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Introduction

Wulff shapes in Rn

Consider a convex body (compact with interior points) K with 0 ∈ int(K )
and its associated Minkowski content
M(E ,K ) = lim infr→0(|E + rK | − |E |)/r . If E has C 1 boundary S

M(E ,K ) =

∫
S
hK (N) dS =

∫
S
||N||K ,∗dS , (*)

where N is a unit normal to ∂E and hK (u) = ||u||K ,∗ = supv∈K 〈u, v〉 is
the support function of K . || · ||K ,∗ is also referred to as the dual norm.

(*) is an anisotropic energy used to model the shape of an equilibrium
crystal minimizing Gibbs’ free energy ( 1875). The solution to the problem
for polyhedra was described by Wulff (1895).
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Introduction

Wulff shapes in Rn

The problem is to minimize M(E ,K ) in the class of sets E with given
volume.

The solutions are translations and dilations of K . This is proven from the
Brunn-Minkowski inequality

|E + rK |1/n − |E |1/n ≥ r |K |1/n

Taking limits, since M(K ,K ) = n|K |,

M(E ,K )

|E |(n−1)/n
≥ M(K ,K )

|K |(n−1)/n
.

K is known as the Wulff shape for the functional (*)
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Introduction

Wulff shapes in Rn

The functional (*) is used in crystallography (Gibbs free energy).
Wulff gave a construction to obtain K from the support function

Use of Brunn-Minkowski to obtain a solution by Dinghas (1944)

Mathematical problem considered by Taylor (1978), Fonseca (1991)
and Fonseca-Müller (1991)
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Introduction

The Heisenberg group H1

(R3, ∗), where ∗ is the product

(z , t) ∗ (z ′, t ′) := (z + z ′, t + t ′ + Im(zz ′)), (z = x + iy),

(z , t), (z ′, t ′) ∈ R3 ≡ C× R

A basis of left invariant vector fields is given by

X =
∂

∂x
+ y

∂

∂t
, Y =

∂

∂y
− x

∂

∂t
, T =

∂

∂t
.

X ,Y generate the horizontal distribution H, 〈·, ·〉 is the Riemannian
metric so that X ,Y ,T is orthonormal basis, D Levi-Civita connection, ∇
pseudo-hermitian connection (metric with Tor(U,V ) = 2〈J(U),V 〉T , J)
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Introduction

Sub-Finsler norms in H1

We start with a given convex body K ⊂ R2 such that 0 ∈ int(K ). We
define

||u||K = inf{λ ≥ 0 : u ∈ λK}

We assume || · ||K strictly convex and that {|| · ||K = 1} is C 2 outside 0.
The dual norm is

||u||K ,∗ = sup
||v ||K≤1

〈u, v〉

The projection πK (u) is defined as the only vector (strict convexity) such
that

〈πK (u), u〉 = ||u||K ,∗.

It satisfies ||πK (u)||K = 1 when u 6= 0
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Introduction

Sub-Finsler norms in H1

The planar norm || · ||K is extended to a left-invariant norm in H

(||fX + gY ||K )p = ||(f (p), g(p))||K

Sub-Finsler perimeter in H1

Let E ⊂ H1 be a measurable set, || · ||K the left-invariant norm associated
to K ⊂ R2, and Ω ⊂ H1 an open subset. We say that E has locally finite
K -perimeter in Ω if for any relatively compact open set V ⊂ Ω we have

|∂E |K (V ) = sup

{∫
E

div(U) dH1 : U ∈ H1
0(V ), ||U||K ,∞ ≤ 1

}
< +∞.

|∂E |K (V ) is the K -perimeter of E in V . If K is the closed unit disc
centered at 0 this is the classical sub-Riemannian perimeter
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Introduction

Sub-Finsler perimeter in H1

Riesz Representation Theorem implies that |∂E |K extends to a Radon
measure on Ω and the existence of a |∂E |K -measurable horizontal vector
field νK in Ω so that∫

Ω
div(U) dH1 =

∫
Ω
〈U, νK 〉 d |∂E |K

for any U horizontal of class C 1 with compact support.

Given K ,K ′, the measures |∂E |K , |∂E |K ′ are absolutely continuous with
respect to each other. Moreover, Radon-Nikodym’s Theorem implies

|∂E |K = ||νK ′ ||K ,∗|∂E |K ′ , νK =
νK ′

||νK ′ ||K ,∗
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Introduction

Sub-Finsler perimeter in H1

In particular, if E has boundary S of class C 1 or Euclidean Lipschitz

|∂E |K (V ) =

∫
S∩V
||νh||K ,∗d |∂E |D =

∫
S∩V
||Nh||K ,∗ dS

=

∫
S∩V
〈Nh, πK (Nh)〉 dS .

where νh is the horizontal unit normal, D is the closed unit disc centered
at 0 and so d |∂E |D is the classical sub-Riemannian measure, and dS is the
Riemannian measure of S .
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Introduction

Problem

Minimize K -perimeter under a volume constraint

Previous work

A.P. Sánchez, Ph.D. Thesis, Tufts U., 2017.

Work in progress by V. Franceschi, R. Monti, A. Righini, and M.
Sigalotti
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First variation of perimeter for C 2 boundaries

We drop the subscript K

Theorem (First variation of perimeter)

Let S be an oriented C 2 surface immersed in H1, U be a C 2 vector field
with compact support on S , normal component u = 〈U,N〉 and {ϕs}s∈R
the associated flow. Let η = π(νh). Then we have

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

∫
S

(
divS η − 2〈N,T 〉〈J(Nh), η〉

)
u dS

+

∫
S

divS
(
||Nh||∗U> − uη>

)
dS ,

where divS is the Riemannian divergence in S , and the superscript >
indicates the tangent projection to S .

Proof as in Ritoré-Rosales (2008)
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First variation of perimeter for C 2 boundaries

Lemma

Let S be a C 2 surface immersed in H1 with unit normal N horizontal unit
normal νh. Let Z = −J(νh). Then we have

divS η − 2〈N,T 〉〈J(Nh), η〉 = 〈DZη,Z 〉.

Corollary

Let S be an oriented C 2 surface immersed in H1. Let U be a C 2 vector
field with compact support on S \ S0, normal component u = 〈U,N〉 and
{ϕs}s∈R the associated flow. Let η = π(Nh). Then we have

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

∫
S
u〈DZη,Z 〉 dS ,

K -mean curvature HK

We let HK = 〈DZη,Z 〉.
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First variation of perimeter for C 2 boundaries

The mean curvature can be computed along a horizontal curve γ
parameterized by arc-length as

〈D
ds
π(J(γ̇)), γ̇〉,

where D/ds is the covariant derivative along the curve γ.

Corollary (uniqueness of horizontal curves)

Let S be a C 2 oriented surface immersed in H1 with mean curvature HK .
Let γ : I → S \ S0 be a horizontal curve in the regular part of S
parameterized by arc-length with γ(s) = (x1(s), x2(s), t(s)). Then
z(s) = (x1, x2) satisfies a differential equation of the form

z̈ = F (ż),

for some smooth function F .

M. Ritoré Wulff shapes in H1 13 / 33



First variation of perimeter for C 2 boundaries

Lemma

Let z : I → R2 be a unit speed clockwise parameterization of a translation
of the unit sphere of || · ||K in R2. Let γ be a horizontal lifting of z . Then
γ satisfies the equation

1 = 〈D
ds
π(J(γ̇)), γ̇〉.

γ̇

J(γ̇)
K

π(J(γ̇)) = γ ⇒ D
dsπ(J(γ̇)) = γ̇ ⇒ 〈 Ddsπ(J(γ̇)), γ̇〉 = 1.
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First variation of perimeter for C 2 boundaries

Theorem

Let || · ||K be a smooth, strictly convex, left-invariant norm in H1. Let γ
be a horizontal curve satisfying equation

〈D
ds
π(J(γ̇)), γ̇〉 = H,

for some constant H ≥ 0. Then γ is either a horizontal straight line if
H = 0 or the horizontal lifting of a dilation and traslation of a unit speed
clockwise parameterization of the circle || · ||K = 1 in case H > 0.

Theorem

Let S be a C 2 surface without singular points and constant mean
curvature HK > 0. Then S is foliated by horizontal liftings of translations
of the circle || · ||K = 1/Hk .
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The Wulff shape

Definition

Let K ⊂ R2 be a convex body, and consider a clockwise-oriented
L-periodic parameterization γ : R→ R2 of the Lipschitz curve || · ||K = 1.
For any u ∈ R consider the horizontal lifting Γγ(u) : R→ H1 of the curve
t−γ(u)(γ) with initial point (0, 0, 0).
The set BK is defined as

BK =
⋃

u∈[0,L)

Γγ(u)([u, u + L]).

We shall refer to BK as the Wulff shape associated to the left-invariant
norm || · ||K . Its boundary SK = ∂BK will be called the Wulff sphere.
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The Wulff shape

Proposition (geometric properties of the Wulff shape)

Let K ⊂ Rn be a convex body with 0 ∈ int(K ). We consider the set

K0 =
⋃

p∈∂K
(−p + K ).

Then we have

1 0 ∈ K0.

2 K0 is a convex body.

3 K0 is the difference body K − K of K . In particular, K0 is centrally
symmetric.

4 If K is centrally symmetric then K0 = 2K .

5 We have ⋃
p∈∂K

(−p + K ) =
⋃

p∈∂K
(−p + ∂K ).
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The Wulff shape

The centrally symmetric case

If K is centrally symmetric we have the additional properties

The projection of BK to the plane t = 0 is K0 = 2K

BK is symmetric with respect to a horizontal plane (Euclidean
symmetry)

The general case

The projection of BK to the plane t = 0 is the difference body
K − K , that it is centrally symmetric

BK is not necessarily symmetric with respect to a horizontal plane

BK is the union of two graphs g1, g2 of class C 2 outside the poles
defined over K0. Moreover g1 < g2 on int(K0) and g1 = g2 on ∂K0.
The graph of the function g = (g1 + g2)/2 separates SK into two
pieces S+

K and S−K .
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The Wulff shape
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Figure: The Wulff shape associated to the norm || · ||a = ((x1/a1)2 + (x2/a2)2)1/2

with a = (1, 1.5). Observe that the projection to the horizontal plane t = 0 is an
ellipse with semiaxes of lengths 2 and 3.
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The Wulff shape
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Figure: The Wulff shape SKr for the r -norm, r = 1.5. The horizontal curve is the
projection of the equator to the plane t = 0. Since the r -norm is symmetric, the
Wulff shape projects to the set || · ||r ≤ 2 in the t = 0 plane.
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The Wulff shape

Figure: The ball B1 obtained as Hausdorff limit of the Wulff shapes BKr of the
r -norm when r converges to 1
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The Wulff shape

Figure: The ball B∞ obtained as Hausdorff limit of the Wulff shapes BKr of the
r -norm when r converges to ∞
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The Wulff shape

Figure: The Wulff shape BT ,r for the norm || · ||T ,r , with r = 2.
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The Wulff shape

Figure: The ball BT obtained as limit of the Wulff shapes BT ,r when r →∞.
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The Wulff shape (regularity properties)

Parameterization of the Wulff shape

Given any convex body K ⊂ R2 with 0 ∈ int(K ) we parameterize ∂K as

γ(s) =
(
x(s), y(s)

)
= r(s)

(
sin(s), cos(s)

)
, s ∈ R.

where r(s) = ρ(sin(s), cos(s)) and ρ is the radial function of K .

Then we have the following parameterization of SK .

x(u, v) = r(u + v) sin(u + v)− r(v) sin(v),

y(u, v) = r(u + v) cos(u + v)− r(v) cos(v),

t(u, v) = r(v)r(u + v)
(

sin(v) cos(u + v)− cos(v) sin(u + v)
)

+
∫ u+v
v r2(ξ) dξ.

Regularity properties follow from this expression. Also convergence in
Hausdorff distance of Wulff shapes

M. Ritoré Wulff shapes in H1 25 / 33



Minimization properties

Theorem

Let || · ||K be the norm associated to an strictly convex body K ⊂ R2 with
C 2 boundary. Let r > 0 and h : rK0 → R a C 0 function. Consider a subset
E ⊂ H1 with finite volume and K -perimeter such that

graph(h) ⊆ E ⊂ rK0 × R.

Then
|∂E |K ≥ |∂BE |K ,

where BE is the Wulff shape with the same volume as E .
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Minimization properties

Proof

Let gr : rK0 → R the function defined by gr (x) = r2g( 1
r x), where g is the

equatorial function separating SK . Let D be the graph of gr , that D
separates rSK into two parts rS+

K and rS−K . Let W+ and W− the vector
fields in rK0 × R \ L defined by translating vertically the vector fields

πK (ν0)
∣∣
rS+

K
, πK (ν0)

∣∣
rS−K

,

respectively. Here ν0 is the horizontal unit normal to SK .
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Minimization properties

Proof

As a first step in the proof we show: if F ⊂ rK0 × R is a set of finite
volume and K -perimeter so that rel int(D) ⊂ int(F ), then the inequality

1
r |F | ≤

∫
D
〈W+ −W−,ND〉dD + |∂F |K

holds, where ND is the Riemannian normal pointing down and dD is the
Riemannian measure of D. Equality holds if and only if W+ = πK (νh)
|∂KF |-a.e. on F+ = F ∩ {t ≥ gr} and W− = πK (νh) |∂KF |-a.e. on
F− = F ∩ {t ≤ gr}. Here νh is the horizontal unit normal to F .
The proof is done by applying the divergence theorem to W+ in F+ and
W− in F−, taking into account that

divW± =
1

r
.

A suitable modification of W± must be done near the vertical line t-axis
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Minimization properties

Proof

We apply the previous construction to these sets

gr + tM−tm
2

gr − tM−tm
2

gr

h + tM

gr

h + tm

rS+
K

rS−K

E+

E−
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Minimization properties

Proof

To get

1
r (|rBK |+ |rK0|(tM − tm)) =

∫
D
〈W+ −W−,ND〉dD

+ (tM − tm)

∫
∂(rK0)

‖ν0‖∗d∂(rK0) + |∂(rBK )|K .

and

1
r (|E |+ |rK0|(tM − tm)) ≤

∫
D
〈W+ −W−,ND〉dD

+ (tM − tm)

∫
∂(rK0)

‖ν0‖∗d∂(rK0) + |∂E |K .
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Proof

Hence
|∂E |K ≥ |∂(rBK )|K + 1

r (|E | − |rBK |).

Let f (ρ) = |∂(ρBK )|K + 1
ρ(|E | − |ρBK |). Since ρBK has mean curvature

1
ρ , the first variation of the perimeter implies that the Wulff shape ρBK is

a critical point of |∂ · |K − 1
ρ | · | for any variation. Therefore

|∂(ρBK )|′K −
1
ρ |ρBK |′ = 0. Hence

f ′(ρ) = − 1
ρ2 (|E | − |ρBK |).

So the only critical point of f corresponds to the value ρ0 so that
|ρ0BK | = |E |. Since the function ρ 7→ |ρBK | is strictly increasing and
takes its values in (0,+∞), we obtain that f (ρ) is a convex function with
a unique minimum at ρ0. Hence

|∂E |K ≥ f (r) ≥ f (ρ0) = |∂(ρ0BK )|K .
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Open question

Is BK a global K -perimeter minimizing set under a volume constraint?

M. Ritoré Wulff shapes in H1 32 / 33



Thanks for your attention
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