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Introduction

Waulff shapes in R”

Consider a convex body (compact with interior points) K with 0 € int(K)
and its associated Minkowski content
M(E, K) = liminf,_o(|E + rK| — |E|)/r. If E has C! boundary S

M(E, K) = / hic(N) dS = / [N+, *)
S S
where N is a unit normal to 0E and hx(u) = ||u||k« = sup,cx(u, V) is
the support function of K. || - ||k« is also referred to as the dual norm.

(*) is an anisotropic energy used to model the shape of an equilibrium
crystal minimizing Gibbs' free energy ( 1875). The solution to the problem
for polyhedra was described by Wulff (1895).

v

M. Ritoré Woulff shapes in H 2/33



Introduction

Wulff shapes in R”

The problem is to minimize M(E, K) in the class of sets E with given
volume.

The solutions are translations and dilations of K. This is proven from the
Brunn-Minkowski inequality

’E + rK|1/n o ‘E|1/n > r‘K|1/n
Taking limits, since M(K, K) = n|K]|,

M(E,K) _ M(K,K)
’E|(n—1)/n — |K’(n—1)/n'

K is known as the Wulff shape for the functional (*)
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Introduction

Waulff shapes in R”
@ The functional (*) is used in crystallography (Gibbs free energy).
Wulff gave a construction to obtain K from the support function
@ Use of Brunn-Minkowski to obtain a solution by Dinghas (1944)

e Mathematical problem considered by Taylor (1978), Fonseca (1991)
and Fonseca-Miiller (1991)
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Introduction

The Heisenberg group H?
(R3, %), where x is the product

(z,t)x(Z,t) = (z+ 2, t + t + Im(2Z)), (z=x+1y),

(z,t), (Z,t')eR3=C xR

A basis of left invariant vector fields is given by

0 0 0 xﬁ T:ﬁ

X = y=9 _ .
ax TV 5 3y ot ot

X,Y generate the horizontal distribution H, (-,-) is the Riemannian

metric so that X, Y, T is orthonormal basis, D Levi-Civita connection, V
pseudo-hermitian connection (metric with Tor(U, V) = 2(J(U), V) T, J)
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Introduction

Sub-Finsler norms in H?!
We start with a given convex body K C R? such that 0 € int(K). We
define

llullk =inf{A >0:ue K}
We assume || - ||k strictly convex and that {|| - ||x = 1} is C? outside 0.
The dual norm is

lullkx = sup {u,v)
Ivllk<1

The projection 7k (u) is defined as the only vector (strict convexity) such
that

(i (u), u) = [[u|

It satisfies ||k (u)||x =1 when u #0

K-
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Introduction

Sub-Finsler norms in H*

The planar norm || - ||k is extended to a left-invariant norm in A

(11X + gYllx)p = [I(f(p), £(P))lIk

Sub-Finsler perimeter in H*

Let £ C H' be a measurable set, || - || the left-invariant norm associated
to K C R?, and Q C H! an open subset. We say that E has locally finite
K-perimeter in € if for any relatively compact open set V C Q we have

|OE|k (V) = sup{/ div(U) dH* : U € H(V), |U]lk .00 < 1} < +o00.
E

|OE|k (V) is the K-perimeter of E in V. If K is the closed unit disc
centered at 0 this is the classical sub-Riemannian perimeter
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Introduction

Sub-Finsler perimeter in H*

Riesz Representation Theorem implies that |0E |k extends to a Radon
measure on 2 and the existence of a |0E|k-measurable horizontal vector
field vk in Q so that

/div(U) dH! :/<U,u,<> d|0E|k
Q Q

for any U horizontal of class C* with compact support.

Given K, K’, the measures |0E|x, |OE |k are absolutely continuous with
respect to each other. Moreover, Radon-Nikodym's Theorem implies

__
8E|K’7 I/K - ||]/K/||K7*

|0E|k = [lvk Ik«
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Introduction

Sub-Finsler perimeter in H*

In particular, if E has boundary S of class C! or Euclidean Lipschitz
OEIK(V) = [ lnllceclOElo = [ [INhllx.cdS
snv snv

_ / (Np, 7 (Np)) dS.
snVv

where vy, is the horizontal unit normal, D is the closed unit disc centered
at 0 and so d|JE|p is the classical sub-Riemannian measure, and dS is the
Riemannian measure of S.

v
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Introduction

Problem

Minimize K-perimeter under a volume constraint

Previous work
@ A.P. Sanchez, Ph.D. Thesis, Tufts U., 2017.
@ Work in progress by V. Franceschi, R. Monti, A. Righini, and M.

Sigalotti
y
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First variation of perimeter for C? boundaries

We drop the subscript K

Theorem (First variation of perimeter)

Let S be an oriented C? surface immersed in H!, U be a C? vector field
with compact support on S, normal component u = (U, N) and {¢s}scr
the associated flow. Let n = 7(v,). Then we have

d
ds

Ap(S) = [ (divsn = 2N, T)(J(Nh). ) wdS
s=0 S

+ / divg (HNh||*UT = unT) ds,
S

where divs is the Riemannian divergence in S, and the superscript T
indicates the tangent projection to S.

Proof as in Ritoré-Rosales (2008)
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First variation of perimeter for C? boundaries

Lemma

Let S be a C2 surface immersed in H! with unit normal N horizontal unit
normal vp. Let Z = —J(vp). Then we have

divs n — 2(N, T)(J(Ns), ) = (Dz1, Z).

Corollary

Let S be an oriented C? surface immersed in H!. Let U be a C? vector
field with compact support on S\ Sp, normal component u = (U, N) and
{¢s}scr the associated flow. Let n = w(Nj). Then we have

d

ds

Aps(S)) = / u(Dz1, Z) dS,
s=0 S

K-mean curvature Hg
We let Hx = <DZ777 Z>
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First variation of perimeter for C? boundaries

The mean curvature can be computed along a horizontal curve ~
parameterized by arc-length as

(G,

where D/ds is the covariant derivative along the curve ~.

Corollary (uniqueness of horizontal curves)

Let S be a C? oriented surface immersed in H' with mean curvature Hg.
Let v:/ — S\ Sp be a horizontal curve in the regular part of S
parameterized by arc-length with v(s) = (x1(s), x2(s), t(s)). Then

z(s) = (x1, x2) satisfies a differential equation of the form

z = F(2),

for some smooth function F.
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First variation of perimeter for C? boundaries
Lemma

Let z: | — R? be a unit speed clockwise parameterization of a translation

of the unit sphere of || - || in R2. Let v be a horizontal lifting of z. Then
~ satisfies the equation

1 = (2 n (), A)-

T(J(9) =7 = gr(J(H) =7 = (r(J(3). %) = L.
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First variation of perimeter for C? boundaries

Theorem

Let || - ||x be a smooth, strictly convex, left-invariant norm in H. Let v
be a horizontal curve satisfying equation

({4 = H,

for some constant H > 0. Then +y is either a horizontal straight line if
H = 0 or the horizontal lifting of a dilation and traslation of a unit speed
clockwise parameterization of the circle || - ||k = 1 in case H > 0.

Theorem

Let S be a C? surface without singular points and constant mean
curvature Hyx > 0. Then S is foliated by horizontal liftings of translations
of the circle || - ||k = 1/Hg.
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The Wulff shape

Definition

Let K C R? be a convex body, and consider a clockwise-oriented
L-periodic parameterization v : R — R? of the Lipschitz curve || - ||x = 1.
For any u € R consider the horizontal lifting I',(,) : R — H! of the curve
t_(u)(7) with initial point (0,0,0).

The set Bk is defined as

Bk = U Fw(u)([u,u—i—L]).
u€elo,L)

We shall refer to Bx as the Wulff shape associated to the left-invariant
norm || - [|x. Its boundary Sk = 0Bk will be called the Wulff sphere.
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The Wulff shape

Proposition (geometric properties of the Wulff shape)
Let K C R"” be a convex body with 0 € int(K). We consider the set

Ko = U (—p + K).
peEOK

Then we have

Q 0 € Kp.

@ Kp is a convex body.

© Ko is the difference body K — K of K. In particular, Ky is centrally

symmetric.
@ If K is centrally symmetric then Ky = 2K.
© We have
U —p+K) = |J (—p+0K).

pEdK pEIK
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The Wulff shape

The centrally symmetric case
If K is centrally symmetric we have the additional properties
@ The projection of Bk to the plane t =0 is Ko = 2K

@ Bk is symmetric with respect to a horizontal plane (Euclidean
symmetry)

The general case

@ The projection of Bk to the plane t = 0 is the difference body
K — K, that it is centrally symmetric

@ Bk is not necessarily symmetric with respect to a horizontal plane
@ By is the union of two graphs g1, g» of class C? outside the poles
defined over K. Moreover g1 < g» on int(Kp) and g1 = g» on 9Kp.

The graph of the function g = (g1 + g2)/2 separates Sk into two
pieces S:Q and Sj.
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The Wulff shape
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Figure: The Wulff shape associated to the norm || - ||, = ((x1/a1)? + (xo/a2)?)'/?
with a = (1,1.5). Observe that the projection to the horizontal plane t = 0 is an
ellipse with semiaxes of lengths 2 and 3.
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The Wulff shape

norm, r = 1.5. The horizontal curve is the

projection of the equator to the plane t = 0. Since the r-norm is symmetric, the

Wulff shape projects to the set || - ||, < 2 in the t = 0 plane.

Figure: The Wulff shape Sk, for the r-
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The Wulff shape
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The Wulff shape

RN
R
it

oo N
i —
R

R SN

0
R s

252 S
R AN S
",;,;,—,i\:\\‘\“\“‘

NS
o

Figure: The ball B, obtained as Hausdorff limit of the Wulff shapes By, of the
r-norm when r converges to co




The Wulff shape
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Figure: The Wulff shape Bt , for the norm || - ||7 ,, with r = 2.
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The Wulff shape
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Figure: The ball Br obtained as limit of the Wulff shapes B7 , when r — oo.
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The Wulff shape (regularity properties)

Parameterization of the Wulff shape

Given any convex body K C R? with 0 € int(K) we parameterize OK as
v(s) = (x(s),y(s)) = r(s) (sin(s),cos(s)), seR.

where r(s) = p(sin(s),cos(s)) and p is the radial function of K.

Then we have the following parameterization of Sk.
x(u,v) =r(u+v)sin(u+v) — r(v)sin(v),
y(u,v) = r(u+ v)cos(u+ v) — r(v)cos(v),
t(u,v) = r(v)r(u+ v)(sin(v)cos(u + v) —

+ J; P (6) de.

Regularity properties follow from this expression. Also convergence in
Hausdorff distance of Wulff shapes

cos(v)sin(u + v))
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Minimization properties

Theorem

Let || - ||k be the norm associated to an strictly convex body K C R? with
C? boundary. Let r > 0 and h: rKy — R a C° function. Consider a subset
E C H! with finite volume and K-perimeter such that

graph(h) C E C rKy x R.

Then
|OE|k > |0BE|k,

where Bg is the Wulff shape with the same volume as E.
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Minimization properties

Proof

Let g : rKo — R the function defined by g,(x) = r2g(%x), where g is the
equatorial function separating Si. Let D be the graph of g, that D
separates rSk into two parts rS:g and rSy. Let W and W~ the vector
fields in rKp x R\ L defined by translating vertically the vector fields

WK(VO)‘rS;’ WK(VO)LSE’

respectively. Here 1q is the horizontal unit normal to Sk.
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Minimization properties

Proof

As a first step in the proof we show: if F C rKp X R is a set of finite
volume and K-perimeter so that rel int(D) C int(F), then the inequality

LF| < / (W+ — W~ Np)dD + |0F |
D

holds, where Np is the Riemannian normal pointing down and dD is the
Riemannian measure of D. Equality holds if and only if W = mx ()
|0k Fl-a.e. on FT = Fn{t> g} and W~ = 7x(vs) |0k F|-a.e. on

F~ = Fn{t < g/}. Here v is the horizontal unit normal to F.

The proof is done by applying the divergence theorem to W™ in F* and
W~ in F—, taking into account that

div W= = 1.
r

A suitable modification of W= must be done near the vertical line t-axis
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Minimization properties
Proof

We apply the previous construction to these sets

1 S JLER
8r 8r
&~ g ot
rSk
y
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Minimization properties

Proof
To get
L(rBk| + |rKo|(tm — tm)) = / (Wt — W™, Np)dD
D
+(tm — tm)/ 10l dO(rK0) + |8(rBx) .
8(FKO)
and

L(1EL + rKol(tm — tm)) < / (W* — W, Np)dD
D

-+ (tM = tm)/ ||1/0||*d8(rKo) + |8E|K
O(rKo)

v
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Proof
Hence

|0E|k > |0(rBk )|k + +(|E| — |rBk]).
Let f(p) = |0(pBk)|k + E(]E] — |pBk|). Since pBk has mean curvature
%, the first variation of the perimeter implies that the Wulff shape pBk is
a critical point of |0 - |k — £| - | for any variation. Therefore
|0(pBxk )| — %‘pBK‘/ =0. Hence

f'(p) = — % (IE = |pBkl).

So the only critical point of f corresponds to the value pg so that

|poBk| = |E|. Since the function p — |pBk]| is strictly increasing and
takes its values in (0, +00), we obtain that f(p) is a convex function with
a unique minimum at pg. Hence

[0E |k = f(r) = f(po) = |0(poBk )|k
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Open question

Is Bk a global K-perimeter minimizing set under a volume constraint?
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Thanks for your attention
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