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Introduction

The isoperimetric inequality in ℝ𝑛

The isoperimetric inequality in ℝ𝑛 reads

boundary measure of 𝐸 ⩾ 𝐶(𝑛) |𝐸|(𝑛−1)/𝑛,

where |𝐸| is the volume of a measurable set 𝐸. The constant 𝐶(𝑛) depends
on the dimension and it is equal to 𝑃(𝐵)/|𝐵|(𝑛−1)/𝑛, where 𝐵 is any ball in
ℝ𝑛.

It can be also proven that equality holds if and only if 𝐸 “is a ball”.
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What is the boundary measure of 𝐸?
When the boundary of 𝐸 is of class 𝐶2 there are three equivalent defs:
1. Its area
2. The Minkowski content

𝑀(𝐸) = lim
𝑟→0

|𝐸 + 𝑟𝐵(0, 1)| − |𝐸|
𝑟 ,

where, for 𝑟 > 0, 𝐸 + 𝑟𝐵(0, 1) is the tubular neighborhood of 𝐸 of
radius 𝑟, defined by 𝐸𝑟 = {𝑝 ∈ ℝ𝑛 ∶ 𝑑(𝑝, 𝐸) ⩽ 𝑟}.

3. The perimeter of 𝐸 in the sense of Cacciopoli and De Giorgi:

𝑃(𝐸) = sup {∫
𝐸
div𝑋 ∶ 𝑋 ∈ 𝔛10(ℝ𝑛), ||𝑋|| ⩽ 1},

where 𝔛10(ℝ𝑛) is the set of 𝐶1 vector fields on ℝ𝑛 with compact
support.
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Observation
When 𝜕 is of class 𝐶2 1 and 2 are equivalent by Weyl’s tube formula, and 1
and 3 as an application of the divergence theorem.

For the relation between perimeter in the sense of Cacciopoli and De Giorgi
and Minkowski content (for general sets) one should take a look at
1. L. Ambrosio et al., Perimeter as relaxed Minkowski content in metric

measure spaces, Nonlinear Anal. 153 (2017), 78–88.
2. M. Ritoré, Isoperimetric inequalities in Riemannian manifolds, Progress

in Mathematics 348, Birkhauser Verlag, 2023
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Proof of the isoperimetric inequality using the Brunn-Minkowski
inequality

Denote 𝐵(0, 1) by 𝐵. The Brunn-Minkowski inequality implies

|𝐸 + 𝑟𝐵|1/𝑛 − |𝐸|1/𝑛 ⩾ 𝑟|𝐵|1/𝑛.

Dividing by 𝑟 and taking limits when 𝑟 → 0, since𝑀(𝐵) = 𝑛|𝐵|,

𝑀(𝐸)
|𝐸|(𝑛−1)/𝑛

⩾ 𝑀(𝐵)
|𝐵|(𝑛−1)/𝑛

= 𝐶(𝑛).
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Anisotropic functionals
Anisotropic functionals in the Euclidean space ℝ𝑛, 𝑛 ⩾ 2
Given an (asymmetric) norm || ⋅ ||𝐾 whose unit ball is a convex body
𝐾 ⊂ ℝ𝑛, the area 𝐴𝐾 of an oriented Lipschitz boundary 𝑆 is defined by

𝐴𝐾(𝑆) = ∫
𝑆
||𝑁||𝐾,∗𝑑𝑆, (*)

where 𝑁 is the outer unit normal to 𝑆, ||𝑢||𝐾,∗ = sup𝑣∈𝐾⟨𝑢, 𝑣⟩ is the dual
norm of 𝐾, and 𝑑𝑆 is the standard area element on 𝑆.

When 𝐾 is the unit ball, ||𝑁||𝐾,∗ ≡ 1, and 𝐴𝐾 is the standard area.

A crystal is a minimizer of (*) with fixed volume. Wulff (1895) first gave a
construction to obtain 𝐾 from || ⋅ ||𝐾,∗.

This is a different notion of boundary area that leads to other isoperimetric
inequalities.

Manuel Ritoré Pansu-Wulff shapes inℍ𝑛 6 / 32



Equivalences
For a bounded set 𝐸 ⊂ ℝ𝑛 with 𝐶2 boundary 𝑆 the following quantities
coincide.
1. The area 𝐴𝐾(𝑆)
2. The Minkowski content

𝑀(𝐸, 𝐾) = lim
𝑟→0

|𝐸 + 𝑟𝐾| − |𝐸|
𝑟 .

3. The 𝐾-perimeter

𝑃𝐾(𝐸) = sup {∫
𝐸
div𝑋 ∶ 𝑋 ∈ 𝔛10(ℝ𝑛), ||𝑋||𝐾 ⩽ 1},

where 𝔛10 is the set of 𝐶1 vector fields on ℝ𝑛 with compact support.
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An anisotropic isoperimetric inequality obtained from the
Brunn-Minkowski inequality

Proof
Brunn-Minkowski inequality implies

|𝐸 + 𝑟𝐾|1/𝑛 − |𝐸|1/𝑛 ⩾ 𝑟|𝐾|1/𝑛.

Dividing by 𝑟 and taking limits when 𝑟 → 0, since𝑀(𝐾, 𝐾) = 𝑛|𝐾|,

𝑀(𝐸, 𝐾)
|𝐸|(𝑛−1)/𝑛

⩾ 𝑀(𝐾, 𝐾)
|𝐾|(𝑛−1)/𝑛

= 𝐶𝐾.

So 𝐾minimizes the functional (*) for volume |𝐾|. The set 𝐾 is known as the
Wulff shape of (*)
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Wulff shapes in ℝ𝑛

The functional (*) defiing 𝐴𝐾 is used in crystallography (Gibbs free
energy) to model the equilibrium shape of a crystal of fixed volume
inside a separate phase. Wulff gave a construction to obtain 𝐾 from the
dual norm || ⋅ ||𝐾,∗
Dinghas (1944) was the first to use Brunn-Minkowski inequality to
obtain a solution of this problem.
Mathematical problem further considered by Taylor (1978), Fonseca
(1991) and Fonseca-Müller (1991), using tools of Geometric Measure
Theory.
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The Heisenberg group ℍ1

The Heisenberg group ℍ1

ℍ1 is the Lie group (ℝ3, ∗), where ∗ is the non-abelian product

(𝑥, 𝑦, 𝑡) ∗ (𝑥′, 𝑦′, 𝑡′) ∶= (𝑥 + 𝑥′, 𝑦 + 𝑥′, 𝑡 + 𝑡′ + (𝑥′𝑦 − 𝑥𝑦′)),

A frame of left-invariant vector fields is given by

𝑋 = 𝜕
𝜕𝑥 + 𝑦 𝜕

𝜕𝑡 , 𝑌 = 𝜕
𝜕𝑦 − 𝑥 𝜕

𝜕𝑡 , 𝑇 = 𝜕
𝜕𝑡 .

𝑋, 𝑌 generate a non-integrable distributionℋ (the horizontal distribution).

The Haar measure is the Lebesgue measure.

The non-homogeneous dilations ℎ𝜆(𝑥, 𝑦, 𝑡) = (𝜆𝑥, 𝜆𝑦, 𝜆2𝑡) preserve the
horizontal distribution.
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Left-invariant Finsler norms in the horizontal distribution ℍ1

Identifying ℝ2 withℋ0 it is enough to consider a planar norm || ⋅ ||𝐾
associated to a convex body 𝐾 ⊂ ℝ2. This norm can be extended to a
left-invariant one inℋ by means of the equality

(||𝑓𝑋 + 𝑔𝑌||𝐾)𝑝 = ||(𝑓(𝑝), 𝑔(𝑝))||𝐾.
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Sub-Finsler 𝐾-perimeter in ℍ1

Let 𝐸 ⊂ ℍ1 be measurable, || ⋅ ||𝐾 the left-invariant norm associated to
𝐾 ⊂ ℝ2. Define the perimeter 𝑃𝐾 of 𝐸 as:

𝑃𝐾(𝐸) = sup {∫
𝐸
div(𝑈) 𝑑ℍ1 ∶ 𝑈 ∈ ℋ1

0(ℍ1), ||𝑈||𝐾 ⩽ 1}.

Here div is the Riemannian divergence (𝑋, 𝑌, 𝑇 orthonormal frame), 𝑑ℍ1

the Haar measure, andℋ1
0(ℍ1) the set of horizontal vector fields with

compact support in ℍ1.

Some properties
1. 𝑃𝐾(ℎ𝜆(𝐸)) = 𝜆3𝑃𝐾(𝐸),
2. |ℎ𝜆(𝐸)| = 𝜆4|𝐸|.

This implies that the optimal isoperimetric inequality in (ℍ1, || ⋅ ||𝐾)must
be of the form 𝑃𝐾(𝐸) ⩾ 𝐶 |𝐸|3/4.
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Sub-Finsler area in ℍ1

If 𝑆 = 𝜕𝐸 is Lipschitz then the divergence theorem implies

𝑃𝐾(𝐸) = ∫
𝑆
||𝑁ℎ||𝐾,∗ 𝑑𝑆

where 𝑁ℎ is the horizontal projection of the outer unit normal 𝑁 and 𝑑𝑆 is
the Riemannian measure of 𝑆 (computed with the Riemannian metric 𝑔 so
that 𝑋, 𝑌, 𝑇 is orthonormal)

Minkowski content and Brunn-Minkowski
There is a notion of Minkowski content. Unfortunately there is no useful
Brunn-Minkowski inequality since the exponent is not the (Leonardi and
Masnou (2005)).

Problem
How do we identify candidates to be minimizers of 𝐴𝐾 under a volume
constraint?
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First variation of 𝑃𝐾 for 𝐶2 boundaries
The singular set
Given a 𝐶1 surface 𝑆 ⊂ ℍ1, its singular set 𝑆0 ⊂ 𝑆 is the set of points where
𝑇𝑝𝑆 coincides with the horizontal distribution (𝑁ℎ = 0).

𝐴𝐾(𝑆0) = ∫
𝑆0
||𝑁ℎ||𝐾,∗𝑑𝑆 = 0

The regular set 𝑆 ∖ 𝑆0 is foliated by horizontal curves with tangent vector 𝑍

The class 𝐶2
+

We say that a convex body is of class 𝐶2
+ if the boundary of 𝐾 is 𝐶2 and has

positive curvature everywhere.

If 𝐾 is of class 𝐶2
+, for every 𝑢 ≠ 0 there is a unique 𝜋𝐾(𝑢) such that

⟨𝜋𝐾(𝑢), 𝑢⟩ = ||𝑢||𝐾,∗. It is geometrically clear that 𝜋𝐾 = 𝑁−1
𝐾 , the inverse of

the Gauss map of 𝑁𝐾.
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Theorem (Pozuelo-Ritoré, 2020)
Let 𝐾 be of class 𝐶2

+ and 𝑆 be a 𝐶2 surface in ℍ1. Let 𝑈 be a 𝐶2 vector field
with compact support on 𝑆 ∖ 𝑆0, and {𝜑𝑠}𝑠∈ℝ the associated flow. Let
𝜂 = 𝜋𝐾(𝑁ℎ). Then

𝑑
𝑑𝑠
|||𝑠=0

𝐴(𝜑𝑠(𝑆)) = ∫
𝑆
⟨𝑈, 𝑁⟩⟨𝐷𝑍𝜂, 𝑍⟩ 𝑑𝑆.

𝐾-mean curvature 𝐻𝐾

We let 𝐻𝐾 = ⟨𝐷𝑍𝜂, 𝑍⟩. This is an ODE along horizontal curves in 𝑆 ∖ 𝑆0

Theorem (Pozuelo-Ritoré, 2020)
Let 𝑆 be a 𝐶2 surface without singular points and constant mean curvature
𝐻𝐾.

If 𝐻𝐾 > 0 then 𝑆 ∖ 𝑆0 is foliated by horizontal liftings of translations of
the circle || ⋅ ||𝐾 = 1/𝐻𝑘.
If 𝐻𝐾 = 0 then 𝑆 ∖ 𝑆0 is foliated by horizontal straight lines.
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First variation of perimeter for 𝐶2 boundaries

Is 𝐻𝐾 constant a sufficient condition for a critical point?
Unfortunately not. There is an additional condition involving the singular
set 𝑆0

By Franceschi et al. (arXiv:2007.11384) the singular set 𝑆0 of a 𝐶2

surface with CMC is composed of isolated points and singular curves
By Giovannardi et al. (arXiv:2204.03474) the horizontal curves in
𝑆 ∖ 𝑆0 must meet the singular curves at given angles depending on 𝐾
and the directions (condition obtained in the sub-Riemannian case by
Cheng-Hwang-Yang (2007))
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The Pansu-Wulff shapes

Definition
Let 𝐾 of class 𝐶2

+ and parametrize 𝜕𝐾 by an 𝐿-periodic curve 𝛾 ∶ ℝ → ℝ2.
For any 𝑢 ∈ ℝ consider the horizontal lifting Γ𝛾(ᵆ) ∶ ℝ → ℍ1 of the curve
𝑡−𝛾(ᵆ)(𝛾) with initial point (0, 0, 0). Define

𝔹𝐾 = ⋃
ᵆ∈[0,𝐿)

Γ𝛾(ᵆ)([𝑢, 𝑢 + 𝐿]).

We shall refer to 𝔹𝐾 as the Pansu-Wulff shape associated to the left-invariant
norm || ⋅ ||𝐾. Its boundary 𝕊𝐾 = 𝜕𝔹𝐾 will be called the Pansu-Wulff sphere.

In the sub-Riemannian case, the corresponding sphere is known as Pansu
sphere.
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The Pansu-Wulff shapes (regularity properties)
Parameterization of the Wulff shape
Given any convex body 𝐾 ⊂ ℝ2 with 0 ∈ int(𝐾) we parameterize 𝜕𝐾 as

𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) = 𝑟(𝑠) ( sin(𝑠), cos(𝑠)), 𝑠 ∈ ℝ.

where 𝑟(𝑠) = 𝜌(sin(𝑠), cos(𝑠)) and 𝜌 is the radial function of 𝐾.

Then we have the following parameterization of 𝕊𝐾.

𝑥(𝑢, 𝑣) = 𝑟(𝑢 + 𝑣) sin(𝑢 + 𝑣) − 𝑟(𝑣) sin(𝑣),
𝑦(𝑢, 𝑣) = 𝑟(𝑢 + 𝑣) cos(𝑢 + 𝑣) − 𝑟(𝑣) cos(𝑣),
𝑡(𝑢, 𝑣) = 𝑟(𝑣)𝑟(𝑢 + 𝑣)( sin(𝑣) cos(𝑢 + 𝑣) − cos(𝑣) sin(𝑢 + 𝑣))

+ ∫ᵆ+𝑣
𝑣 𝑟2(𝜉) 𝑑𝜉.

Regularity properties follow from this expression. Also convergence in
Hausdorff distance of Wulff shapes

Manuel Ritoré Pansu-Wulff shapes inℍ𝑛 18 / 32



The Pansu-Wulff shapes
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Figure: TheWulff shape associated to the norm || ⋅ ||𝑎 = ((𝑥1/𝑎1)2 + (𝑥2/𝑎2)2)1/2
with 𝑎 = (1, 1.5). Observe that the projection to the horizontal plane 𝑡 = 0 is an
ellipse with semiaxes of lengths 2 and 3.
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The Pansu-Wulff shapes
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Figure: TheWulff shape 𝕊𝐾𝑟 for the 𝑟-norm, 𝑟 = 1.5. The horizontal curve is the
projection of the equator to the plane 𝑡 = 0. Since the 𝑟-norm is symmetric, the
Wulff shape projects to the set || ⋅ ||𝑟 ⩽ 2 in the 𝑡 = 0 plane.
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The Pansu-Wulff shapes

Figure: The ball 𝔹1 obtained as Hausdorff limit of the Wulff shapes 𝔹𝐾𝑟 of the
𝑟-norm when 𝑟 converges to 1
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The Pansu-Wulff shapes

Figure: The ball 𝔹∞ obtained as Hausdorff limit of the Wulff shapes 𝔹𝐾𝑟 of the
𝑟-norm when 𝑟 converges to∞
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The Pansu-Wulff shapes

Figure: TheWulff shape 𝔹𝑇,𝑟 for the norm || ⋅ ||𝑇,𝑟, with 𝑟 = 2.
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The Pansu-Wulff shapes

Figure: The ball 𝔹𝑇 obtained as limit of the Wulff shapes 𝔹𝑇,𝑟 when 𝑟 → ∞.
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Pansu-Wulff shapes: minimization properties

(Franceschi et al., arXiv:2007.11384)
Pansu-Wulff boundaries are the only 𝐶2 stationary points of area under a
volume constraint. Proof after Ritoré-Rosales (2005)

Theorem (Pozuelo-Ritoré, arXiv:2007.04683)
Let || ⋅ ||𝐾 be the norm associated to an strictly convex body 𝐾 ⊂ ℝ2 with 𝐶2

boundary. Let 𝑟 > 0 and ℎ ∶ 𝑟𝐾0 → ℝ a 𝐶0 function. Consider a subset
𝐸 ⊂ ℍ1 with finite volume and 𝐾-perimeter such that

graph(ℎ) ⊆ 𝐸 ⊂ 𝑟𝐾0 × ℝ.

Then
𝑃𝐾(𝐸) ⩾ 𝑃𝐾(𝔹𝐸),

where 𝔹𝐸 is the Wulff shape with the same volume as 𝐸.
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Pansu-Wulff shapes: minimization properties
Proof
We apply a calibration argument

𝑔𝑟 +
𝑡𝑀−𝑡𝑚

2

𝑔𝑟 −
𝑡𝑀−𝑡𝑚

2

𝑔𝑟

ℎ + 𝑡𝑀

𝑔𝑟

ℎ + 𝑡𝑚

𝑟𝕊+𝐾

𝑟𝕊−𝐾

𝐸+

𝐸−
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Regularity properties

Sets with prescribed mean curvature
Given 𝑓 ∈ 𝐶(Ω), 𝐸 ⊂ Ω has prescribed 𝐾-mean curvature 𝑓 in Ω⇔ 𝐸 is a
critical point of the functional

𝐵 ↦ 𝑃𝐾(𝐵) −∫
𝐸∩𝐵

𝑓𝑑ℍ1, ∀ 𝐵 ⊂ Ω bounded open set (1)

If 𝑆 = 𝜕𝐸 ∩ Ω is a Euclidean Lipschitz surface then (1)⇔ 𝐸 is a critical
point of the functional

𝐵 ↦ 𝐴𝐾(𝑆 ∩ 𝐵) −∫
𝐸∩𝐵

𝑓𝑑ℍ1, ∀ 𝐵 ⊂ Ω bounded open set
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Regularity of surfaces with prescribed mean curvature

Regularity of the non-singular set (Giovannardi-Ritoré, 2021)
Let 𝐾 be a convex body of class 𝐶2

+, Ω ⊂ ℍ1 an open set and 𝐸 ⊂ Ω a set of
prescribed 𝐾- mean curvature 𝑓 ∈ 𝐶0(Ω) with Euclidean Lipschitz and
ℍ-regular boundary 𝑆. Then the horizontal curves Γ of 𝑆 ∩Ω are of class 𝐶2.

ℍ-regularity of the boundary means that the surface is locally the level set of
a continuous function with non-vanishing continuous horizontal gradient.

Proof
Quite technical and follows from localizing the first variation along
horizontal curves of the surface
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The Bernstein problem

Bernstein’s Theorem (Giovannardi-Ritoré, 2022)
Let 𝑆 ⊂ ℍ1 be a complete, stable, Euclidean Lipschitz and ℍ-regular surface
without singular points. Then 𝑆 is a vertical plane.

The proof is based on the second variation of the 𝐾-perimeter

∫
𝑆
(𝑍(𝑓)2 + 4 (𝑍 (⟨𝑁, 𝑇⟩|𝑁ℎ|

) − ⟨𝑁, 𝑇⟩2

|𝑁ℎ|2
) 𝑓2)

|𝑁ℎ|
𝜅(𝜋(𝜈ℎ))

𝑑𝑆.

We localize the second variation along a horizontal line (where 𝜅(𝜋(𝑁ℎ)) is
constant because 𝜋(𝑁ℎ) is constant)
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Thanks for your attention
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