx) = v(t,x) dx, which solves (weakly):

v =B"1Av + V- (W(VWxv + VV)) (McKean-Vlasov equation)

with initial datum vy € P(RY).

Another interpretation: ¥ — v®N as N — oo.
@ The McKean-Vlasov equation:

@ Classical: McKean *66, Oelschliger *84, Girtner °88, Sznitman *91 (coupling)

@ Rates of convergence: Sznitman *91, Mouhot-Mischler ’ 13, Hauray—Mischler 14,
Eberle et al. *17 (coupling)

© Singular interactions: Jabin—Wang 17, Serfaty "18
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N
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with W, V chosen to be 1-periodic.
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The diffusive limit e — 0

We place ourselves in the setting:

N
: ) 1 . . .
dx® = —Vvv(e~1x)°) - v S OVW(ET (X - X)) dr + /281 dB
i
with W, V chosen to be 1-periodic.
Let p=V = Law(X¢, ..., X"*°) and consider the diffusive rescaling
05N (1) == e NN (e 7y e 7)€ P(RDY).

Interpretation: zooming out in space and going forward in time.
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Can pass to the limit:
@ Bensoussan—Lions—Papanicolaou ’78 (PDE approach)
@ Kipnis—Varadhan ’86 (Probabilistic approach)
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The diffusive limit e — 0

The quotiented N-particle system

N
X! = -Vv(X)) — v § VW(X; —X]) dt + /28~ dB;,
i#j

X! € T¢ and B! are T¢-valued Wiener processes.



Two distinguished limits
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The diffusive limit e — 0

The quotiented N-particle system

N
dX; = VvV () - - D VW] — X)) dt+ /28~ dB,
i
X! € T¢ and B! are T¢-valued Wiener processes.

This is a reversible, ergodic, diffusion process with a unique N-particle invariant measure Gibbs
measure

—H'®

= f g*HN()') dy7
TdN

My (x)

and the law 7V evolves according to

{a,ﬁN =B71AN + V- (VHYDN), (1,x) € (0,00) x (TN
N0) =5 = ez vy (k+x) € P((T)V)

Periodic rearrangement of v/V.
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Theorem (The diffusive limit)

Consider p*N the solution to the rescaled Fokker—Planck equation with initial data
pg’N € P((RYN). Then, for all t > 0 the limit

PN (1) = tim p> (1)
e—0

exists. Furthermore, the curve of measures p* : [0,00) — Peym((RY)N) satisfies the heat
equation

8tpN,* —Vv. (Aeff’NVpN’*) ,
with initial data p>* (0) = lim_, pg’N and where the covariance matrix is given by the

Kipnis—Varadhan formula

AN = g=1 (W)N(l + VN () My (y) dy,

. . ) . . N N
with My the Gibbs measure of the quotiented N particle system and UV : (Td ) — (Rd ) the
unique mean zero solution to the associated corrector problem

V- (MyVIY) = —VMy .
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Theorem (The diffusive limit)

Consider p*N the solution to the rescaled Fokker—Planck equation with initial data
pg’N € P((RYN). Then, for all t > 0 the limit

PN (1) = tim p> (1)
e—0

exists. Furthermore, the curve of measures p* : [0,00) — Peym((RY)N) satisfies the heat
equation

8tpN,* —Vv. (Aeff’NVpN’*) ,
with initial data p>* (0) = lim_, pg’N and where the covariance matrix is given by the

Kipnis—Varadhan formula

AN = g=1 (W)N(l + VN () My (y) dy,

. . ) . . N N
with My the Gibbs measure of the quotiented N particle system and UV : (Td ) — (Rd ) the
unique mean zero solution to the associated corrector problem

V- (MyVIY) = —VMy .

The diffusive limit is affected by the properties of the quotiented system on the torus!
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equation.
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Question: limy_— oo p =7,
We already know pSN — pS®N N — oo where p® solves the rescaled McKean—Vlasov
equation. Another question : llmeﬁo pS®N 37,

e—0
pe,N
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Theorem (Delgadino—G—Pavliotis *20)
Assume that the quotiented system has a phase transition at some ﬂc. Then for B < B¢

lim lim p*" = lim lim p*
N— oo e—=0 e—+0N—o0

£, QN

On the other hand if B > B, there exists initial data Py such that

lim lim pS" # lim lim
N~>ooe~>0p # a~>0N~>oop
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The space Pyym ((R)Y)

Due to the indistinguishability assumption on the particles their joint law is invariant under
relabelling of the particles. In probability this is known as exchangeability, i.e., the law
l/N S Psym ((Rd)N)
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The space Pym ((R4)N) and its limit

The space Pyym ((R)Y)

Due to the indistinguishability assumption on the particles their joint law is invariant under
relabelling of the particles. In probability this is known as exchangeability, i.e., the law
l/N c Psym ((Rd)N)
Question: Given some {p" },en € Poym ((RY)Y) what does Nlim oY mean?
—00

Definition (The limit of of Pgym ((R?)V))
Given a family {p" } ye such that p¥ € Pyym ((R?)N) we say that

PN =X e P(PRY)), asN— oo,
if for every n € N we have

pY —=* X" € Poym((RN)"), asN — oo,

where X" € Poym ((Rd)") is defined by duality as follows

(X", ) =/ /@dp®" dX(p),
P(P(RY))

forall o € Cp((RY)") and p)f = [ipayw—n PV d¥y—ni1...dry € Poym ((RY)") is the n®
marginal of pV
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The space Pym ((R4)N) and its limit

The space Pyym ((R)Y)

Another interpretation:

Definition (Empirical measure)

Given some pV € Pyym ((RY)V) we define its empirical measure 5V € P(P(R?)) as follows:
P = Tw#to"

where 7V : (R?)N — P(R?) is the measurable mapping (xi, . ..,xy) = N~' SN 8.

Futhermore, given a family {p" }xen, we have that oV — X € P(P(R?)) if and only if
PN —* X, i.e tested against Cy(P(R?)).
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The space Pyym ((R)Y)

Another interpretation:

Definition (Empirical measure)

Given some pV € Pyym ((RY)V) we define its empirical measure 5V € P(P(R?)) as follows:
P = Tw#to"

where 7V : (R?)N — P(R?) is the measurable mapping (xi, . ..,xy) = N~' SN 8.

Futhermore, given a family {p" }xen, we have that oV — X € P(P(R?)) if and only if
PN —* X, i.e tested against Cy(P(R?)).

Lemma (de Finneti—-Hewitt—Savage)

Given a sequence {p" }nen, such that p € Peym (RY)N) for every N, assume that the
sequence of the first marginals {p) }yen € P(RY) is tight. Then, up to subsequence, not
relabelled, there exists X € P(P(RY)) such that p¥ — X.
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The space Pym ((R4)N) and its limit

The space Pyym ((R)Y)

Another interpretation:

Definition (Empirical measure)

Given some pV € Pyym ((RY)V) we define its empirical measure 5V € P(P(R?)) as follows:
P = Tw#to"

where 7V : (R?)N — P(R?) is the measurable mapping (xi, . ..,xy) = N~' SN 8.

Futhermore, given a family {p" }xen, we have that oV — X € P(P(R?)) if and only if
PN —* X, i.e tested against Cy(P(R?)).

Lemma (de Finneti—-Hewitt—Savage)

Given a sequence {p" }nen, such that p € Peym (RY)N) for every N, assume that the
sequence of the first marginals {p) }yen € P(RY) is tight. Then, up to subsequence, not
relabelled, there exists X € P(P(RY)) such that p¥ — X.

Conclusion: The limit of the space Peym ((RY)V) is P(P(R?)). Similarly the limit of
Poym((T)V) is P(P(T%)).
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Free energies, I'-convergence, and gradient flows

Gradient flows

N-particle free energy, EV : Peym(R))N) — (—o0, +00]:

1
VM = (B" /( AT /( A d,o”(x>> :

vV is a gradient flow of EV w.r.t rescaled 2-Wasserstein distance \ﬁdz on 'Psym((Rd)N ) (cf.
Jordan—Kinderlehrer—Otto *98, Ambrosio—Gigli-Savare *08).



Qualitative properties
®0

Free energies, I'-convergence, and gradient flows

Gradient flows

N-particle free energy, EV : Peym(R))N) — (—o0, +00]:

1
VM = (B" /( AT /( A d,o”(x>> :

is a gradient flow of EV w.r.t rescaled 2-Wasserstein distance \ﬁdz on 'Psym((Rd )N ) (cf.

Jordan—Kinderlehrer—Otto *98, Ambrosio—Gigli-Savare *08).
Mean field free energy Epr : P(RY) — (—o0, +-00]:

Evilo) = B /plog dx+/ %) dp(x) + = //RR ((r = ) dp(») dp ().

v is a gradient flow of Eyr w.r.t 2-Wasserstein distance d on 'P(Rd).

N



Qualitative properties
®0

Free energies, I'-convergence, and gradient flows

Gradient flows

N-particle free energy, EV : Peym(R))N) — (—o0, +00]:

1
VM = (a—' /( AT /( A d,o”(x>> :

is a gradient flow of EV w.r.t rescaled 2-Wasserstein distance \ﬁdz on 'Psym((Rd)N ) (cf.
Jordan—Kinderlehrer—Otto *98, Ambrosio—Gigli-Savare *08).
Mean field free energy Epr : P(RY) — (—o0, +-00]:

Evilo) = B /plog dx+/ %) dp(x) + = //RR ((r = ) dp(») dp ().

v is a gradient flow of Eyr w.r.t 2-Wasserstein distance d on 'P(Rd).

N

Lemma (Messer—Spohn ’82)

The N-particle free energy EN T-converges to E¥ : P(P(R?)) — (—o0, +00], where

E%[X] = /P o Erl] X(0).
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Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: EN | Eyr with particles living in
T9. We consider the periodic N-particle energy EV and the periodic mean field energy Ep.
Then:
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Then:
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Free energies, I"-convergence, and gradient flows

Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: EN | Eyr with particles living in
T¢. We consider the periodic N-particle energy EV and the periodic mean field energy Epr.
Then:

Lemma (Messer—Spohn ’82)

The N-particle free energy EN T-converges to E® : P(P(T%)) — (—o0, +-00], where
B = [ Bwrlel ax(o).
P (1)

As a consequence, if {My }nen is the sequence of minimisers of EN (namely the sequence of
Gibbs measures), then any accumulation point X € P(P(T?)) of this sequence is a minimiser
of E*°.
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Free energies, I'-convergence, and gradient flows

Gradient flow reformulation of the mean field limit

Similar analysis can be carried out for the quotiented system: EN | Eyr with particles living in
T¢. We consider the periodic N-particle energy EV and the periodic mean field energy Epr.
Then:

Lemma (Messer—Spohn ’82)

The N-particle free energy EN T-converges to E® : P(P(T%)) — (—o0, +-00], where
B = [ Bwrlel ax(o).
P (1)

As a consequence, if {My }nen is the sequence of minimisers of EN (namely the sequence of
Gibbs measures), then any accumulation point X € P(P(T?)) of this sequence is a minimiser
of E*°.

Theorem (Mean field limit, Carrillo-Delgadino—Pavliotis *19)

Fix some t > 0, then,
lim V(1) =X R?
im0 () = X € P(P(RY)
Furthermore, we have that the curve X : [0, 00) — P(P(RY)) is a gradient flow of E™ under
the 2-Wasserstein metric 9.
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The quotiented process and phase transitions

Phase transitions
Consider the periodic McKean—Vlasov equation:

{8,17 =B 1A+ V- (H(VW x5+ VV)) (1,x) € (0,00) x T¢
17(0) = 170 = ZkEZd Vo(k —|—x) .
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Phase transitions
Consider the periodic McKean—Vlasov equation:

O =B TAD+ V- (B(VW D+ VV)) (t,x) € (0,00) x T¢
17(0) = 170 = ZkEZd l/()(k —|—x) .

Question: What is a phase transition?
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The quotiented process and phase

Phase transitions
Consider the periodic McKean—Vlasov equation:
O =B 'ADHV - (D(VWx & +VV)) (t,x) € (0,00) x T¢
17(0) = 170 = ZkEZd l/()(k —|—x) .
Question: What is a phase transition?
Definition (Phase transition)
The periodic mean field McKean—Vlasov equation is said to undergo a phase transition at some
0< B <ooif
@ For 8 < B, there exists a unique steady state.

@ For 8 > ., there exist at least two steady states.

The temperature (3, is referred to as the point of phase transition or the critical temperature.
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The quotiented process and phase

Phase transitions
Consider the periodic McKean—Vlasov equation:
O =B 'ADHV - (D(VWx & +VV)) (t,x) € (0,00) x T¢
17(0) = 170 = ZkEZd l/()(k —|—x) .
Question: What is a phase transition?
Definition (Phase transition)
The periodic mean field McKean—Vlasov equation is said to undergo a phase transition at some
0< B <ooif
@ For 8 < B, there exists a unique steady state.

@ For 8 > ., there exist at least two steady states.

The temperature (3, is referred to as the point of phase transition or the critical temperature.

Example (noisy Kuramoto model)

Letd = 1, W = —cos(2mx), and V = 0. Then for < 2, oo = 1 is the unique minimiser of
Eyr and steady state. For 3 > 2, the steady states are given by Voo = 1 and the family of
translates of some measure ﬁg‘“. Moreover for B > 2, f/g“‘ (and its translates) are the only

minimisers of the periodic mean field energy Eyr. Thus, B, = 2 is the critical temperature.
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Phase transitions

Consider the periodic McKean—Vlasov equation:
O =B 'ADHV - (D(VWx & +VV)) (t,x) € (0,00) x T¢
17(0) = 170 = ZkEZd l/()(k —|—x) .
Question: What is a phase transition?
Definition (Phase transition)
The periodic mean field McKean—Vlasov equation is said to undergo a phase transition at some
0< B <ooif
@ For 8 < B, there exists a unique steady state.

@ For 8 > ., there exist at least two steady states.

The temperature (3, is referred to as the point of phase transition or the critical temperature.

Example (noisy Kuramoto model)

Letd = 1, W = —cos(2mx), and V = 0. Then for < 2, oo = 1 is the unique minimiser of
Eyr and steady state. For 3 > 2, the steady states are given by Voo = 1 and the family of
translates of some measure ﬁg‘“. Moreover for B > 2, f/g“‘ (and its translates) are the only

minimisers of the periodic mean field energy Eyr. Thus, B, = 2 is the critical temperature.

see Carrillo-G—Pavliotis—Schlichting *19 for a detailed study.
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Figure: A schematic of the notation. The P.R. denotes periodic rearrangement.
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oce

e—0

/\A
p=N (1) PV (1)
N — oo{ ;N — 00
X=(1) X (1)

\/v X](l‘)

e—0

Question: Is X; = X»?
Non-commutativity conjectured by Gomes—Pavliotis ’18 based on numerics in
slightly different setting.
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The limit N oo followed by e — 0

N — oothene — 0

Theorem (Delgadino—G—Pavliotis *20)

Consider the set of initial data given by {p§}e>0 C P(RY), and consider the periodic
rearrangement at scale € > 0, i.e.

75(A) =e' > pi(e(A+Kk)  fore>0.
kezd
Assume that there exists C > 0, p > 1 and v* € P(T9) such that ¢ (t), with initial data
7§ (x), satisfies

sup d2(0% (1), 0%) < CrP .
>0

Then,
: 2
lim &5 (S7 05, 57 po) = 0,

where S is the solution semigroup associated to the rescaled PDE on R?, pg € P(R?) is the
weak-x limit of pjj, and S} is the solution semigroup of the heat equation

dp =V - (ASVp),
where the covariance matrix

Al =7 | 1V 0)) 6 0).
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The limit N oo followed by e — 0

N — oothene — 0

Theorem (Delgadino—G—Pavliotis *20)
W* : T¢ — R? is the solution to the associated corrector problem
V.- (0*VI*) = -Vr*.

Furthermore, assume that X (t) is the mean field limit and that imy—; oo pg’N = XS = 593'
Then it holds that:

X (t) = lim lim p&" = ginox(z)f = SF#X,,

e—>0N—o00

where Xy = épg.
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The limit e — 0 followed by N — oo

e — 0then N — oo

Theorem (Delgadino—G—Pavliotis 20)

Assume that the periodic mean field energy Eyp admits a unique minimiser ™™, then we have
that pN+* satisfies, for any fixed t > 0,

lim p"* (1) = X5 (r) = SP"#Xo,
N—o0
where Xg € P(P(R?)) is the limit of p"-* (0), and SP™ : P(RY) — P(R?) is the solution

semigroup of the heat equation
ap =V - (AGL V),

where the covariance matrix
ah =7 [+ vumng)) amn),
with U™in . T4 s R4 the solution to the associated corrector problem
V- (prinygminy — _ypmin
It follows then, that for any fixed t > 0, the solution p® " (t) satisfies

X — 1 1i =,N — 1 N, * _ ¢min Xo .
2(f) = fim lim p=%(r) = lim p™" (1) = S™"#Xo
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Non-commutativity

@ The limit X (7) sees the long time behaviour of & and thus steady states.
@ The limit X»(7) sees minimisers of Ewmr.

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with V = —n cos(2mx), W = — cos(2mx) withn € (0, 1). Then the mean
field model on the torus has a phase transition at some 0 < B¢ < oco. It has at least two steady
states for B8 > fBe, U* and D™ the minimiser of Eyr.
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Non-commutativity

@ The limit X (7) sees the long time behaviour of & and thus steady states.
@ The limit X»(7) sees minimisers of Ewmr.

Thus we can break commutativity ahead of the phase transition.

Example (A biased Kuramoto model)

Consider the model with V = —n cos(2mx), W = — cos(2mx) withn € (0, 1). Then the mean
field model on the torus has a phase transition at some 0 < B¢ < oco. It has at least two steady
states for B8 > fBe, U* and D™ the minimiser of Eyr.

Additionally, for B > B. and pS’N = (p§)®N such that 7* =37, %5 (ex) we have that

lim lim p® Nty = X\ () = S #Xo # ST #X) = Xo(r) = lim lim oV (7).

e>0N— N—00 e—0
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@ Pass to the mean field limit (using CDP’19) to obtain X° (7).

@ For the associated mean field SDE on the torus consider a moving corrector problem:
V(@5 (0)Vx) = =V(a%), [ (1) ~ exp(=B(W x (1) = V)

and obtain time-dependent estimates:

||Xi”C"1('er) Sl

l0dllongrey < 3 B @(0),5°).
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@ Pass to the mean field limit (using CDP’19) to obtain X° (7).

@ For the associated mean field SDE on the torus consider a moving corrector problem:
V(@5 (0)Vx) = =V(a%), [ (1) ~ exp(=B(W x (1) = V)

and obtain time-dependent estimates:
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l0dllongrey < 3 B @(0),5°).

m=1

@ Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of
the martingale CLT.
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Non-commutativity

Sketch of proof for N — oo followed by € — 0

@ Pass to the mean field limit (using CDP’19) to obtain X° (7).

@ For the associated mean field SDE on the torus consider a moving corrector problem:
V(i ()VX) = ~V(i), (1) ~ exp(—BW x (1) — V)
and obtain time-dependent estimates:
||XiHCrn(1rd) <1

l0dllongrey < 3 B @(0),5°).

m=1

@ Using coupling techniques (a’ la Eberle et al.) prove an initial data dependent version of
the martingale CLT.

@ Pass to the limit as € — 0.
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Sketch of proof for ¢ — 0 followed by N — oo

@ Need to pass to the limit in the diffusion matrix A°fN:

AT =g [0 M) .

@ Keyidea My = My_(My)1 as N — oo + natural uniform in N estimate on o

[ T Gy i) a

(I+VI(>y) (MMN

— (MN)1 | My—1 dy
(TzI)N

M,
<11+ V9 2y H (MiNli] - (MN)I)

L2(My_1)
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Sketch of proof for ¢ — 0 followed by N — oo

@ Need to pass to the limit in the diffusion matrix A°fN:

AN = =1 (I+VEY(y) My(y) dy.

(dN

@ Keyidea My = My_(My)1 as N — oo + natural uniform in N estimate on o

[ T Gy i) a

My
- [, oy (57

(TzI)N

- (MN)I) My_ dy

<+ T g [ (s = ) .
.

@ The function My /(My—1) is symmetric in all but one of its variables. Use techniques due
to Lions pass to N — oo on C(P(T¢)). Similarly pass to N — oo to obtain
My_—1 — 5I;min S P(P(T)d)
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Non-commutativity

Sketch of proof for ¢ — 0 followed by N — oo

@ Need to pass to the limit in the diffusion matrix A°fN:

AN = =1 (I+VEY(y) My(y) dy.

(dN

@ Keyidea My = My_(My)1 as N — oo + natural uniform in N estimate on o

[ T Gy i) a

My
- [, oy (57

(TzI)N

o)

- (MN)I) My_ dy

L2(My_1)

@ The function My /(My—1) is symmetric in all but one of its variables. Use techniques due
to Lions pass to N — oo on C(P(T¢)). Similarly pass to N — oo to obtain
My_—1 — 5I;min S P(P(T)d)

@ Enough information to pass to the limit in the PDE.
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Conclusions and future directions

@ The order matters.
@ Diffusive + mean field limit for hypoelliptic systems?

@ Second-order characterisation of N — oo limit.
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