Sub-Finsler minimal and constant mean curvature surfaces in the first Heisenberg group

Manuel Ritoré (joint work with Julián Pozuelo and Gianmarco Giovannardi)

> INdAM workshop 2022 Anisotropic isoperimetric problems and related topics

M. Ritoré $Sub-Finsler$ minimal and CMC surfaces 1 / 26

Anisotropic functionals in \mathbb{R}^n

Given an (asymmetric) norm $|| \cdot ||_K$ whose unit ball is a convex body $K \subset \mathbb{R}^n$, the area of an oriented Lipschitz boundary S is given by

$$
A_K(S) = \int_S ||N||_{K,*} dS, \tag{*}
$$

where N is the outer unit normal to S, $||u||_{K,*} = \sup_{v \in K} \langle u, v \rangle$ is the dual norm of K , and dS is the standard area element on S .

[\(*\)](#page-1-0) is an anisotropic energy which models the shape of a crystal minimizing Gibbs' free energy (1875). The minimizers of the problem when K is a polyhedron were described by Wulff (1895).

Anisotropic functionals in \mathbb{R}^n

For $S = \partial E$ regular enough, $A_K(S)$ coincides with the Minkowski content

$$
M(E, K) = \liminf_{r \to 0} \frac{|E + rK| - |E|}{r}.
$$

Brunn-Minkowski inequality implies

$$
|E + rK|^{1/n} - |E|^{1/n} \ge r|K|^{1/n}.
$$

Dividing by r and taking limits when $r \to 0$, since $M(K, K) = n|K|$,

$$
\frac{M(E, K)}{|E|^{(n-1)/n}} \geq \frac{M(K, K)}{|K|^{(n-1)/n}}.
$$

So K minimizes the functional $(*)$ for given volume. The set K is known as the *Wulff shape* of $(*)$

Wulff shapes in \mathbb{R}^n

- The functional $(*)$ is used in crystallography (Gibbs free energy). Wulff gave a construction to obtain K from the dual norm $|| \cdot ||_{K,*}$
- Use of Brunn-Minkowski to obtain a solution by Dinghas (1944)
- Mathematical problem considered by Taylor (1978), Fonseca (1991) and Fonseca-Müller (1991)

Wulff shapes in \mathbb{R}^n

- The functional $(*)$ is used in crystallography (Gibbs free energy). Wulff gave a construction to obtain K from the dual norm $|| \cdot ||_{K,*}$
- Use of Brunn-Minkowski to obtain a solution by Dinghas (1944)
- Mathematical problem considered by Taylor (1978), Fonseca (1991) and Fonseca-Müller (1991)

Goal

Explore a similar anisotropic functional in the Heisenberg group \mathbb{H}^1 . There is no useful Brunn-Minkowski inequality (Leonardi-Masnou, 2005)

The Heisenberg group \mathbb{H}^1

 $\mathbb{H}^{1}=(\mathbb{R}^{3},\ast)$, where \ast is the product

$$
(x,y,t)*(x',y',t'):=(x+x',y+x',t+t'+(x'y-xy')),
$$

A basis of left invariant vector fields is given by

$$
X = \frac{\partial}{\partial x} + y \frac{\partial}{\partial t}, \qquad Y = \frac{\partial}{\partial y} - x \frac{\partial}{\partial t}, \qquad T = \frac{\partial}{\partial t}.
$$

X, Y generate a non-integrable horizontal distribution $\mathcal{H}([X, Y] = -2T)$, $\langle \cdot, \cdot \rangle$ is the Riemannian metric so that X, Y, T is orthonormal basis

Sub -Finsler norms in \mathbb{H}^1

A planar norm $||\cdot||_{\mathcal{K}}$ $(\mathcal{K}\subset\mathbb{R}^{2})$ is extended to a left-invariant norm in $\mathcal{H}% _{k}(U)$

$$
(||fX+gY||_K)_p=||(f(p),g(p))||_K.
$$

Sub-Finsler K-perimeter in \mathbb{H}^1

Let $E \subset \mathbb{H}^1$ be a measurable set, $|| \cdot ||_K$ the left-invariant norm associated to $\mathcal{K}\subset\mathbb{R}^2$, and $\Omega\subset\mathbb{H}^1$ an open subset. We say that E has locally finite K-perimeter in Ω if for any relatively compact open set $V \subset \Omega$ we have

$$
|\partial E|_{{\mathsf K}}(V) = \sup \left\{ \int_E \mathsf{div}(U) \, d{\mathbb H}^1 : \, U \in \mathcal{H}^1_0(V), ||U||_{{\mathsf K},\infty} \leq 1 \right\} < +\infty.
$$

div is the Riemannian divergence and $d\mathbb{H}^1$ the Haar (Riemnnian or Lebesgue) measure of \mathbb{H}^{1} , $\mathcal{H}^{1}_{0}(V)$ the set of horizontal fields with compact support in V

Remark

If K is the closed unit disc D centered at 0, $|\partial E|_D$ is the classical sub-Riemannian perimeter of E.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Sub-Finsler area in \mathbb{H}^1

If $S = \partial E$ is a Euclidean Lipschitz hypersurface then

$$
|\partial E|_K(V)=\int_{S\cap V}||N_h||_{K,*}\,dS
$$

where N_h is the horizontal projection of the outer unit normal N and dS is the Riemannian measure of S (computed with the Riemannian metric g so that X, Y, T is orthonormal)

Problems

- \bullet Critical points of K-perimeter (variation formulas)
- **o** Is there a mean curvature function?
- Geometric conditions on critical points
- Existence of minimizers to variational problems involving the K-perimeter
- Regularity of such minimizers

Recent works

- A.P. Sánchez, Ph.D. Thesis, Tufts U., 2017
- J. Pozuelo, M. Ritoré, Pansu-Wulff shapes in \mathbb{H}^1 . Adv. Calc. Var. (to appear), arXiv:2007.04683
- V. Franceschi, R. Monti, A. Righini, and M. Sigalotti, The isoperimetric problem for regular and crystalline norms in \mathbb{H}^1 , arXiv:2007.11384
- G. Giovannardi, M. Ritoré, Regularity of Lipschitz boundaries with prescribed sub-Finsler mean curvature in the Heisenberg group. J. Differential Equations, 2021, arXiv:2010.14882
- J, Pozuelo, Existence of isoperimetric regions in sub-Finsler nilpotent groups, arXiv:2103.06630

Recent works

- G. Giovannardi, M. Ritoré, The Bernstein problem for Euclidean Lipschitz surfaces in the sub-Finsler Heisenberg group, arXiv:2105.02179
- G. Giovannardi, J. Pozuelo, M. Ritoré, Area-minimizing horizontal graphs with low-regularity in the sub-Finsler Heisenberg group \mathbb{H}^1 , arXiv:2204.03474.
- G. Giovannardi, A. Pinamonti, J. Pozuelo, S. Verzellesi, The prescribed mean curvature equation for t-graphs in the sub-Finsler Heisenberg group \mathbb{H}^n , arXiv:2207.13414.

First variation of perimeter for C^2 boundaries

The singular set

Given a C^1 surface $S\subset \mathbb{H}^1$, its singular set $S_0\subset S$ is the set of points where T_pS coincides with the horizontal distribution $(N_h = 0)$.

$$
A_K(S_0)=\int_{S_0}||N_h||_{K,*}dS=0
$$

The regular set $S \setminus S_0$ is foliated by horizontal curves with tangent vector Z

The class \mathcal{C}_+^2

We say that a convex body is of class \mathcal{C}_{+}^2 if the boundary of $\mathcal K$ is $\mathcal C^2$ and has positive curvature everywhere.

If K is of class \mathcal{C}^2_+ , for every $u\neq 0$ there is a unique $\pi_K(u)$ such that $\langle \pi_K(u),u\rangle = ||u||_{K,*}.$ It is geometrically clear that $\pi_K = N_K^{-1}$ κ^{-1} , the inverse of the Gauss map of N_K .

Theorem (Pozuelo-Ritoré, 2020)

Let K be of class \mathcal{C}_{+}^2 and S be a \mathcal{C}^2 surface in \mathbb{H}^1 . Let U be a \mathcal{C}^2 vector field with compact support on $S \setminus S_0$, and $\{\varphi_s\}_{s\in\mathbb{R}}$ the associated flow. Let $\eta = \pi_K (N_h)$. Then

$$
\left. \frac{d}{ds} \right|_{s=0} A(\varphi_s(S)) = \int_S \langle U, N \rangle \langle D_Z \eta, Z \rangle \, dS.
$$

K-mean curvature H_K

We let $H_K = \langle D_Z \eta, Z \rangle$. This is an ODE along horizontal curves in $S \setminus S_0$

Theorem (Pozuelo-Ritoré, 2020)

Let S be a C^2 surface without singular points and constant mean curvature H_K .

If $H_K > 0$ then $S \setminus S_0$ is foliated by horizontal liftings of translations of the circle $|| \cdot ||_K = 1/H_k$.

If $H_K = 0$ t[h](#page-13-0)[e](#page-0-0)n $S \setminus S_0$ $S \setminus S_0$ $S \setminus S_0$ is foliated by horizon[ta](#page-11-0)l [st](#page-13-0)[r](#page-11-0)[aig](#page-12-0)ht [lin](#page-26-0)e[s.](#page-1-1)

First variation of perimeter for C^2 boundaries

Is H_K constant a sufficient condition for a critical point?

Unfortunately not. There is an additional condition involving the singular set S_0

- By Franceschi et al. (arXiv:2007.11384) the singular set S_0 of a C^2 surface with CMC is composed of isolated points and singular curves
- By Giovannardi et al. (arXiv:2204.03474) the horizontal curves in $S \setminus S_0$ must meet the singular curves at given angles depending on K and the directions (condition obtained in the sub-Riemannian case by Cheng-Hwang-Yang (2007))

Definition

Let $\mathcal K$ of class $\mathcal C^2_+$ and parametrize $\partial \mathcal K$ by an L -periodic curve $\gamma:\mathbb R\to\mathbb R^2.$ For any $u\in\mathbb{R}$ consider the horizontal lifting $\mathsf{\Gamma}_{\gamma(u)}:\mathbb{R}\to\mathbb{H}^1$ of the curve $t_{-\gamma(u)}(\gamma)$ with initial point $(0,0,0)$. Define

$$
\mathbb{B}_K = \bigcup_{u \in [0,L)} \Gamma_{\gamma(u)}([u, u + L]).
$$

We shall refer to \mathbb{B}_{K} as the Pansu-Wulff shape associated to the left-invariant norm $|| \cdot ||_K$. Its boundary $\mathbb{S}_K = \partial \mathbb{B}_K$ will be called the Pansu-Wulff sphere.

In the sub-Riemannian case, the corresponding sphere is known as Pansu sphere.

The Pansu-Wulff shapes (regularity properties)

Parameterization of the Wulff shape

Given any convex body $K\subset \mathbb{R}^2$ with $0\in \mathsf{int}(K)$ we parameterize ∂K as

$$
\gamma(\mathsf{s})=\big(\mathsf{x}(\mathsf{s}),\mathsf{y}(\mathsf{s})\big)=\mathsf{r}(\mathsf{s})\,\big(\sin(\mathsf{s}),\cos(\mathsf{s})\big),\quad \mathsf{s}\in\mathbb{R}.
$$

where $r(s) = \rho(\sin(s), \cos(s))$ and ρ is the radial function of K.

Then we have the following parameterization of $\mathbb{S}_{\mathcal{K}}$.

$$
x(u, v) = r(u + v) \sin(u + v) - r(v) \sin(v),
$$

\n
$$
y(u, v) = r(u + v) \cos(u + v) - r(v) \cos(v),
$$

\n
$$
t(u, v) = r(v)r(u + v) (\sin(v) \cos(u + v) - \cos(v) \sin(u + v))
$$

\n
$$
+ \int_{v}^{u + v} r^{2}(\xi) d\xi.
$$

Regularity properties follow from this expression. Also convergence in Hausdorff distance of Wulff shapes

Figure: The Wulff shape associated to the norm $||\cdot||_a = ((x_1/a_1)^2 + (x_2/a_2)^2)^{1/2}$ with $a = (1, 1.5)$. Observe that the projection to the horizontal plane $t = 0$ is an ellipse with semiaxes of lengths 2 and 3.

 $\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \rightarrow \left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \rightarrow \left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\}$

Figure: The Wulff shape \mathbb{S}_{K_r} for the r-norm, $r = 1.5$. The horizontal curve is the projection of the equator to the plane $t = 0$. Since the r-norm is symmetric, the Wulff shape projects to the set $|| \cdot ||_r \leq 2$ in the $t = 0$ p[la](#page-18-0)[ne](#page-16-0)[.](#page-17-0) QQ

Figure: The ball \mathbb{B}_1 obtained as Hausdorff limit of the Wulff shapes \mathbb{B}_{K_r} of the r -norm when r converges to 1

€ □ E

- ← 何 ▶ → 三 ▶ → 三 ▶

Figure: The ball \mathbb{B}_{∞} obtained as Hausdorff limit of the Wulff shapes \mathbb{B}_{K_r} of the r-norm when r converges to ∞

イロト イ押ト イヨト イヨト

Figure: The Wulff shape $\mathbb{B}_{T,r}$ for the norm $|| \cdot ||_{T,r}$, with $r = 2$.

重

イロト イ部 トイミト イミト

Figure: The ball $\mathbb{B}_{\mathcal{T}}$ obtained as limit of the Wulff shapes $\mathbb{B}_{\mathcal{T},r}$ when $r \to \infty$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Pansu-Wulff shapes: minimization properties

(Franceschi et al., arXiv:2007.11384)

Pansu-Wulff boundaries are the only \mathcal{C}^2 stationary points of area under a volume constraint. Proof after Ritoré-Rosales (2005)

Theorem (Pozuelo-Ritoré, arXiv:2007.04683)

Let $||\cdot||_{\mathcal{K}}$ be the norm associated to an strictly convex body $\mathcal{K}\subset\mathbb{R}^2$ with C^2 boundary. Let $r > 0$ and $h : rK_0 \to \mathbb{R}$ a C^0 function. Consider a subset $E \subset \mathbb{H}^1$ with finite volume and K-perimeter such that

$$
\text{graph}(h) \subseteq E \subset rK_0 \times \mathbb{R}.
$$

Then

$$
|\partial E|_K \geq |\partial \mathbb{B}_E|_K,
$$

where \mathbb{B}_F is the Wulff shape with the same volume as E.

イロト イ部 トイ ミト イモト

Pansu-Wulff shapes: minimization properties

Proof

We apply a calibration argument

Regularity properties

Sets with prescribed mean curvature

Given $f \in C(\Omega)$, $E \subset \Omega$ has prescribed K-mean curvature f in $\Omega \Leftrightarrow E$ is a critical point of the functional

$$
B \mapsto |\partial E|_K(B) - \int_{E \cap B} f \, d\mathbb{H}^1, \quad \forall \, B \subset \Omega \text{ bounded open set } \qquad (1)
$$

If $S = \partial E \cap \Omega$ is a Euclidean Lipschitz surface then $(1) \Leftrightarrow E$ is a critical point of the functional

$$
B\mapsto A_{\mathcal{K}}(\mathcal{S}\cap B)-\int_{E\cap B}f\ d\mathbb{H}^1,\quad\forall\,B\subset\Omega\text{ bounded open set}
$$

Remarks

- \bullet Perimeter-minimizing sets have prescribed K-mean curvature 0
- \bullet Isoperimetric boundaries have prescribed constant K-mean curvature

Regularity of the non-singular set (Giovannardi-Ritoré, 2021)

Let $\mathcal K$ be a convex body of class $\mathcal C^2_+,\, \Omega\subset \mathbb H^1$ an open set and $E\subset \Omega$ a set of prescribed \mathcal{K}_{P} mean curvature $f\in\mathcal{C}^0(\Omega)$ with Euclidean Lipschitz and $\mathbb H$ -regular boundary S. Then the horizontal curves Γ of $S \cap Ω$ are of class C^2 .

H-regularity of the boundary means that the surface is locally the level set of a continuous function with non-vanishing continuous horizontal gradient.

Proof

Quite technical and follows from localizing the first variation along horizontal curves of the surface

The Bernstein problem

Bernstein's Theorem (Giovannardi-Ritoré, 2022)

Let $S \subset \mathbb{H}^1$ be a complete, stable, Euclidean Lipschitz and \mathbb{H} -regular surface without singular points. Then S is a vertical plane.

The proof is based on the second variation of the K-perimeter

$$
\int_{S} \left(Z(f)^2 + 4 \left(Z\left(\frac{\langle N, T\rangle}{|N_h|}\right) - \frac{\langle N, T\rangle^2}{|N_h|^2} \right) f^2 \right) \frac{|N_h|}{\kappa(\pi(\nu_h))} dS.
$$

We localize the second variation along a horizontal line (where $\kappa(\pi(N_h))$) is constant because $\pi(N_h)$ is constant)