Pansu-Wulff shapes in the Heisenberg group

Manuel Ritoré Universidad de Granada

XXIII Lluis Santaló School 2024 Convex Geometry, Differential Geometry, and Harmonic Analysis: Building Synergies Universidad Internacional Menéndez Pelayo

Santander, August 1st, 2024

Introduction

The isoperimetric inequality in \mathbb{R}^n

The isoperimetric inequality in \mathbb{R}^n reads

boundary measure of $E \ge C(n) |E|^{(n-1)/n}$,

where |E| is the volume of a measurable set *E*. The constant *C*(*n*) depends on the dimension and it is equal to $P(B)/|B|^{(n-1)/n}$, where *B* is any ball in \mathbb{R}^n .

It can be also proven that equality holds if and only if *E* "is a ball".

What is the boundary measure of *E*?

When the boundary of *E* is of class C^2 there are three equivalent defs:

- 1. Its area
- 2. The Minkowski content

$$M(E) = \lim_{r \to 0} \frac{|E + r\overline{B}(0, 1)| - |E|}{r},$$

where, for r > 0, $E + r\overline{B}(0, 1)$ is the tubular neighborhood of *E* of radius *r*, defined by $E_r = \{p \in \mathbb{R}^n : d(p, E) \leq r\}.$

3. The perimeter of *E* in the sense of Cacciopoli and De Giorgi:

$$P(E) = \sup \left\{ \int_E \operatorname{div} X : X \in \mathfrak{X}^1_0(\mathbb{R}^n), ||X|| \leq 1 \right\},\$$

where $\mathfrak{X}_0^1(\mathbb{R}^n)$ is the set of C^1 vector fields on \mathbb{R}^n with compact support.

æ

Observation

When ∂ is of class C^2 1 and 2 are equivalent by Weyl's tube formula, and 1 and 3 as an application of the divergence theorem.

For the relation between perimeter in the sense of Cacciopoli and De Giorgi and Minkowski content (for general sets) one should take a look at

- 1. L. Ambrosio et al., *Perimeter as relaxed Minkowski content in metric measure spaces*, Nonlinear Anal. 153 (2017), 78–88.
- 2. M. Ritoré, *Isoperimetric inequalities in Riemannian manifolds*, Progress in Mathematics 348, Birkhauser Verlag, 2023

Proof of the isoperimetric inequality using the Brunn-Minkowski inequality

Denote $\overline{B}(0,1)$ by *B*. The Brunn-Minkowski inequality implies

 $|E + rB|^{1/n} - |E|^{1/n} \ge r|B|^{1/n}$.

Dividing by *r* and taking limits when $r \to 0$, since M(B) = n|B|,

$$\frac{M(E)}{|E|^{(n-1)/n}} \ge \frac{M(B)}{|B|^{(n-1)/n}} = C(n).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のなび

Anisotropic functionals

Anisotropic functionals in the Euclidean space \mathbb{R}^n , $n \ge 2$

Given an (asymmetric) norm $|| \cdot ||_K$ whose unit ball is a convex body $K \subset \mathbb{R}^n$, the *area* A_K of an oriented Lipschitz boundary *S* is defined by

$$A_{K}(S) = \int_{S} ||N||_{K,*} dS,$$
 (*)

where *N* is the outer unit normal to *S*, $||u||_{K,*} = \sup_{v \in K} \langle u, v \rangle$ is the dual norm of *K*, and *dS* is the standard area element on *S*.

When *K* is the unit ball, $||N||_{K,*} \equiv 1$, and A_K is the standard area.

A *crystal* is a minimizer of (*) with fixed volume. Wulff (1895) first gave a construction to obtain *K* from $|| \cdot ||_{K,*}$.

This is a different notion of boundary area that leads to other isoperimetric inequalities.

Equivalences

For a bounded set $E \subset \mathbb{R}^n$ with C^2 boundary *S* the following quantities coincide.

- 1. The area $A_K(S)$
- 2. The Minkowski content

$$M(E,K) = \lim_{r \to 0} \frac{|E + rK| - |E|}{r}.$$

3. The K-perimeter

$$P_{K}(E) = \sup \left\{ \int_{E} \operatorname{div} X : X \in \mathfrak{X}_{0}^{1}(\mathbb{R}^{n}), ||X||_{K} \leq 1 \right\},\$$

where \mathfrak{X}_0^1 is the set of C^1 vector fields on \mathbb{R}^n with compact support.

An anisotropic isoperimetric inequality obtained from the Brunn-Minkowski inequality

Proof

Brunn-Minkowski inequality implies

$$|E + rK|^{1/n} - |E|^{1/n} \ge r|K|^{1/n}.$$

Dividing by *r* and taking limits when $r \to 0$, since M(K, K) = n|K|,

$$\frac{M(E,K)}{|E|^{(n-1)/n}} \ge \frac{M(K,K)}{|K|^{(n-1)/n}} = C_K.$$

So *K* minimizes the functional (*) for volume |K|. The set *K* is known as the *Wulff shape* of (*)

Wulff shapes in \mathbb{R}^n

- The functional (*) defiing A_K is used in crystallography (Gibbs free energy) to model the equilibrium shape of a crystal of fixed volume inside a separate phase. Wulff gave a construction to obtain *K* from the dual norm $|| \cdot ||_{K,*}$
- Dinghas (1944) was the first to use Brunn-Minkowski inequality to obtain a solution of this problem.
- Mathematical problem further considered by Taylor (1978), Fonseca (1991) and Fonseca-Müller (1991), using tools of Geometric Measure Theory.

The Heisenberg group \mathbb{H}^1

The Heisenberg group \mathbb{H}^1

 \mathbb{H}^1 is the Lie group (\mathbb{R}^3 , *), where * is the non-abelian product

(x, y, t) * (x', y', t') := (x + x', y + x', t + t' + (x'y - xy')),

A frame of left-invariant vector fields is given by

$$X = \frac{\partial}{\partial x} + y \frac{\partial}{\partial t}, \qquad Y = \frac{\partial}{\partial y} - x \frac{\partial}{\partial t}, \qquad T = \frac{\partial}{\partial t}.$$

X, *Y* generate a non-integrable distribution \mathcal{H} (the *horizontal* distribution).

The Haar measure is the Lebesgue measure.

The non-homogeneous dilations $h_{\lambda}(x, y, t) = (\lambda x, \lambda y, \lambda^2 t)$ preserve the horizontal distribution.

イロン イヨン イヨン 一日

Left-invariant Finsler norms in the horizontal distribution \mathbb{H}^1 Identifying \mathbb{R}^2 with \mathcal{H}_0 it is enough to consider a planar norm $|| \cdot ||_K$ associated to a convex body $K \subset \mathbb{R}^2$. This norm can be extended to a left-invariant one in \mathcal{H} by means of the equality

 $(||fX + gY||_K)_p = ||(f(p), g(p))||_K.$

Sub-Finsler *K*-perimeter in \mathbb{H}^1

Let $E \subset \mathbb{H}^1$ be measurable, $|| \cdot ||_K$ the left-invariant norm associated to $K \subset \mathbb{R}^2$. Define the perimeter P_K of *E* as:

$$P_K(E) = \sup \left\{ \int_E \operatorname{div}(U) \, d\mathbb{H}^1 : U \in \mathcal{H}^1_0(\mathbb{H}^1), ||U||_K \leq 1 \right\}.$$

Here div is the Riemannian divergence (*X*, *Y*, *T* orthonormal frame), $d\mathbb{H}^1$ the Haar measure, and $\mathcal{H}^1_0(\mathbb{H}^1)$ the set of horizontal vector fields with compact support in \mathbb{H}^1 .

Sub-Finsler *K*-perimeter in \mathbb{H}^1

Let $E \subset \mathbb{H}^1$ be measurable, $|| \cdot ||_K$ the left-invariant norm associated to $K \subset \mathbb{R}^2$. Define the perimeter P_K of *E* as:

$$P_K(E) = \sup\left\{\int_E \operatorname{div}(U) \, d\mathbb{H}^1 : U \in \mathcal{H}^1_0(\mathbb{H}^1), ||U||_K \leq 1\right\}.$$

Here div is the Riemannian divergence (*X*, *Y*, *T* orthonormal frame), $d\mathbb{H}^1$ the Haar measure, and $\mathcal{H}^1_0(\mathbb{H}^1)$ the set of horizontal vector fields with compact support in \mathbb{H}^1 .

Some properties

1. $P_K(h_\lambda(E)) = \lambda^3 P_K(E)$,

$$2. |h_{\lambda}(E)| = \lambda^4 |E|.$$

This implies that the optimal isoperimetric inequality in $(\mathbb{H}^1, || \cdot ||_K)$ must be of the form $P_K(E) \ge C |E|^{3/4}$.

3

・ロン ・回 と ・ ヨ と ・ ヨ と

Sub-Finsler area in \mathbb{H}^1

If $S = \partial E$ is Lipschitz then the divergence theorem implies

$$P_K(E) = \int_S ||N_h||_{K,*} \, dS$$

where N_h is the horizontal projection of the outer unit normal N and dS is the Riemannian measure of S (computed with the Riemannian metric g so that X, Y, T is orthonormal)

Sub-Finsler area in \mathbb{H}^1

If $S = \partial E$ is Lipschitz then the divergence theorem implies

$$P_K(E) = \int_S ||N_h||_{K,*} \, dS$$

where N_h is the horizontal projection of the outer unit normal N and dS is the Riemannian measure of S (computed with the Riemannian metric g so that X, Y, T is orthonormal)

Minkowski content and Brunn-Minkowski

There is a notion of Minkowski content. Unfortunately there is no useful Brunn-Minkowski inequality since the exponent is not the (Leonardi and Masnou (2005)).

Sub-Finsler area in \mathbb{H}^1

If $S = \partial E$ is Lipschitz then the divergence theorem implies

$$P_K(E) = \int_S ||N_h||_{K,*} \, dS$$

where N_h is the horizontal projection of the outer unit normal N and dS is the Riemannian measure of S (computed with the Riemannian metric g so that X, Y, T is orthonormal)

Minkowski content and Brunn-Minkowski

There is a notion of Minkowski content. Unfortunately there is no useful Brunn-Minkowski inequality since the exponent is not the (Leonardi and Masnou (2005)).

Problem

How do we identify candidates to be minimizers of A_K under a volume constraint?

Manuel Ritoré

First variation of P_K for C^2 boundaries

The singular set

Given a C^1 surface $S \subset \mathbb{H}^1$, its singular set $S_0 \subset S$ is the set of points where T_pS coincides with the horizontal distribution $(N_h = 0)$.

$$A_K(S_0) = \int_{S_0} ||N_h||_{K,*} dS = 0$$

The regular set $S \setminus S_0$ is foliated by horizontal curves with tangent vector Z

The class C_{+}^{2}

We say that a convex body is of class C_+^2 if the boundary of *K* is C^2 and has positive curvature everywhere.

If *K* is of class C_+^2 , for every $u \neq 0$ there is a unique $\pi_K(u)$ such that $\langle \pi_K(u), u \rangle = ||u||_{K,*}$. It is geometrically clear that $\pi_K = N_K^{-1}$, the inverse of the Gauss map of N_K .

Theorem (Pozuelo-Ritoré, 2020)

Let *K* be of class C^2_+ and *S* be a C^2 surface in \mathbb{H}^1 . Let *U* be a C^2 vector field with compact support on $S \setminus S_0$, and $\{\varphi_s\}_{s \in \mathbb{R}}$ the associated flow. Let $\eta = \pi_K(N_h)$. Then

$$\frac{d}{ds}\Big|_{s=0} A(\varphi_s(S)) = \int_S \langle U, N \rangle \langle D_Z \eta, Z \rangle \, dS.$$

K-mean curvature H_K

We let $H_K = \langle D_Z \eta, Z \rangle$. This is an ODE along horizontal curves in $S \setminus S_0$

Theorem (Pozuelo-Ritoré, 2020)

Let *S* be a C^2 surface without singular points and constant mean curvature H_K .

If H_K > 0 then S \ S₀ is foliated by horizontal liftings of translations of the circle || · ||_K = 1/H_k.

• If $H_K = 0$ then $S \setminus S_0$ is foliated by horizontal straight lines.

First variation of perimeter for C^2 boundaries

Is H_K constant a sufficient condition for a critical point?

Unfortunately not. There is an additional condition involving the singular set S_0

- By Franceschi et al. (arXiv:2007.11384) the singular set S_0 of a C^2 surface with CMC is composed of isolated points and singular curves
- By Giovannardi et al. (arXiv:2204.03474) the horizontal curves in $S \setminus S_0$ must meet the singular curves at given angles depending on K and the directions (condition obtained in the sub-Riemannian case by Cheng-Hwang-Yang (2007))

Definition

Let *K* of class C^2_+ and parametrize ∂K by an *L*-periodic curve $\gamma : \mathbb{R} \to \mathbb{R}^2$. For any $u \in \mathbb{R}$ consider the horizontal lifting $\Gamma_{\gamma(u)} : \mathbb{R} \to \mathbb{H}^1$ of the curve $t_{-\gamma(u)}(\gamma)$ with initial point (0,0,0). Define

$$\mathbb{B}_K = \bigcup_{u \in [0,L)} \Gamma_{\gamma(u)}([u, u + L]).$$

We shall refer to \mathbb{B}_K as the *Pansu-Wulff shape* associated to the left-invariant norm $|| \cdot ||_K$. Its boundary $\mathbb{S}_K = \partial \mathbb{B}_K$ will be called the *Pansu-Wulff sphere*.

In the sub-Riemannian case, the corresponding sphere is known as Pansu sphere.

The Pansu-Wulff shapes (regularity properties)

Parameterization of the Wulff shape

Given any convex body $K \subset \mathbb{R}^2$ with $0 \in int(K)$ we parameterize ∂K as

$$\gamma(s) = (x(s), y(s)) = r(s) (\sin(s), \cos(s)), \quad s \in \mathbb{R}.$$

where $r(s) = \rho(\sin(s), \cos(s))$ and ρ is the radial function of *K*.

Then we have the following parameterization of S_K .

$$\begin{aligned} x(u,v) &= r(u+v)\sin(u+v) - r(v)\sin(v), \\ y(u,v) &= r(u+v)\cos(u+v) - r(v)\cos(v), \\ t(u,v) &= r(v)r(u+v)(\sin(v)\cos(u+v) - \cos(v)\sin(u+v)) \\ &+ \int_{v}^{u+v} r^{2}(\xi) d\xi. \end{aligned}$$

Regularity properties follow from this expression. Also convergence in Hausdorff distance of Wulff shapes

Manuel Ritoré

Figure: The Wulff shape associated to the norm $|| \cdot ||_a = ((x_1/a_1)^2 + (x_2/a_2)^2)^{1/2}$ with a = (1, 1.5). Observe that the projection to the horizontal plane t = 0 is an ellipse with semiaxes of lengths 2 and 3.

Figure: The Wulff shape S_{K_r} for the *r*-norm, r = 1.5. The horizontal curve is the projection of the equator to the plane t = 0. Since the *r*-norm is symmetric, the Wulff shape projects to the set $|| \cdot ||_r \leq 2$ in the t = 0 plane.

Manuel Ritoré

Figure: The ball \mathbb{B}_1 obtained as Hausdorff limit of the Wulff shapes \mathbb{B}_{K_r} of the *r*-norm when *r* converges to 1

イロト イヨト イヨト イヨト

Figure: The ball \mathbb{B}_{∞} obtained as Hausdorff limit of the Wulff shapes \mathbb{B}_{K_r} of the *r*-norm when *r* converges to ∞

イロン イロン イヨン イヨン

Figure: The Wulff shape $\mathbb{B}_{T,r}$ for the norm $|| \cdot ||_{T,r}$, with r = 2.

Manuel Ritoré

3

ヘロン 人間 とくほど 人間 とう

Figure: The ball \mathbb{B}_T obtained as limit of the Wulff shapes $\mathbb{B}_{T,r}$ when $r \to \infty$.

- M o *		Dat.	ara
- IVI AL	nuer	- N III	u e

< ロ > < 回 > < 回 > < 回 > <</p>

Pansu-Wulff shapes: minimization properties

(Franceschi et al., arXiv:2007.11384)

Pansu-Wulff boundaries are the only C^2 stationary points of area under a volume constraint. Proof after Ritoré-Rosales (2005)

Theorem (Pozuelo-Ritoré, arXiv:2007.04683)

Let $|| \cdot ||_K$ be the norm associated to an strictly convex body $K \subset \mathbb{R}^2$ with C^2 boundary. Let r > 0 and $h : rK_0 \to \mathbb{R}$ a C^0 function. Consider a subset $E \subset \mathbb{H}^1$ with finite volume and *K*-perimeter such that

 $\operatorname{graph}(h) \subseteq E \subset rK_0 \times \mathbb{R}.$

Then

$$P_K(E) \ge P_K(\mathbb{B}_E),$$

where \mathbb{B}_E is the Wulff shape with the same volume as *E*.

・ロン ・回 と ・ ヨ と ・ ヨ と

Pansu-Wulff shapes: minimization properties

Proof

We apply a calibration argument

Regularity properties

Sets with prescribed mean curvature

Given $f \in C(\Omega)$, $E \subset \Omega$ has prescribed *K*-mean curvature f in $\Omega \Leftrightarrow E$ is a critical point of the functional

$$B \mapsto P_K(B) - \int_{E \cap B} f \, d\mathbb{H}^1, \quad \forall B \subset \Omega \text{ bounded open set}$$
(1)

If $S = \partial E \cap \Omega$ is a Euclidean Lipschitz surface then (1) $\Leftrightarrow E$ is a critical point of the functional

$$B \mapsto A_K(S \cap B) - \int_{E \cap B} f \, d\mathbb{H}^1, \quad \forall B \subset \Omega \text{ bounded open set}$$

Regularity of surfaces with prescribed mean curvature

Regularity of the non-singular set (Giovannardi-Ritoré, 2021)

Let *K* be a convex body of class C^2_+ , $\Omega \subset \mathbb{H}^1$ an open set and $E \subset \Omega$ a set of prescribed *K*- mean curvature $f \in C^0(\Omega)$ with Euclidean Lipschitz and \mathbb{H} -regular boundary *S*. Then the horizontal curves Γ of $S \cap \Omega$ are of class C^2 .

 \mathbb{H} -regularity of the boundary means that the surface is locally the level set of a continuous function with non-vanishing continuous horizontal gradient.

Proof

Quite technical and follows from localizing the first variation along horizontal curves of the surface

The Bernstein problem

Bernstein's Theorem (Giovannardi-Ritoré, 2022)

Let $S \subset \mathbb{H}^1$ be a complete, stable, Euclidean Lipschitz and \mathbb{H} -regular surface without singular points. Then *S* is a vertical plane.

The proof is based on the second variation of the K-perimeter

$$\int_{S} \left(Z(f)^{2} + 4 \left(Z\left(\frac{\langle N, T \rangle}{|N_{h}|}\right) - \frac{\langle N, T \rangle^{2}}{|N_{h}|^{2}} \right) f^{2} \right) \frac{|N_{h}|}{\kappa(\pi(\nu_{h}))} dS.$$

We localize the second variation along a horizontal line (where $\kappa(\pi(N_h))$ is constant because $\pi(N_h)$ is constant)

References

Recent works

- A.P. Sánchez, Ph.D. Thesis, Tufts U., 2017.
- J. Pozuelo, M. Ritoré, Pansu-Wulff shapes in H¹. Adv. Calc. Var. 16, no. 1 (2023) 69–98.
- V. Franceschi, R. Monti, A. Righini, and M. Sigalotti, The isoperimetric problem for regular and crystalline norms in H¹. J. Geom. Anal. 33 (2023), no. 1, Paper No. 8, 40 pp.
- G. Giovannardi, M. Ritoré, G. Giovannardi, M. Ritoré, Regularity of Lipschitz boundaries with prescribed sub-Finsler mean curvature in the Heisenberg group H¹. J. Differential Equations 302 (2021) 474–495.
- J, Pozuelo, Existence of isoperimetric regions in sub-Finsler nilpotent groups, arXiv:2103.06630.

References

Recent works

- G. Giovannardi, M. Ritoré, The Bernstein problem for -Lipschitz surfaces in three-dimensional sub-Finsler Heisenberg groups, Commun. Contemp. Math. (to appear).
- G. Giovannardi, J. Pozuelo, M. Ritoré, Area-minimizing horizontal graphs with low-regularity in the sub-Finsler Heisenberg group, New Trends in Geometric Analysis, RSME Springer Series 10, 2023, pp. 209–226.
- G. Giovannardi, A. Pinamonti, J. Pozuelo, S. Verzellesi, The prescribed mean curvature equation for *t*-graphs in the sub-Finsler Heisenberg group ℍⁿ. Adv. Math. 451(2024), Paper No. 109788.

イロン イヨン イヨン イヨン

Thanks for your attention

• • • • • • • • •

Э

프 🖌 🛪 프 🕨