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Problem: Minimize the relative perimeter under a volume
constraint inside a convex body

C ⊂ Rn convex body (closed convex set with non-empty interior;
no regularity assumption on the boundary; either bounded or
unbounded)

The relative perimeter of E ⊂ C is defined by

PC (E ) := sup

{∫
E

divX : X ∈ X1
0(int(C )), |X | ≤ 1

}
.

PC (E ) = P(E , int(C ))

The volume of E is denoted by |E |

Problem: Given 0 < v < |C |, compute inf{PC (E ) : |E | = v} and
study the minimizers



Isoperimetric profile and isoperimetric regions

The isoperimetric profile of C is the function IC : (0, |C |)→ R+

IC (v) := inf{PC (E ) : |E | = v}

A set E ⊂ C is isoperimetric if IC (|E |) = PC (E ).

IC determines an isoperimetric inequality in C : for any F ⊂ C we
have

PC (F ) ≥ IC (|F |)

with equality iff F is isoperimetric. IC can be thought of as the
optimal isoperimetric inequality on C



Problems

1. Existence and regularity of isoperimetric sets

2. Geometric and topological properties of isoperimetric regions

3. Determination and properties of the isoperimetric profile. Is it
positive, regular, absolutely continuous?

Comments

I Existence is not guaranteed in unbounded sets

I Although interior regularity is established, boundary regularity
results have not been obtained for non-smooth ∂C (e.g.
polyhedra)

I Symmetrization does not work even in highly symmetric cases

I Only the case of the ball is explicitly solved



Problem related to:

1. Van der Waals-Cahn-Hilliard theory of phase transitions
(Modica, Sternberg, Pacard-Ritoré,...)

2. Capillarity problems (Finn)

3. Shape of A/B block copolymers separated with distinct
phases (Thomas et al., Ohta-Kawasaki)

4. Sobolev-Poincaré, Faber-Krahn and Cheeger inequalities



Results known in the bounded case

1. Isoperimetric profile of the ball (Euler, 1744 (planar case);
Bukowski-Sperner, 1979; Almgren, 1985 (spherical
symmetrization); Burago-Zalgaller, 1988)

2. Isoperimetric regions exist and the profile is positive and
symmetric. It is asymptotically the one of the half-plane when
the boundary is smooth

3.
(

n
n−1

)
-concavity of the profile (Kuwert in the smooth case, E.

Milman in the general one; also proved by approximation in
Hausdorff distance by Ritoré-Vernadakis)

4. Connectedness of isoperimetric boundaries and regions for
C 2,α boundary, (Stredulinsky-Ziemer, Ritoré-Vernadakis)



Plan of the talk

Goal

I Extend, if possible, known results for the bounded case to the
unbounded one

Contents

1. Positivity of the profile (convex bodies of uniform geometry
and asymptotic cylinders)

2. Generalized existence

3.
(

n
n−1

)
-concavity of the profile

4. Small volumes



Positivity of IC . Is IC > 0?

Q=half-cylinder

P=half-parabola

x

px

qx

t1
x

t2
x

A1
x

A2
x

Take C = conv(Q ∪ P)



First observe that IC ≤ ICp ∀p ∈ ∂C (Cp is the tangent cone to C
at p), and

ICp(v) = nαpv
(n−1)/n,

where αp = |BCp(p, 1)| measures the aperture of the cone
(BC (p, r) := C ∩ B(p, r) is the relative ball). In the previous
example

lim
x→∞

αpx = lim
x→∞

|BCpx
(px , 1)| = 0.

Hence IC ≡ 0.

Observe that in this example

inf
p∈C
|BC (p, r)| ≤ inf

x
|BC (px , r)| ≤ | inf

x
BCpx

(px , r)| = 0

for any r > 0



Convex bodies of bounded geometry

A convex body C ⊂ Rn is of bounded geometry if there exists
r0 > 0 such that

b(r0) := inf
p∈C
|BC (p, r0)| > 0

Asymptotic cylinder

Let C ⊂ Rn be a convex body, {xi}i∈N a diverging sequence in C .
Then −xi + C subconverges locally in Hausdorff distance to a
convex cylinder K : an asymptotic cylinder of C

Asymptotic cylinders play a key role in both the characterization of
sets of bounded geometry and in the proof of generalized existence
of isoperimetric regions



It turns out also that the notion of bounded geometry is the right
one to ensure the positivity of the isoperimetric profile.

Proposition

The following are equivalent

1. C is of bounded geometry

2. IC (v) > 0, ∀v > 0

3. All asymptotic cylinders of C are convex bodies (have
non-empty interior)

Moreover

I 1 is equivalent to b(r) = infp∈C |BC (p, r)| > 0 for all r > 0,
and

I 2 is equivalent to IC (v0) > 0 for some v0 > 0



Main issue for existence

The standard way to prove existence of an isoperimetric region of
volume v > 0 is to take a minimizing sequence Ei ⊂ C of sets with
|Ei | = v so that PC (Ei )→ IC (v) = inf{PC (F ) : |F | = v}. Then
one tries to extract a convergent subsequence

This fails in general in a non-compact space (since all or part of a
minimizing sequence could escape off to infinity)

To treat this problem we need two main ingredients

1. density estimates

2. analyze the behavior of minimizing sequences

A related analysis was used by Leonardi and Rigot to obtain
existence of isoperimetric regions in sub-Riemannian Carnot groups



Density estimates

Let C ⊂ Rn be a convex body of uniform geometry, v0 > 0, and
{Ei}i∈N ⊂ C a sequence such that (for H half-space)

|Ei | ≤ v0 ∀i ∈ N , lim
i→∞
|Ei | = v ∈ (0, v0] , lim inf

i→∞
PC (Ei ) ≤ IH(v) .

Take m0 ∈ (0, 1
2 ] such that

m0 < min

{
1

2v0
,

Λn

IH(1)n

}
.

Then there exists a sequence {xi}i∈N ⊂ C such that

|Ei ∩ BC (xi , 1)| ≥ m0|Ei | for i large enough.

(Λ is a constant depending on the uniform geometry of C )



Behavior of minimizing sequences

Let {Ci}i∈N a sequence of unbounded convex bodies converging
locally in Hausdorff distance to an unbounded convex body C with
0 ∈ C . Let Ei ⊂ Ci be a sequence of measurable sets with volumes
vi converging to v > 0 and uniformly bounded perimeter. Assume
E ⊂ C is the L1

loc(Rn) limit of {Ei}i∈N. Then, passing to a (non
relabeled) subsequence, there exist diverging radii ri > 0 such that

Ed
i := Ei \ B(0, ri )

satisfies

(i) |E |+ limi→∞ |Ed
i | = v .

(ii) PC (E ) + lim inf i→∞ PCi
(Ed

i ) ≤ lim inf i→∞ PCi
(Ei ).



Generalized isoperimetric regions

We say that a finite family E 0,E 1, . . . ,E k of sets of finite
perimeter is a generalized isoperimetric region in C if
E 0 ⊂ C = K 0, E i is contained in an asymptotic cylinder K i for
i ≥ 1 and, for any family of sets F 0,F 1, . . . ,F r such that F i ⊂ K̃ i

and
∑k

i=0 |E i | =
∑r

i=0 |F i |, we have

k∑
i=0

PK i (E i ) ≤
r∑

i=0

PK̃ i (F
i ).

Moreover, each E i is an isoperimetric region in K i with volume
|E i |.



Main existence result
Let C ⊂ Rn be a convex body of uniform geometry, v0 > 0. There
exists ` ∈ N such that: for any minimizing sequence {Fi}i for
volume v0, one can find a (not relabeled) subsequence {Fi}i such
that, for every j ∈ {0, . . . , `}, there exist

I a divergent sequence {x ji }i , a sequence of sets {F j
i }i , an

asymptotic cylinder K j ∈ K(C ), an isoperimetric region
E j ⊂ K j (possibly empty), (x0

i = 0, K 0 = C ) such that

(i) F j+1
i ⊂ F j

i ⊂ Fi for all i ∈ N and j ∈ {0, . . . , `− 1};
(ii) limi→∞−x ji + C = K j locally in Hausdorff distance;

(iii) limi→∞−x ji + F j
i = E j ⊂ K j in L1

loc(Rn);

(iv) for any 0 ≤ q ≤ `, E 0,E 1, . . . ,Eq is a generalized
isoperimetric region of volume

∑q
j=0 |E j |.

(v)
∑`

j=0 |E j | = v0;

(vi) IC (v0) =
∑`

j=0 IK j (|E j |).



Sketch of the proof

Let E 0 be the L1
loc -limit (possibly empty) of Fi . Find a diverging

sequence r0
i such that F 1

i := Fi \ B(0, r0
i ) satisfies

1. |E 0|+ limi→∞ |F 1
i | = v0,

2. PC (E 0) + lim inf i→∞ PC (F 1
i ) ≤ lim inf i→∞ PC (Fi ).

Then

1. If |E 0| > 0 then E 0 is isoperimetric for its volume

2. PC (E 0) + lim inf i→∞ PC (F 1
i ) = IV (v0)

So we have

1. Either |E 0| = v0 and E 0 is isoperimetric for volume v0, or

2. |E 0| < v0.



Sketch of the proof (continued)

Assume |E 0| < v0. By the density estimate, one can find a
sequence xi ∈ F 1

i such that

|F 1
i ∩ BC (x1

i , 1)| ≥ m0|F 1
i |

for i large. Since x1
i diverges,

1. −x1
i + C subconverges to an asymptotic cylinder K 1.

2. −x1
i + F 1

i subconverges L1
loc to E 1 ⊂ K 1 of volume

v0 − |E 0| ≥ |E 1| ≥ m0(v0 − |E 0|)



Sketch of the proof (induction)

Define F 2
i finding a sequence of diverging radii r2

i by

−x1
i + F 2

i = (−x1
i + F 1

i ) \ B(0, r2
i )

Then we have

1. |E 1|+ limi→∞ |F 2
i | = limi→∞ |F 1

i |,
2. PK1(E 1) + lim inf i→∞ PC (F 2

i ) ≤ lim inf i→∞ PC (F 1
i )

Reasoning as above we find

1. |E 0|+ |E 1|+ limi→∞ |F 2
i | = v0

2. PC (E 0) + PK1(E 1) + lim inf i→∞ PC (x1
i + F 2

i ) = IC (v0)

and we use these formulas as a basis for an induction scheme



End of the proof (finiteness)

There exists a constant β > 0 (only depending on C and an upper
bound of v0) such that

|E j | ≥ β

So we only have a finite number of steps



Remarks

1. A corresponding result was obtained by Nardulli for manifolds
of controlled geometry

2. The generalized existence theorem allows us to work as if we
had existence of isoperimetric regions.

3. It is still an open problem to decide whether there is existence
of isoperimetric regions in a convex body of uniform geometry.

In the following slide we show an example



Conjectured example of non-existence of isoperimetric sets



Concavity of I
n/(n−1)
C (sketch)

1. In the compact case the
(

n
n−1

)
-concavity of the profile is

proved when the boundary is smooth by deforming an
isoperimetric region. The general case follows by
approximation in Hausdorff distance

2. In the bounded geometry case we have to approximate a
convex set by sets with (bounded geometry and) smooth
boundary whose asymptotic cylinders have also smooth
boundary

3. A major consequence is the connectedness of generalized
isoperimetric regions. In some cases this allows to prove
existence of isoperimetric regions: for instance, for convex
bodies of revolution



Small volumes (bounded convex bodies)

Given a bounded convex body, the aperture of tangent cones at
the boundary is a lower semicontinuous function. This implies the
existence of boundary points with the smallest possible aperture.
All these cones have the same isoperimetric profile, that will be
denoted by ICmin

.

Theorem

Let C ⊂ Rn be a bounded convex body. Then

lim
v→0

IC (v)

ICmin
(v)

= 0.

Moreover, if we scale a sequence of isoperimetric regions (Ei )
whose volumes go to 0, we get Hausdorff convergence to a ball in
a tangent cone with the smallest possible aperture.



Sketch of proof

(Ei )i isoperimetric regions with |Ei | → 0, xi ∈ ∂C ∩ Ei . We scale
Ei with center xi and factor λi to get Ẽi ⊂ C̃i with volume 1.
Passing to a subsequence (uniformly bounded diameter by density
estimates and connectedness) we have Ẽi → E0 in C0 = −x0 + Cx0 ,
where x0 is assumed to be the limit of (xi ). We have

IC0(1) ≤ PC0(E0) ≤ lim inf
i→∞

PC̃i
(Ẽi ) = lim inf

i→∞
IC̃i

(1),

and so

lim inf
i→∞

IC (vi )

IC0(vi )
= lim inf

i→∞

λn−1
i IC (1/λni )

λn−1
i IC0(1/λni )

= lim inf
i→∞

IC̃i
(1)

IC0(1)
≥ 1.

On the other hand, IC ≤ IC0 for any tangent cone, so that

lim sup
i→∞

IC (vi )

IC0(vi )
≤ 1.



We claim that IC0 = ICmin
: otherwise IC0/IC1 ≥ α > 1 for some

other tangent cone C1 and some constant α. Since IC ≤ IC1 we
should have

IC
IC0

=
IC
IC1

IC1

IC0

≤ 1

α
< 1,

yielding a contradiction that proves the claim.

Comments

1. Generalized existence provides a similar proof in the
unbounded case

2. When C is a bounded convex body with smooth boundary,
isoperimetric regions concentrate near the maxima of the
mean curvature of ∂C (convexity is not necessary) by the
results of Fall



Open problems

1. Find a proof of existence or a counterexample to non-existence

2. Connectedness of isoperimetric regions in the C 2,α case and in
the general case (using concavity). Connectedtedness of the
complement should also work except for cylinders

3. Is there an alternative proof of concavity based on the
bounded case (Milman)?

4. Regularity at the boundary of isoperimetric regions



Thanks for your attention
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