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Introduction

Anisotropic functionals in Rn

Given an (asymmetric) norm || · ||K whose unit ball is a convex body
K ⊂ Rn, the area of an oriented Lipschitz boundary S is given by

AK (S) =

∫
S
||N||K ,∗dS , (*)

where N is the outer unit normal to S , ||u||K ,∗ = supv∈K ⟨u, v⟩ is the dual
norm of K , and dS is the standard area element on S .

(*) is an anisotropic energy which models the shape of a crystal
minimizing Gibbs’ free energy (1875). The minimizers of the problem
when K is a polyhedron were described by Wulff (1895).
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Introduction

Anisotropic functionals in Rn

For S = ∂E regular enough, AK (S) coincides with the Minkowski content

M(E ,K ) = lim inf
r→0

|E + rK | − |E |
r

.

Brunn-Minkowski inequality implies

|E + rK |1/n − |E |1/n ≥ r |K |1/n.

Dividing by r and taking limits when r → 0, since M(K ,K ) = n|K |,

M(E ,K )

|E |(n−1)/n
≥ M(K ,K )

|K |(n−1)/n
.

So K minimizes the functional (*) for given volume. The set K is known
as the Wulff shape of (*)
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Introduction

Wulff shapes in Rn

The functional (*) is used in crystallography (Gibbs free energy).
Wulff gave a construction to obtain K from the dual norm || · ||K ,∗

Use of Brunn-Minkowski to obtain a solution by Dinghas (1944)

Mathematical problem considered by Taylor (1978), Fonseca (1991)
and Fonseca-Müller (1991)

Goal

Explore a similar anisotropic functional in the Heisenberg group H1. There
is no useful Brunn-Minkowski inequality (Leonardi-Masnou, 2005)
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The sub-Finsler perimeter

The Heisenberg group H1

H1 = (R3, ∗), where ∗ is the product

(x , y , t) ∗ (x ′, y ′, t ′) := (x + x ′, y + x ′, t + t ′ + (x ′y − xy ′)),

A basis of left invariant vector fields is given by

X =
∂

∂x
+ y

∂

∂t
, Y =

∂

∂y
− x

∂

∂t
, T =

∂

∂t
.

X ,Y generate a non-integrable horizontal distribution H ([X ,Y ] = −2T ),
⟨·, ·⟩ is the Riemannian metric so that X ,Y ,T is orthonormal basis

Sub-Finsler norms in H1

A planar norm || · ||K (K ⊂ R2) is extended to a left-invariant norm in H

(||fX + gY ||K )p = ||(f (p), g(p))||K .
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The sub-Finsler perimeter

Sub-Finsler K -perimeter in H1

Let E ⊂ H1 be a measurable set, || · ||K the left-invariant norm associated
to K ⊂ R2, and Ω ⊂ H1 an open subset. We say that E has locally finite
K -perimeter in Ω if for any relatively compact open set V ⊂ Ω we have

|∂E |K (V ) = sup

{∫
E
div(U) dH1 : U ∈ H1

0(V ), ||U||K ,∞ ≤ 1

}
< +∞.

div is the Riemannian divergence and dH1 the Haar (Riemnnian or
Lebesgue) measure of H1, H1

0(V ) the set of horizontal fields with compact
support in V

Remark

If K is the closed unit disc D centered at 0, |∂E |D is the classical
sub-Riemannian perimeter of E .
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The sub-Finsler perimeter

Sub-Finsler area in H1

If S = ∂E is a Euclidean Lipschitz hypersurface then

|∂E |K (V ) =

∫
S∩V

||Nh||K ,∗ dS

where Nh is the horizontal projection of the outer unit normal N and dS is
the Riemannian measure of S (computed with the Riemannian metric g so
that X ,Y ,T is orthonormal)
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The sub-Finsler perimeter

Problems

Critical points of K -perimeter (variation formulas)

Is there a mean curvature function?

Geometric conditions on critical points

Existence of minimizers to variational problems involving the
K -perimeter

Regularity of such minimizers
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The sub-Finsler perimeter
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The sub-Finsler perimeter
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First variation of perimeter for C 2 boundaries

The singular set

Given a C 1 surface S ⊂ H1, its singular set S0 ⊂ S is the set of points
where TpS coincides with the horizontal distribution (Nh = 0).

AK (S0) =

∫
S0

||Nh||K ,∗dS = 0

The regular set S \S0 is foliated by horizontal curves with tangent vector Z

The class C 2
+

We say that a convex body is of class C 2
+ if the boundary of K is C 2 and

has positive curvature everywhere.

If K is of class C 2
+, for every u ̸= 0 there is a unique πK (u) such that

⟨πK (u), u⟩ = ||u||K ,∗. It is geometrically clear that πK = N−1
K , the inverse

of the Gauss map of NK .

M. Ritoré Sub-Finsler minimal and CMC surfaces 11 / 26



Theorem (Pozuelo-Ritoré, 2020)

Let K be of class C 2
+ and S be a C 2 surface in H1. Let U be a C 2 vector

field with compact support on S \ S0, and {φs}s∈R the associated flow.
Let η = πK (Nh). Then

d

ds

∣∣∣∣
s=0

A(φs(S)) =

∫
S
⟨U,N⟩⟨DZη,Z ⟩ dS .

K -mean curvature HK

We let HK = ⟨DZη,Z ⟩. This is an ODE along horizontal curves in S \ S0

Theorem (Pozuelo-Ritoré, 2020)

Let S be a C 2 surface without singular points and constant mean
curvature HK .

If HK > 0 then S \ S0 is foliated by horizontal liftings of translations
of the circle || · ||K = 1/Hk .

If HK = 0 then S \ S0 is foliated by horizontal straight lines.
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First variation of perimeter for C 2 boundaries

Is HK constant a sufficient condition for a critical point?

Unfortunately not. There is an additional condition involving the singular
set S0

By Franceschi et al. (arXiv:2007.11384) the singular set S0 of a C 2

surface with CMC is composed of isolated points and singular curves

By Giovannardi et al. (arXiv:2204.03474) the horizontal curves in
S \ S0 must meet the singular curves at given angles depending on K
and the directions (condition obtained in the sub-Riemannian case by
Cheng-Hwang-Yang (2007))
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The Pansu-Wulff shapes

Definition

Let K of class C 2
+ and parametrize ∂K by an L-periodic curve γ : R → R2.

For any u ∈ R consider the horizontal lifting Γγ(u) : R → H1 of the curve
t−γ(u)(γ) with initial point (0, 0, 0). Define

BK =
⋃

u∈[0,L)

Γγ(u)([u, u + L]).

We shall refer to BK as the Pansu-Wulff shape associated to the
left-invariant norm || · ||K . Its boundary SK = ∂BK will be called the
Pansu-Wulff sphere.

In the sub-Riemannian case, the corresponding sphere is known as Pansu
sphere.
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The Pansu-Wulff shapes (regularity properties)

Parameterization of the Wulff shape

Given any convex body K ⊂ R2 with 0 ∈ int(K ) we parameterize ∂K as

γ(s) =
(
x(s), y(s)

)
= r(s)

(
sin(s), cos(s)

)
, s ∈ R.

where r(s) = ρ(sin(s), cos(s)) and ρ is the radial function of K .

Then we have the following parameterization of SK .

x(u, v) = r(u + v) sin(u + v)− r(v) sin(v),

y(u, v) = r(u + v) cos(u + v)− r(v) cos(v),

t(u, v) = r(v)r(u + v)
(
sin(v) cos(u + v)− cos(v) sin(u + v)

)
+
∫ u+v
v r2(ξ) dξ.

Regularity properties follow from this expression. Also convergence in
Hausdorff distance of Wulff shapes
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The Pansu-Wulff shapes
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Figure: The Wulff shape associated to the norm || · ||a = ((x1/a1)
2 + (x2/a2)

2)1/2

with a = (1, 1.5). Observe that the projection to the horizontal plane t = 0 is an
ellipse with semiaxes of lengths 2 and 3.
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The Pansu-Wulff shapes
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Figure: The Wulff shape SKr for the r -norm, r = 1.5. The horizontal curve is the
projection of the equator to the plane t = 0. Since the r -norm is symmetric, the
Wulff shape projects to the set || · ||r ≤ 2 in the t = 0 plane.
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The Pansu-Wulff shapes

Figure: The ball B1 obtained as Hausdorff limit of the Wulff shapes BKr of the
r -norm when r converges to 1
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The Pansu-Wulff shapes

Figure: The ball B∞ obtained as Hausdorff limit of the Wulff shapes BKr of the
r -norm when r converges to ∞
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The Pansu-Wulff shapes

Figure: The Wulff shape BT ,r for the norm || · ||T ,r , with r = 2.
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The Pansu-Wulff shapes

Figure: The ball BT obtained as limit of the Wulff shapes BT ,r when r → ∞.
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Pansu-Wulff shapes: minimization properties

(Franceschi et al., arXiv:2007.11384)

Pansu-Wulff boundaries are the only C 2 stationary points of area under a
volume constraint. Proof after Ritoré-Rosales (2005)

Theorem (Pozuelo-Ritoré, arXiv:2007.04683)

Let || · ||K be the norm associated to an strictly convex body K ⊂ R2 with
C 2 boundary. Let r > 0 and h : rK0 → R a C 0 function. Consider a subset
E ⊂ H1 with finite volume and K -perimeter such that

graph(h) ⊆ E ⊂ rK0 × R.

Then
|∂E |K ≥ |∂BE |K ,

where BE is the Wulff shape with the same volume as E .
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Pansu-Wulff shapes: minimization properties

Proof

We apply a calibration argument

gr +
tM−tm

2

gr − tM−tm
2

gr

h + tM

gr

h + tm

rS+K

rS−K

E+

E−
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Regularity properties

Sets with prescribed mean curvature

Given f ∈ C (Ω), E ⊂ Ω has prescribed K -mean curvature f in Ω ⇔ E is a
critical point of the functional

B 7→ |∂E |K (B)−
∫
E∩B

f dH1, ∀B ⊂ Ωbounded open set (1)

If S = ∂E ∩ Ω is a Euclidean Lipschitz surface then (1) ⇔ E is a critical
point of the functional

B 7→ AK (S ∩ B)−
∫
E∩B

f dH1, ∀B ⊂ Ωbounded open set
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Remarks

Perimeter-minimizing sets have prescribed K -mean curvature 0

Isoperimetric boundaries have prescribed constant K -mean curvature

Regularity of the non-singular set (Giovannardi-Ritoré, 2021)

Let K be a convex body of class C 2
+, Ω ⊂ H1 an open set and E ⊂ Ω a set

of prescribed K - mean curvature f ∈ C 0(Ω) with Euclidean Lipschitz and
H-regular boundary S . Then the horizontal curves Γ of S ∩ Ω are of class
C 2.

H-regularity of the boundary means that the surface is locally the level set
of a continuous function with non-vanishing continuous horizontal
gradient.

Proof

Quite technical and follows from localizing the first variation along
horizontal curves of the surface
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The Bernstein problem

Bernstein’s Theorem (Giovannardi-Ritoré, 2022)

Let S ⊂ H1 be a complete, stable, Euclidean Lipschitz and H-regular
surface without singular points. Then S is a vertical plane.

The proof is based on the second variation of the K -perimeter∫
S

(
Z (f )2 + 4

(
Z

(
⟨N,T ⟩
|Nh|

)
− ⟨N,T ⟩2

|Nh|2

)
f 2
)

|Nh|
κ(π(νh))

dS .

We localize the second variation along a horizontal line (where κ(π(Nh)) is
constant because π(Nh) is constant)
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