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Introduction

Tubular neighborhoods in Rn

Let E ⊂ Rn, r > 0. Consider the (closed) tubular neighborhood of radius
r > 0

Er := {p ∈ Rn : d(p,E ) ≤ r}.

Problem: Look at the regularity of r 7→ |Er | for small r and find an
expression for the volume |Er |.
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Introduction

Previous results
1 (Steiner, 1848): polytopes and uniformly convex sets with smooth

boundary in R2 and R3

2 (Weyl, 1939): smooth submanifolds

3 (Federer, 1958): sets of positive reach

In any case

|Er | =
n∑

i=0

ai r
i

is a polynomial whose coefficients depend on the geometry of E : they
depend on the Riemann tensor of E when E is a smooth submanifold; they
are the well-known curvature measures for sets of positive reach (and
convex sets)
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Introduction

Previous results

E.g.: if E is a domain with smooth boundary then

|Er | = |E |+
∫ r

0

{∫
∂E

( n−1∏
i=1

(1 + tκi )

)
d(∂E )

}
dt.

So that the coefficients of |Er | are the integrals of the symmetric functions
of the principal curvatures of ∂E

Applications

Isoperimetric inequalities (Heintze-Karcher type arguments)
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Introduction

Problem

If E ⊂ Hn is a closed set and dE is the (Carnot-Carathéodory) distance to
E , study the regularity properties of dE and, when E has smooth boundary,
find an explicit expression for the volume of the tubular neighborhood

Er := {p ∈ Hn : dE (p) < r}

in terms of r and geometric terms of ∂E
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Introduction

Previous results
1 dE is 1-lipschitz and thus H-differentiable a.e. (Pansu-Rademacher’s

Theorem)

2 dS is C k−1 when S ⊂ H1 is a C k surface out of the singular set where
the tangent plane to S is horizontal (Arcozzi & Ferrari, 2007)

3 Hessian of dS (Arcozzi & Ferrari, 2008)

4 Steiner’s formula for surfaces in H1 out of the singular set (Balogh,
Ferrari, Franchi, Vecchi, Wildrick, 2015, taking iterated divergences of
the distance function), (Ferrari, 2007, using the flow of the horizontal
gradient of the distance function)

5 C k regularity of dS when S is a hypersurface in special step-2 Carnot
groups (Arcozzi, Ferrari & Montefalcone, 2017)

6 Applications by Arcozzi (2012) and to geometric inequalities by
Ferrari & Valdinoci (2009)
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Introduction (notation)

The Heisenberg group Hn

R2n+1 ≡ Cn × R, with product

(z , t) ∗ (w , s) = (z + w , t + s +
n∑

i=1

Im(zi w̄i )).

Horizontal distribution H: generated by left-invariant (zj = xj + iyj)

Xi :=
∂

∂xi
+ yi

∂

∂t
, Yi :=

∂

∂yi
− xi

∂

∂t
, i = 1, . . . , n.

Carnot-Carathéodory distance

Take sub-Riemannian h on H making Xi ,Yi orthonormal

d(p, q) := inf{L(γ) : γ : I → Hn piecewise smooth horizontal joining p, q}
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Geometric properties

(Hn,H, h) is a sub-Riemannian manifold

Reeb vector field T :=
∂

∂t

g = 〈·, ·〉 Riemannian metric making Xi ,Yi ,T orthonormal (extends h)

∇ pseudohermitian connection: the only metric connection with torsion
Tor(X ,Y ) = 2〈J(X ),Y 〉T (left-invariant vector fields are parallel). J is
the 90-degrees rotation in the horizontal distribution
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Metric properties

(Hn, d) is a complete metric space

Two given points can be joined by a length-minimizing geodesic
γ : I → Hn: a horizontal curve satisfying the equation

∇γ̇ γ̇ + λJ(γ̇) = 0 (*)

λ ∈ R is the curvature of the geodesic

(*) is explicitly solvable. Solutions are horizontal straight lines when λ = 0
and lifting of circles in the t = 0 hyperplane when λ 6= 0

Given p ∈ Hn, v ∈ Hp, λ ∈ R, there exists a unique geodesic γλp,v
satisfying (*) with initial conditions γλp,v (0) = p, γ̇λp,v (0) = v .
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Explicit expresions

γλp,v (s) = (α(s), β(s)),

where

α(s) = π(p) + s
(
F (λs)w − G (λs) J(w)

)
,

β(s) = t(p) + |γ̇(0)|2s2H(λs) + 〈π(p), s
(
G (λs)w + F (λs) J(w)

)
〉.

π : Hn → {t = 0} is the standard projection and the functions F ,G ,H are
the analytic ones

F (x) :=
sin(x)

x
, G (x) :=

1− cos(x)

x
, H(x) :=

x − sin(x)

x2
.

Thus γλp,v (s) depends analytically on p, v , s and λ (w are the coordinates
of v = γ̇(0) in the basis (Xi ,Yi )i ) (Haj lasz-Zimmerman, 2015)
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Regularity of the distance function

Singular set of a submanifold

Let S ⊂ Hn be an m-dimensional submanifold of class C 1. The singular
set S0 is composed of the points p ∈ S such that TpS ⊂ Hp.

Theorem (–)

Let S ⊂ Hn be an m-dimensional submanifold of class C k , where k ≥ 2
and 1 ≤ m ≤ 2n, and let K ⊂ S \ S0 a compact subset. Then there exists
an open neighborhood Ω of K such that the distance function dS is of
class C k in Ω (Ω ∩ S0 = ∅).

Key points in the proof

1 Define a normal exponential map

2 Use the Implicit Function Theorem (standard argument)
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Defining a normal exponential map

Given q ∈ E , the tangent cone Tan(E , q) is the closure of the set of
vectors v ∈ TqHn such that there exists a C 1 curve α : [0, ε)→ Hn such
that α(0) = q, α̇(s) = v and α(s) ∈ E for a.e. s ∈ [0, ε).

The normal horizontal cone NorH(E , q) is the set

{u ∈ TqHn : 〈u, v〉 ≤ 0 ∀v ∈ Tan(E , q) ∩Hq}.

1 If S is a submanifold then Tan(S , q) = TqS

2 If q is interior to E then Tan(E , q) = TqHn and NorH(E , q) = {0}.
3 If S is a hypersurface and q ∈ S \ S0 then

NorH(S , q) = {λν : λ ≥ 0}, where ν is the outward pointing
horizontal unit normal. If q ∈ S0 then NorH(S , q) = {0}.
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Lemma

Let E ⊂ Hn be a closed set. Take p 6∈ E and q ∈ E such that
dE (p) = d(p, q). Let γ : [0, a]→ Hn be a length-minimizing geodesic of
curvature λ joining q and p. Then

1 γ̇(0) ∈ NorH(E , q).

2 The curvature λ of the geodesic γ lies in the interval[
sup

v∈Tan(E ,q)
〈v ,Tq〉<0

−2 〈v , γ̇(0)〉
〈v ,Tq〉

, inf
v∈Tan(E ,q)
〈v ,Tq〉>0

−2 〈v , γ̇(0)〉
〈v ,Tq〉

]
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Sketch of proof

Let α : [0, ε0)→ E be a C 1 curve with α(0) = q, α′(0) = v such that
α(s) ∈ E for a.e. s (v ∈ Tan(E , q))

We construct a variation of γ by smooth horizontal curves γε : [0, a]→ Hn

joining α(ε) and p. Then L(γs) ≥ dE (p) for a.e. s and L(γ0) = dE (p).
Taking derivative w.r.t. s and evaluating at s = 0

0 ≤ −〈v , γ̇(0) + λ
2 Tq〉.

Taking v ∈ Tan(E , q) ∩Hq arbitrary, we conclude that γ̇(0) ∈ NorH(E , q)

For any v ∈ Tan(E , q), we have

λ 〈v ,Tq〉 ≤ −2 〈v , γ̇(0)〉,
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Theorem

Let E ⊂ Hn be a closed subset with C 1 boundary S . Let N be the outer
unit normal to S and ν the corresponding horizontal unit normal. Take
p 6∈ E and q ∈ S such that dE (p) = d(p, q), and consider a minimizing
geodesic γ : [0, a]→ Hn of curvature λ connecting q and p. Then

1 q is a regular point of S ,

2 γ̇(0) = νq, and

3 the curvature of γ is given by

λ =
2〈N,T 〉
|Nh|

(q).

Moreover, in case N is a Euclidean lipschitz vector field, the function λ is
locally lipschitz in S \ S0.
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x = 0

q = (x , 0, t − xy)

γ0
q,Yq

•
•
p = (x , y , t)

All length-minimizing geodesics leaving a vertical plane have curvature
λ = 0. An intrinsic graph in the sense of Franchi, Serapioni and
Serra-Cassano is thus a metric graph
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Length-minimizing geodesics leaving the plane t = 0
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Length-minimizing geodesics leaving the surface t = xy
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Theorem

Let S ⊂ Hn be an m-dimensional submanifold of class C 1. Let p 6∈ S and
assume that q ∈ S satisfies dS(p) = d(p, q).
Then there exists a length-minimizing geodesic γ : [0, a]→ Hn of
curvature λ, parameterized by arc-length, joining q and p such that

1 γ̇(0) ⊥ TqS ∩Hq.

2 If q ∈ S \ S0, the curvature λ of γ is given by

λ = −2〈Eq, γ̇(0)〉
〈Eq,Tq〉

,

where Eq ∈ TqS is a unit vector orthogonal to TqS ∩Hq.
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Steiner’s formula

Strategy to obtain Steiner’s formula

The classical one:

1 Use Federer’s coarea formula applied to the distance function

2 Compute the integral on the level sets using Jacobi fields

M. Ritoré Tubular neighborhoods in Hn 20 / 28



Jacobi fields (Rumin, 1994; Chanillo & Yang, 2009)

They are produced by variations by geodesics. Taking a smooth family of
geodesics {γε} with γ0 = γ and differentiating the geodesic equation
∇γ̇ε γ̇ε + λεJ(γ̇ε) = 0 with respect to ε we get

Ü + λJ(U̇) + λ′J(γ̇)− 2γ̇ 〈U, J(γ̇)〉T = 0.

where U = ∂γε/∂ε, λ′ = dλε/dε|ε=0 and U̇ = ∇γ̇U.

It is a second order differential equation whose solutions are explicitly
computable and depends on U(0) and U̇(0).

If we consider a family of length-minimizing geodesics leaving a given
hypersurface, the corresponding Jacobi field satisfies

U̇(0) = ∇U(0)νh + 2〈J(νh),U(0)〉T
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A horizontal second fundamental form

If S is a hypersurface, the horizontal unit normal νh is defined out of the
singular set S0. For p ∈ S \ S0, the endomorphism
Ap : TpS ∩Hp → TpS ∩Hp defined by:

A(u) = −∇uνh −
〈N,T 〉
|Nh|

J(u)ht ,

is selfadjoint. The subscript ht denotes the tangent horizontal projection.
Its eigenvalues are the horizontal principal curvatures (–,2012). Studied by
(Cheng, Chiu, Hwang & Yang, 2015).
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Steiner’s formula for surfaces in H1

Let S ⊂ H1 be a surface of class C k , k ≥ 2, bounding a closed region E ,
and let U ⊂ S be an open subset such that U ⊂ S \ S0. For r > 0 small,
the volume of the one-side tubular neighborhood Ur is given by

|Ur | =
4∑

i=0

∫
U

{∫ r

0
ai fi (λ, s) ds

}
dS ,

where λ is the function 2〈N,T 〉/|Nh|, defined on S \ S0, the functions fi
are explicit trigonometric functions, and the coefficients ai are given by the
expressions

a0 = |Nh|, a1 = |Nh|H, a2 = −4|Nh|e1

(
〈N,T 〉
|Nh|

)
,

a3 = −4e2

(
〈N,T 〉
|Nh|

)
, a4 = −4He2

(
〈N,T 〉
|Nh|

)
− 4|Nh|

(
e1

(
〈N,T 〉
|Nh|

))2

.
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The functions fi

f0(λ, s) := cos(λs), f1(λ, s) := F1(λs)s, f2(λ, s) := F2(λs)s2,

f3(λ, s) := F3(λs)s3, f4(λ, s) := F4(λs)s4,

F1(x) :=
sin(x)

x
, F2(x) :=

1− cos(x)

x2
,

F3(x) :=
sin(x)− x cos(x)

x3
, F4(x) :=

2− 2 cos(x)− x sin(x)

x4
,
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Steiner’s formula for hypersurfaces in Hn

Let S ⊂ Hn, n ≥ 2, be a hypersurface of class C k , k ≥ 2, and let U ⊂ S
be an open subset such that U ⊂ S \ S0. For r > 0 small, the volume of
the tubular neighborhood Ur is given by

|Ur | =

∫
U

{∫ r

0
| det(B(s))| ds

}
dS ,

where B(s) is a explicitly computable matrix in terms of Jacobi fields. The
function | det(B(s))| is an analytic function of λ and s multiplied by
coefficients involving 〈N,T 〉/|Nh|, |Nh|, the horizontal gradient in S of the
function 〈N,T 〉/|Nh| and the principal curvatures of the horizontal second
fundamental form.
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The matrix B

B =



1
2 ċ1 c1 〈E1,X2〉 〈E1,Y2〉 . . . 〈E1,Xn〉 〈E1,Yn〉
1
2 ċ2 c2 〈E2,X2〉 〈E2,Y2〉 . . . 〈E2,Xn〉 〈E2,Yn〉

...
...

...
...

. . .
...

...
1
2 ċi ci 〈Ei ,X2〉 〈Ei ,Y2〉 . . . 〈Ei ,Xn〉 〈Ei ,Yn〉
...

...
...

...
. . .

...
1
2 ċ2n c2n 〈E2n,X2〉 〈E2n,Y2〉 . . . 〈E2n,X2n〉 〈E2n,Y2n〉


.
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Taylor’s expansion

|Ur | = A(U)r +
1

2

(∫
U
HdP

)
r2

− 1

6

(∫
U

(
4e1

(
〈N,T 〉
|Nh|

)
+ (2n + 2)

(
〈N,T 〉
|Nh|

)2

+ |σ|2 − H2

)
dP

)
r3

+ o(r4),

where e1 = J(ν), |σ|2 =
∑

i κ
2
i .
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Thanks for your attention
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