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Introduction

The isoperimetric inequality in R"”

The isoperimetric inequality in R" reads

boundary measure of E > C(n) |E|(*~1/7,

where |E| is the volume of a measurable set E. The constant C(n) depends

on the dimension and it is equal to P(B)/|B|"~1/", where B is any ball in
R".

It can be also proven that equality holds if and only if E “is a ball”.
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What is the boundary measure of E?

When the boundary of E is of class C? there are three equivalent defs:
1. Its area
2. The Minkowski content

E +rB(0,1)| — |E
M(E)zm%l +r (r )| —| I,
r—

where, for r > 0, E 4 rB(0, 1) is the tubular neighborhood of E of
radius r, defined by E, = {p € R" : d(p,E) < r}.
3. The perimeter of E in the sense of Cacciopoli and De Giorgi:

P(E) = sup{ f divX : X € X)(R"),||1X]| < 1},
E

where X3 (R") is the set of C! vector fields on R” with compact
support.
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Observation

When 9 is of class C? 1 and 2 are equivalent by Weyl’s tube formula, and 1
and 3 as an application of the divergence theorem.

For the relation between perimeter in the sense of Cacciopoli and De Giorgi
and Minkowski content (for general sets) one should take a look at

1. L. Ambrosio et al., Perimeter as relaxed Minkowski content in metric
measure spaces, Nonlinear Anal. 153 (2017), 78-88.

2. M. Ritoré, Isoperimetric inequalities in Riemannian manifolds, Progress
in Mathematics 348, Birkhauser Verlag, 2023

v
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Proof of the isoperimetric inequality using the Brunn-Minkowski
inequality

Denote B(0, 1) by B. The Brunn-Minkowski inequality implies
|E + }"B|1/n _ |E|1/n > rlBll/n-
Dividing by r and taking limits when r — 0, since M(B) = n|B|,

M(E) _ _M(B)

|E|(n—1)/n = = C(n).

|B|(n—1)/n -
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Anisotropic functionals

Anisotropic functionals in the Euclidean space R", n > 2

Given an (asymmetric) norm || - ||x whose unit ball is a convex body
K C R", the area Ak of an oriented Lipschitz boundary S is defined by

Ax(S) = / IN|[x 1S, *
S

where N is the outer unit normal to S, [|ul|,« = sup,_,(u, v) is the dual
norm of K, and dS is the standard area element on S.

When K is the unit ball, || N||g . = 1, and Ak is the standard area.

A crystal is a minimizer of (*) with fixed volume. Wulff (1895) first gave a
construction to obtain K from || - || ..

This is a different notion of boundary area that leads to other isoperimetric
inequalities.

v
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Equivalences

For a bounded set E C R" with C? boundary S the following quantities
coincide.

1. The area Ag(S)
2. The MinkowskKi content
E+rK|— |E
M(E,K) = lim w
r—0 r
3. The K-perimeter

Py(E) = sup{fdivX P X € Z(RM), |IX]|k < 1},
E

where X} is the set of C! vector fields on R with compact support.
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An anisotropic isoperimetric inequality obtained from the
Brunn-Minkowski inequality

Proof
Brunn-Minkowski inequality implies

E + VK|1/n _ |E|1/n > rlKll/n-
Dividing by r and taking limits when r — 0, since M(K, K) = n|K]|,

M(E,K) S M(K,K) _
|E|(n—1)/n = |K|(n—l)/n - -k

So K minimizes the functional (*) for volume |K|. The set K is known as the
Wulff shape of (*)

v
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Waulff shapes in R"

@ The functional (¥) defiing Ag is used in crystallography (Gibbs free
energy) to model the equilibrium shape of a crystal of fixed volume
inside a separate phase. Wulff gave a construction to obtain K from the
dual norm || - ||g «

@ Dinghas (1944) was the first to use Brunn-Minkowski inequality to
obtain a solution of this problem.

@ Mathematical problem further considered by Taylor (1978), Fonseca
(1991) and Fonseca-Miiller (1991), using tools of Geometric Measure
Theory.
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The Heisenberg group H'

The Heisenberg group H*

H! is the Lie group (R3, ), where * is the non-abelian product
Ly, )= (X, Y, t") i=(x+x,y+x,t+t +(x'y—xy)),

A frame of left-invariant vector fields is given by

G G G G G
X=o+y-, Y—@—xa, ==

X, Y generate a non-integrable distribution J (the horizontal distribution).

The Haar measure is the Lebesgue measure.

The non-homogeneous dilations h,(x, y, t) = (1x, 1y, 22t) preserve the
horizontal distribution.
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Left-invariant Finsler norms in the horizontal distribution H*

Identifying R? with 7(, it is enough to consider a planar norm || - ||
associated to a convex body K C R2. This norm can be extended to a
left-invariant one in £ by means of the equality

(X +gYll)p = I(f(p), g(P))Ik-
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Sub-Finsler K-perimeter in H*

Let E C H! be measurable, || - || the left-invariant norm associated to
K C R2. Define the perimeter Py of E as:

Px(E) = sup{ f div(U) dH! : U € FLMHY),||U||x < 1}.
E

Here div is the Riemannian divergence (X, Y, T orthonormal frame), dH*
the Haar measure, and F(}(H!) the set of horizontal vector fields with
compact support in H!.
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Sub-Finsler K-perimeter in H*

Let E C H! be measurable, || - || the left-invariant norm associated to
K C R2. Define the perimeter Py of E as:

Px(E) = sup{ f div(U) dH! : U € FLMHY),||U||x < 1}.
E

Here div is the Riemannian divergence (X, Y, T orthonormal frame), dH*
the Haar measure, and F(}(H!) the set of horizontal vector fields with
compact support in H!.

Some properties
1. Pg(hy(E)) = PK(E),
2. |ha(B)| = A*|E|.

This implies that the optimal isoperimetric inequality in (H!, || - ||x) must
be of the form Py(E) > C |E|¥/*.
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Sub-Finsler area in H!
If S = OE is Lipschitz then the divergence theorem implies

Pe(E) = f INallic. dS
S

where N, is the horizontal projection of the outer unit normal N and dS is
the Riemannian measure of S (computed with the Riemannian metric g so
that X, Y, T is orthonormal)

v
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v

Minkowski content and Brunn-Minkowski

There is a notion of Minkowski content. Unfortunately there is no useful
Brunn-Minkowski inequality since the exponent is not the (Leonardi and
Masnou (2005)).
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Sub-Finsler area in H*
If S = OE is Lipschitz then the divergence theorem implies

Pe(E) = f INullic. dS
S

where Nj, is the horizontal projection of the outer unit normal N and dS is
the Riemannian measure of S (computed with the Riemannian metric g so
that X, Y, T is orthonormal)

v

Minkowski content and Brunn-Minkowski

There is a notion of Minkowski content. Unfortunately there is no useful
Brunn-Minkowski inequality since the exponent is not the (Leonardi and
Masnou (2005)).

Problem

How do we identify candidates to be minimizers of Ax under a volume
constraint?

= = = =T
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First variation of Py for C? boundaries

The singular set

Given a C! surface S C HY, its singular set S, C S is the set of points where
T,S coincides with the horizontal distribution (N, = 0).

Ag(So) = | |INullk,«dS =0
So

The regular set S \ S, is foliated by horizontal curves with tangent vector Z

The class C2

We say that a convex body is of class C2 if the boundary of K is C? and has
positive curvature everywhere.

If K is of class C%, for every u # 0 there is a unique 7x(u) such that
(m(u), u) = ||ul|g - It is geometrically clear that 7x = Ng?, the inverse of
the Gauss map of Ng.
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Theorem (Pozuelo-Ritoré, 2020)

Let K be of class C2 and S be a C? surface in H!. Let U be a C? vector field
with compact support on S \ Sy, and {¢,},cr the associated flow. Let
1 = mg(Ny). Then

S A= [w.nomzas.
s=0 S

K-mean curvature Hy
We let Hy = (Dzn, Z). This is an ODE along horizontal curvesin S \ S,

Theorem (Pozuelo-Ritoré, 2020)
Let S be a C? surface without singular points and constant mean curvature
Hg.
e If Hr > Othen S\ Sy is foliated by horizontal liftings of translations of
the circle || - ||x = 1/H.
o If Hy = 0then S\ Sy is foliated by horizontal straight lines.

= = =y
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First variation of perimeter for C? boundaries

Is Hg constant a sufficient condition for a critical point?

Unfortunately not. There is an additional condition involving the singular
set Sy

@ By Franceschi et al. (arXiv:2007.11384) the singular set S, of a C?
surface with CMC is composed of isolated points and singular curves

@ By Giovannardi et al. (arXiv:2204.03474) the horizontal curves in
S\ Sp must meet the singular curves at given angles depending on K
and the directions (condition obtained in the sub-Riemannian case by
Cheng-Hwang-Yang (2007))

v
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The Pansu-Wulff shapes

Definition

Let K of class C2 and parametrize K by an L-periodic curve y : R — R2.
For any u € R consider the horizontal lifting T,y : R — H' of the curve
t_y@(y) with initial point (0, 0,0). Define

Bx= (J Gao(uwu+L).
ue[o,L)

We shall refer to Bg as the Pansu-Wulff shape associated to the left-invariant
norm || - ||g. Its boundary Sg = dBg will be called the Pansu-Wulff sphere.

In the sub-Riemannian case, the corresponding sphere is known as Pansu
sphere.
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The Pansu-Wulff shapes (regularity properties)

Parameterization of the Wulff shape

Given any convex body K C R? with 0 € int(K) we parameterize 9K as

y(s) = (x(s), ¥(s)) = r(s) (sin(s), cos(s)), s€R.

where r(s) = p(sin(s), cos(s)) and p is the radial function of K.

Then we have the following parameterization of Sg.

x(u,v) = r(u + v) sin(u + v) — r(v) sin(v),

y(u,v) = r(u + v) cos(u + v) — r(v) cos(v),

t(u, v) = r(v)r(u + v)( sin(v) cos(u + v) — cos(v) sin(u + v))
+ [y (©) dE.

Regularity properties follow from this expression. Also convergence in
Hausdorff distance of Wulff shapes

= = = = =

Manuel Ritoré Pansu-Wulff shapes in H"



The Pansu-Wulff shapes

-3
ellipse with semiaxes of lengths 2 and 3.

Pansu-Wulff shapes in H"

Figure: The Wulff shape associated to the norm || - ||, = ((x1/a;)? + (x,/a,)%)!/?
with a = (1, 1.5). Observe that the projection to the horizontal plane ¢t = 0 is an
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The Pansu-Wulff shapes
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The Pansu-Wulff shapes
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The Pansu-Wulff shapes
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The Pansu-Wulff shapes
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Pansu-Wulff shapes: minimization properties

(Franceschi et al., arXiv:2007.11384)

Pansu-Wulff boundaries are the only C? stationary points of area under a
volume constraint. Proof after Ritoré-Rosales (2005)

Theorem (Pozuelo-Ritoré, arXiv:2007.04683)

Let || - ||g be the norm associated to an strictly convex body K C R? with C?
boundary. Letr > 0 and h : rK, — R a C° function. Consider a subset
E C H! with finite volume and K-perimeter such that

graph(h) CE C rKy X R.

Then
Px(E) > Px(Bg),

where By is the Wulff shape with the same volume as E.

Manuel Ritoré Pansu-Wulff shapes in H" 25/32



Pansu-Wulff shapes: minimization properties

Proof
We apply a calibration argument

rSg

g + Mim | h+ iy

8r

tpm—t,
_ MTm h+t,

Y
i

rSg
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Regularity properties

Sets with prescribed mean curvature

Given f € C(Q), E C Q has prescribed K-mean curvature f in Q < Eisa
critical point of the functional

B +— Py(B) — / fdH!, VB c Qbounded open set (1)
ENB

If S = 0E n Q is a Euclidean Lipschitz surface then (1) < E is a critical
point of the functional

B+ Ax(SNB) — / fdH!, VB c Qbounded open set
EnB
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Regularity of surfaces with prescribed mean curvature

Regularity of the non-singular set (Giovannardi-Ritoré, 2021)

Let K be a convex body of class CZ, Q C H! an open set and E C Q a set of
prescribed K- mean curvature f € C°(Q) with Euclidean Lipschitz and
H-regular boundary S. Then the horizontal curves T of S N Q are of class C2.

H-regularity of the boundary means that the surface is locally the level set of
a continuous function with non-vanishing continuous horizontal gradient.

Proof

Quite technical and follows from localizing the first variation along
horizontal curves of the surface
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The Bernstein problem

Bernstein’s Theorem (Giovannardi-Ritoré, 2022)

Let S C H! be a complete, stable, Euclidean Lipschitz and H-regular surface
without singular points. Then S is a vertical plane.

The proof is based on the second variation of the K-perimeter

N,T)\ (N, T)? INg|
Z(f)?*+4 (Z<< ) - 2 ds.
filzo Nl )" e ) i)
We localize the second variation along a horizontal line (where x(7r(Ny,)) is
constant because 7(N},) is constant)
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Thanks for your attention )
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