
THE ISOPERIMETRIC PROFILE OF COMPACT MANIFOLDS

MANUEL RITORÉ

In this chapter we introduce the notions of isoperimetric profile and isoperimetric
region in an m-dimensional Riemannian manifold M , and describe their basic prop-
erties when M is compact. The isoperimetric profile is the function that assigns to
any volume the infimum of the perimeter of the sets of this volume, and should be
thought of as the best possible isoperimetric inequality in M . Isoperimetric regions
are the ones with the smallest possible perimeter for a given volume and are the
minimizers of this variational problem.

Right after introducing these concepts, we show existence of isoperimetric sets for
any given volume, the continuity and local Hölder continuity of the isoperimetric
profile I of M , its positivity and symmetry with respect to |M |/2, and we describe
the behavior of I for small volumes. Then we focus on regularity properties of the
profile by showing a differential inequality satisfied by Iα, for α ∈ [1,m/(m − 1)].
This inequality would imply that Iα it is locally the sum of a concave function and a
smooth one and hence it enjoys the same regularity properties of concave functions.
In particular, it is differentiable once and twice almost everywhere, it has lateral
derivatives everywhere and it is an absolutely continuous function. The differential
inequality is also very useful for comparison purposes and indeed we use it give a
proof, following Bayle, of the classical Levy-Gromov isoperimetric inequality. We also
use this inequality to provide a description of the isoperimetric profile of the sphere
Sm. Under the hypothesis that the Ricci curvature of the manifold is non-negative
we get the concavity of Iα (strict concavity indeed when 1 6 α < m/(m− 1)).

We finish the chapter by looking at the continuity properties of the isoperimetric
profile under Lipschitz convergence, as metric spaces, of manifolds.

1. Sets of finite perimeter

Given a Riemannian manifold M and an open subset Ω ⊂M , the perimeter of a
measurable set E ⊂M inside Ω is defined as

(1) P (E,Ω) := sup

{∫
E

divX dM : X ∈ X0(Ω), ||X|| 6 1

}
.

Recall that X0(Ω) is the space of vector fields with compact support in Ω. When
Ω = M , we write P (E) instead of P (E,M).

A measurable set E ⊂ M has finite perimeter if and only if its characteristic
function χE is of bounded variation. The reader is referred to Giusti [11] or Maggi
[12] for more information on functions of bounded variation.

When E is bounded and has C1 boundary, the perimeter of E in Ω coincides with
the Riemannian measure of ∂E ∩ Ω.

A natural topology in the space of measurable sets is given by the L1-convergence
of characteristic functions. We say that a sequence of measurable sets (Ei) converges
in L1(M) to a measurable set E when the characteristic functions χEi converge in
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L1(M) to χE . Since |χEi − χE | is the characteristic function of the symmetric differ-
ence Ei4E, convergence is equivalent to limi→∞ |Ei4E| = 0. When the sequence
(Ei) L

1-converges to E, we simply write E = limi→∞Ei or Ei → E.
Two basic properties of sets of finite perimeter are lower semicontinuity and

compactness with uniformly bounded perimeter

Proposition 1.1 (Lower semicontinuity of perimeter). Let Ω ⊂M be an open set
in a Riemannian manifold. Let (Ei) a sequence of sets of finite perimeter in Ω
converging in L1(Ω) to a measurable set E. Then we have

P (E,Ω) 6 lim inf
i→∞

P (Ei,Ω).

Theorem 1.2 (Compactness). Let Ω ⊂ M be a bounded open set with Lipschitz
boundary in a Riemannian manifold M . Let (Ei) be a sequence of sets with uniformly
bounded perimeters P (Ei,Ω). Then we can extract a subsequence converging in L1(Ω)
to a set of finite perimeter E ⊂ Ω.

There are other notions of boundary measure in a Riemannian manifold. For
smooth submanifolds, one can consider the Riemannian volume element. Another one
is the Minkowski content of a set. Given a bounded measurable set E, we consider
the tubular neighborhood of E of radius t > 0 given by

Et := {p ∈M : d(p,E) 6 t}.

Then the Minkowski content of E is defined as

(2) M(E) := lim inf
t→0

|Et| − |E|
t

.

When E is bounded with C2 boundary, Steiner’s formula implies that the Minkowski
content of E equals the Riemannian measure of ∂E. Hence

P (E) = M(E)

when E is bounded with C2 boundary. However, it is immediate to check that

P (E) 6M(E)

for any bounded measurable set E. Indeed, let X be a vector field in M with
compact support and ||X|| 6 1, and let ϕt be its associated flow. Then ϕt(E) ⊂ Et:
if q = ϕt(p), with p ∈ E, then the curve s ∈ [0, t] → ϕs(p) connects p and q with
length ∫ t

0
||Xϕs(p)|| ds 6 t.

Hence d(q, E) 6 t. This proves ϕt(E) ⊂ Et. So we have |ϕt(E)| 6 |Et| and∫
M

divX dM =
d

dt

∣∣∣∣
t=0

|ϕt(E)| 6 lim inf
t→0

|Et| − |E|
t

= M(E).

Taking supremum over X, we finally get P (E) 6M(E).
Another notion of boundary measure is the (m−1)-dimensional Hausdorff measure,

that can be defined in any metric space. We refer the reader to the monographs by
Federer [9], Burago, Burago and Ivanov [7] and Evans and Gariepy [8] for definition
and properties of the Hausdorff measure.



THE ISOPERIMETRIC PROFILE OF COMPACT MANIFOLDS 3

1.1. Deformations of sets of finite perimeter. In isoperimetric problems, it is
essential to have ways of modifying the volume of a set while controlling the change
of perimeter. We present in this subsection two ways of volume adjustment, one by
adding or removing balls and a second one by using the flow associated to a given
vector field.

Theorem 1.3 (Volume adjustment using balls). Let E ⊂M be a measurable set in
a Riemannian manifold M of finite volume. Given r > 0, there exists some x ∈M
such that

(3) |E ∩B(x, r)| > |E|
2|M |

b(r).

Proof. Recall that b(r) was defined in (??) as infy∈M |B(y, r)|. The proof follows
from an application of Fubini-Tonelli’s Theorem to the function (x, y) ∈M ×M →
(χEχB(y,r))(x). We get∫

E
|B(y, r)| dM(y) =

∫
M
|E ∩B(y, r)| dM(y),

from where we get |E| b(r) 6 |M | supy∈M |E ∩B(y, r)| and (3). �

Remark 1.4. Theorem 1.3 implies that, given E, we can find a point x ∈M so that
the set E \B(x, r) has volume smaller than or equal to |E|(1− b(r)/(2|M |). By the
continuity of the function r 7→ |E \B(x, r)|, removing from E a ball centered at x of
suitable radius we can substract from E any volume smaller than |E| b(r)/(2|M |).

A similar argument can be applied to the complementary set Ec = M \ E to
obtain a point x ∈ M such that |Ec ∩ B(x, r)| > |Ec|b(r)/2|M |. In this case, the
volume of the set E ∩B(x, r) is larger than or equal to |E|(1 + b(r)/(2|M |)) + b(r)/2.
So we can add to E any volume between 0 and |E|b(r)/(2|M |) + b(r)/2 enlarging
the radius of a ball of center x between 0 and r.

Remark 1.5. Given a set E ⊂M in a compact connected manifold with 0 < |E| <
|M |, one can obtain a point x ∈M so that |E ∩B(x, r)| > 0 and |Ec ∩B(x, r)| > 0
for any r > 0 by the following argument: consider the sets

E0 := {x ∈M : ∃ r > 0 with |E ∩B(x, r)| = 0},
and

E1 := {x ∈M : ∃ r > 0 with |E ∩B(x, r)| = |B(x, r)|},
Then E0 and E1 are open sets and |E ∩ E0| = |E \ E1| = 0, see Proposition 3.1 in

[11]. The set Ẽ := (E ∩ E1) \ E0 has the same volume as E and E1 ⊂ int(Ẽ), E0 ⊂
int(Ẽc). By the connectedness of M and the condition on |E|, the boundary of Ẽ is

not empty. Hence any point x ∈ ∂Ẽ does not belong to E0 ∪ E1.

Theorem 1.6 (Volume adjustment using vector fields). Let E be a set with finite
volume and locally finite perimeter in an open set Ω ⊂M , and let B ⊂ Ω be an open
set such that P (E,B) > 0. Then, there exists two constants C > 0 and m > 0 such
that, for every −m < m < m, there exists a set F ⊂ Ω such that F = E outside B,
satisfying

(1) |F | = |E|+m,
(2) |P (F,Ω)− P (E,Ω)| 6 C|m|.

Proof. As P (E,B) > 0, there exists a vector field X with compact support in B
such that

∫
E divX dHn > 0. The one-parameter group of diffeomorphisms {ϕt}t∈R
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associated to X then satisfies d
dt

∣∣
t=0
|ϕt(E)| =

∫
E divX dHn > 0. This implies

the existence of m > 0 and an open interval I around 0 such that the function
t ∈ I 7→ (|ϕt(E)| − |E|) ∈ (−m,m) is a C1 diffeomorphism. This proves 1.

To prove (ii), we consider the reduced boundary ∂∗E of E. Take m ∈ (−m,m)
and F = ϕtm(E) so that |F | = m. Then P (F,Ω)− P (E,Ω) = P (F,B) − P (E,B).
By the area formula

|P (F,B)− P (E,B)| =
∣∣∣∣ ∫

∂∗E∩B
(Jac(ϕtm)− 1) dHn−1

∣∣∣∣ 6 C ′|tm|P (E,B),

where C ′ is a constant depending only on the vector field X. As |tm| 6 C ′′|m|, where
C ′′ > 0 is a constant only depending on X and E, we obtain 2. �

2. Regularity of isoperimetric sets

The theory of sets of finite perimeter has been extensively developed in Euclidean
spaces and has been recently extended to more general spaces. Some basic results in
Euclidean theory can be directly stated and proved in Riemannian manifolds. The
techniques in more general metric spaces can be, of course, applied to the metric
structure of Riemannian manifolds.

Regularity results for sets minimizing perimeter under a volume constraint were
obtained by Morgan, who proves in Corollary 3.8 of [13] the following

Theorem 2.1. Let E be a measurable set of finite volume minimizing perimeter
under a volume constraint in a smooth Riemannian manifold M . Then the boundary
of E is the union of a smooth hypersurface S and a singular set S0 of Hausdorff
dimension at most m− 7.

When trying to get geometric information on the boundary of a set minimizing
perimeter under a volume constraint, the following technical result proved by Stern-
berg and Zumbrum in Lemma 2.4 of [16] allows to focus just on the regular part S
of the boundary.

Lemma 2.2. Let E ⊂M be a minimizer of perimeter under a volume constraint in
a smooth Riemannian manifold M . Let S be the regular part of the boundary of E
and S0 its singular part.

Then for every ε > 0, there exists open sets U ′ ⊂M containing S0 function and
U ⊂M contained in an open tubular neighborhood of S0 of radius ε with U ′ ⊂⊂M ,
and a smooth function ϕε : M → R such that

ϕε(x) = 0 in U ′, ϕε(x) = 1 in M \ U,

and ∫
S
|∇Sϕε|2dS 6 Cε,

for some constant C > 0 depending on E but independent of ε.

3. The isoperimetric profile

Definition 3.1. Let M be a Riemannian manifold. The isoperimetric profile of M
is the function IM that assigns, to each v ∈ (0, |M |), the value

(4) IM (v) := inf{P (E) : |E| = v}.

The isoperimetric profile of M will be often denoted simply by I.
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Definition 3.2. Let M be a Riemannian manifold. We say that a set E ⊂ M is
isoperimetric or that it is an isoperimetric region if

(5) P (E) = IM (|E|).
If |E| = v we say that E is an isoperimetric region of volume v.

The isoperimetric profile must be understood as an optimal isoperimetric inequality
on M as, for any subset F ⊂M of volume 0 < |F | < |M |, we have

P (F ) > IM (|F |),
with equality precisely for isoperimetric sets. Any function f : (0, |M |) → R+ sat-
isfying the inequality f 6 IM provides an isoperimetric inequality on M , namely
P (F ) > f(|F |), that it is not optimal in general.

Sometimes, it is convenient to renormalize the isoperimetric profile so that it is
defined in a fixed interval (e.g. when we are comparing the profiles of two manifolds
or looking at convergence properties of a sequence of isoperimetric profiles).

Definition 3.3. Let M be a compact Riemannian manifold. Its renormalized
isoperimetric profile hM : (0, 1)→ R+ is the function

(6) hM (λ) :=
IM (λ|M |)
|M |

.

Again we shall often denote hM simply by h.

If F ⊂M then inequality

P (F ) > |M |h
(
|F |
|M |

)
is satisfied. Equality holds just for isoperimetric regions.

Example 3.4. The classical isoperimetric inequality in Euclidean space states
that round balls are the unique isoperimetric sets in Rm. Since the quantity
P (F )/|F |(m−1)/m is invariant by Euclidean dilations we have, for any set F ⊂ Rm
of finite perimeter and volume |F | and any ball B ⊂ Rm of volume |B| = |F |, the
inequality

P (F )

|F |(m−1)/m
>

P (B)

|B|(m−1)/m
=

P (B(0, 1))

|B(0, 1)|(m−1)/m
= mω1/m

m ,

where ωm = |B(0, 1)|. Hence the isoperimetric profile of the m-dimensional Euclidean
space is given by

(7) IRm(v) = mω1/m
m v(m−1)/m.

More examples of isoperimetric profiles will be given in the next chapters.

4. Basic properties and continuity

In this section we prove existence of isoperimetric regions in compact manifolds
and the continuity of the isoperimetric profile. We prove indeed that the profile is
locally Hölder continuous with exponent (m− 1)/m, where m = dim(M).

We establish first existence of isoperimetric regions in compact Riemannian mani-
folds. This follows from compactness and lower semicontinuity of perimeter.

Theorem 4.1. Let M be a compact Riemannian manifold, and v ∈ (0, |M |). Then
isoperimetric regions of volume v exist on M .
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Proof. We take a minimizing sequence (Ei) of subsets of M with volume v such
that limi→∞ P (Ei) = IM (v). Since P (Ei) is uniformly bounded, we can extract a
convergent subsequence to a set E in M of volume v by Theorem 1.2. The lower
continuity of the perimeter, Proposition 1.1 implies that

IM (v) 6 P (E) 6 lim inf
i→∞

P (Ei) = IM (v).

Hence E ⊂M is an isoperimetric region of volume v. �

The following result will be of paramount importance

Lemma 4.2 (Relative isoperimetric inequality in balls). Let M be a Riemannian
manifold, x ∈M and r > 0 such that the exponential map is a diffeomorphism onto
B(x, r). Then there exists a constant K > 0 such that

(8) P (E,B(x, r)) > K min{|B(x, r) ∩ E|, |B(x, r) \ E|}(m−1)/m,

for any measurable set E ⊂M .

Proof. The restriction of the exponential map to the ball in TxM centered at the
origin of radius r > 0 is a bi-Lipschitz map to B(x, r). Then we transfer the relative
isoperimetric inequality in the Euclidean ball [6] to B(x, r). �

Remark 4.3. The constant K in (8) depends on x and r. Under appropriate condi-
tions on the manifold, this constant can be taken uniform for x ∈M and r smaller
than some fixed r0 > 0.

Let us show now that the isoperimetric profile is a positive symmetric function
that extends continuously to v = 0 and v = |M |.

Lemma 4.4. The isoperimetric profile of a compact Riemannian manifold is a posi-
tive function in the interval (0, |M |), symmetric with respect to |M |/2 and extends
continuously to 0 at the endpoints of the interval.

Proof. A standard argument in measure theory (see Proposition 3.1 in Giusti’s mono-
graph [11]) implies the existence of x ∈ M and r > 0 smaller than the injectivity
radius of M so that |E ∩B(x, r)|, |B(x, r) \E| > 0. We can then apply the relative
isoperimetric inequality (8) in B(x, r) to conclude that P (E) > P (E,B(x, r)) > 0.

The symmetry of the profile follows because if E ⊂M is an isoperimetric region
of volume v, then M \E is an isoperimetric region of volume |M | − v with the same
perimeter as E.

To prove that I extends continuosly as 0 at the endpoints of the interval, it is
enough to do it at v = 0 by the symmetry property. We simply fix a point x ∈M and
consider the function r 7→ |B(x, r)|, that is continuous, increasing, and approaches 0
when r → 0+. The perimeters P (B(x, r)) also converge to 0 when r → 0+, so that
we have P (B(x, r)) > I(|B(x, r)|). Letting r → 0+ we get the result. �

Let us now prove the continuity of the isoperimetric profile of M .

Theorem 4.5. The isoperimetric profile of a compact Riemannian manifold is a con-
tinuous function. Moreover, it is locally Hölder continuous with exponent (m− 1)/m
in the interval (0, |M |).

Proof. We give two proofs of this result. For the first one, that has the advantage
of proving the local Hölder continuity of I, we follow the arguments by Gallot, see
Lemme 6.2 in [10].
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First proof. Fix some v0 > 0 small and take 0 < v < v0 close enough to v0, so that
we can choose 0 < r < r0 satisfying

b(r)

2|M |
v0 = v0 − v,

where b(r) = infx∈M |B(x, r)|, already defined, is continuous, and r0 > 0 is a uniform
radius in M so that we have

P (B(x, s)) 6 Cns
n−1, b(s) > C ′ns

n, 0 < s < r0,

by Rauch comparison theorems. Here Cn, C ′n > 0 are n-dimensional constants.
Fix ε > 0 and take a finite perimeter set E ⊂M of volume v0 such that P (E) 6

I(v0) + ε. Then we have

(9)

∫
M
|B(x, r) ∩ E| dM(x) =

∫
E
|B(x, r)| dM(x).

This formula is obtained by applying Fubini-Tonelli’s Theorem to the function
(x, y) ∈M ×M 7→ χB(x,r)χE(y). Inequality (9) implies the existence of x ∈M such
that

|B(x, r) ∩ E| > b(r)

2|M |
|E|.

and so v0 − v 6 |B(x, r) ∩ E| by the choice of r. From the continuity of the non-
decreasing function s 7→ |B(x, r)∩E|, we can find s ∈ (0, r] such that |B(x, s)∩E| =
v0 − v. Hence |E \B(x, s)| = v and we get

I(v) 6 P (E \B(x, s)) 6 P (E) + P (B(x, s)) 6 I(v0) + ε+ C

(
v0 − v
v0

)(m−1)/m

,

for some constant C > 0 depending on n and |M |. As ε > 0 is arbitrary we get

I(v) 6 I(v0) + C

(
v0 − v
v0

)(m−1)/m

.

Considering the volumes |M | − v0, |M | − v, the symmetry of the isoperimetric
profile implies a similar inequality for v > v0. Hence we get

|I(v)− I(v0)| 6 C
∣∣∣∣v0 − v

v0

∣∣∣∣(m−1)/m

,

for any pair of volumes v, v0 close enough so that b(r)/(2|M |)v0 = |v0− v| is satisfied
for some 0 < r < r0.

Second proof. Take a sequence (vi)i∈N of volumes satisfying 0 < vi < |M | converging
to 0 < v < |M |. For each i, take an isoperimetric set Ei of volume vi. As the
perimeters P (Ei) are uniformly bounded, we can take a convergent subsequence to
some set E ⊂M of finite perimeter and volume v. By the lower semicontinuity of
perimeter we get

I(v) 6 P (E) 6 lim inf
i→∞

P (Ei) = lim inf
i→∞

I(vi).

This shows that I is lower semicontinuous.
Let us prove now the upper semicontinuity of I. Take an isoperimetric set E ⊂

M of volume. By the Deformation Theorem 1.6, we can find, for large i, sets Ei of
volume vi and finite perimeter so that

I(vi) 6 P (Ei) 6 P (E) + C|v − vi| 6 I(v) + C|v − vi|.
Taking lim sup we obtain the upper semicontinuity of perimeter. �
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5. Asymptotic expansion for small volumes

The following result ensures that the isoperimetric profile of a compact manifold
for small volumes is asymptotically the one of the Euclidean space of the same
dimension. We closely follow the direct proof by Berard and Meyer, see Theorem in
Appendix C of [5].

Theorem 5.1. Let M be a compact Riemannian manifold. For every ε > 0, there
exists a positive constant v0 = v0(M, g, ε) such that any set E ⊂M of volume 0 <
v 6 v0 satisfies

(10) P (E) > (1− ε)c(m)|E|(m−1)/m,

where c(m) = mω
1/m
m is the isoperimetric constant in Rm.

Proof. Let ρ > 0 so that, for any set F contained in a geodesic ball in M of radius
2ρ, we have

P (F ) > (1− ε/2)c(m)|F |(m−1)/m.

The existence of ρ follows because the Riemannian metric on M is uniformly and
asymptotically Euclidean.

Let x1, . . . , x` be a maximal family of points in M so that the balls B(xi, ρ/2) are
disjoint. By the coarea formula, for each i we have

|E ∩B(xi, 2ρ)| >
∫ 2ρ

ρ
A(∂B(xi, r) ∩ E) dr,

and so there exists ρ(i) ∈ [ρ, 2ρ] such that

A(∂B(xi, ρ(i)) ∩ E) 6
|E|
ρ
.

Let B be the set of connected components of M \
⋃`
i=1B(xi, ρ(i)), and E′ the disjoint

union of the sets E ∩ F , where F ∈ B. Then we have

P (E′) 6 P (E) + 2`
|E|
ρ

and, since each component of E′ is contained in a ball of radius 2ρ we obtain, using
the concavity of the function s 7→ s(m−1)/m

(1− ε/2)c(m)|E|(m−1)/m = (1− ε/2)c(m)

(∑
F∈B
|E ∩ F |

)(m−1)/m

6 (1− ε/2)c(m)
∑
F∈B
|E ∩ F |(m−1)/m

6 P (E′) 6 P (E) + 2`
|E|
ρ
.

Hence
P (E)

|E|(m−1)/m
> (1− ε/2)c(m)− 2`

|E|1/m

ρ
.

So it is enough to take

|E| 6
(
εc(m)ρ

4`

)1/m

.

to obtain (10). �
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Remark 5.2. Using small balls centered at some fixed point of M to get an upper
bound for the isoperimetric profile, we get from Theorem 5.1

(11) lim
v→0

I(v)

vm/(m−1)
= mωm.

From this inequality we obtain

(12) lim
λ→0

h(λ)

λm/(m−1)
= mωm|M |1/(m−1).

6. Differential properties

In this section we prove concavity properties of some powers of the isoperimetric
profile of a compact manifold. In particular, we show that the power m/(m− 1) of
the isoperimetric profile I of an m-dimensional compact Riemannian manifold M is
locally the sum of a concave function and a smooth function. Hence the isoperimetric
profile satisfies all regularity properties of concave functions such as existence of side
derivatives everywhere and existence of second derivative almost everywhere. We
prove this result using deformations of the regular part of an isoperimetric boundary,
so that it is necessary to use the full regularity theory for isoperimetric minimizers,
to derive a differential inequality satisfied in a weak sense by the isoperimetric profile.
We follow the proof of Proposition 3.3 by Morgan and Johnson [14], based on an
argument by Bavard and Pansu [1]. See also Bayle [2] and Bayle and Rosales [4]. The
continuity of the isoperimetric profile proved in the previous section is an essential
ingredient in the proof.

Once we have obtained the differential inequality for the profile, we use it to give
another proof of Levy-Gromov isoperimetric inequality for compact manifolds with a
positive lower bound on its Ricci curvature, following the proof given by Bayle in his
Ph.D. Thesis.

First we prove the following elementary result for concave functions.

Lemma 6.1. Let f : I → R be a continuous function defined on an open interval
I ⊂ R. Assume that for all x ∈ I there is a family of smooth functions (fx,ε)ε>0,
each one defined in a neighborhood of x, such that f 6 fx,ε, f(x) = fx,ε(x), and
lim supε→0 f

′′
x,ε(x) 6 0. Then f is a concave function.

Proof. If f is not concave, then there exists δ > 0 such that the function fδ(x) :=
f(x)− δx2 is not concave. To see this, represent the subgraph of f as the closure
of the union of the increasing family (when δ → 0) of the subgraphs of fδ. If the
subgraph of f is not a convex set, then some of the subgraphs of fδ are not convex
sets.

As fδ is not concave, there exist two points x1 < x2 on I such that the function
L(x)− fδ(x) has a positive maximum x0 ∈ (x1, x2). Here L(x) is the linear function
passing through (x1, fδ(x1)) and (x2, fδ(x2)). Then each one of the smooth functions
L(x)− fx0,ε(x) + δx2 has a maximum at x0. Hence f ′′x0,ε(x0) > 2δ > 0 for all ε > 0,
contradicting the hypothesis lim supε→0 f

′′
x0,ε(x) 6 0. �

Let us now give sense to the inequality f ′′ 6 C for non-smooth functions.

Definition 6.2. Let f : (a, b) → R be a continuous function and x0 ∈ (a, b). Let
C ∈ R. We say that f ′′(x0) 6 C in weak sense if there exists a sequence of smooth
function (fi), each one defined on an interval containing x0, so that

(1) f 6 fi in the common domain of definition,
(2) f(x0) = fi(x0),
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(3) lim supi→∞ f
′′
i (x0) 6 C.

We prove now the main result in this section

Theorem 6.3. Let M be an m-dimensional compact Riemannian manifold, and I
its isoperimetric profile. Let 1 6 α 6 m/(m− 1). Then Iα satisfied the differential
inequality

(13) (Iα)′′ 6 K0(Iα)(α−2)/α,

in weak sense in (0, |M |), where K0 = −α inf |v|=1 Ric(v, v). Equality holds in (13)
for some v0 ∈ (0, |M |) if α = m/(m−1), the Ricci curvature of M is equal to −K0/α
and there exists an isoperimetric region in M with totally umbilical boundary.

Moreover, Iα is locally the sum of a concave function and a smooth function. In
particular, Iα has side derivatives everywhere, it is differentiable and has second
derivatives almost everywhere, and it is absolutely continuous.

Proof. To prove the concavity property of Iα we use Lemma 6.1. We fix some
0 < v0 < |M | and take an isoperimetric region E ⊂M . We let S be the regular part
of its boundary and S0 the singular set. By Lemma ??, there exists a sequence of
smooth functions (fi) with compact support in S and satisfying

(1) 0 6 fi 6 1 for all i,
(2) the sequence (fi) is non-decreasing and pointwise converges to the constant

function 1 on S.
(3) limi→∞

∫
S |∇fi|

2dS = 0.

For any i, we take a vector field Xi with compact support on M so that Xi = fiN
on S, where N is the outer unit normal to E on S. Let {ϕit}t∈R the associated flow.
We have

d

dt

∣∣∣∣
t=0

|ϕit(E)| =
∫
S
fi dS > 0,

and so we can take the volume as a parameter of the deformation for v close to v0

and write Ai(v) = P (ϕit(v)(E)). We trivially have Aαi (v) > Iα(v), with equality at

v0. Let us compute the second derivative of Aαi with respect to v at v = v0. First we
have, for A = Ai,

d

dv
Aα = αAα−1 dA/dt

dv/dt
.

We take a second derivative to obtain

d2

dv2
Aα = αAα

(
(α− 1)

1

A

(
dA/dt

dv/dt

)2

+
1

(dv/dt)2

(
d2A

dt2
− dA/dt

dv/dt

d2v

dt2

))
We evaluate this derivative when A = Ai at v = v0 to get

d2

dv2
Aαi (v0) = αA(S)α

(
(α− 1)

H2

A(S)

+
1( ∫

S fidS
)2(∫

S

(
|∇fi|2 − (Ric(N,N) + |σ|2

)
f2
i dS

))
,

since (dA/dt)/(dv/dt) at t = 0 is equal to the constant mean curvature H of S
and A′′ −HV ′′, where ′ denotes the derivative with respect to t, equals the second
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variation operator (??). Taking lim sup when i→∞ we get

lim sup
i→∞

d2

dv2
Aαi (v0) = −αA(S)α

A(S)2
×

×
∫
S

(
Ric(N,N) +

(
|σ|2 − (α− 1)H2

))
dS

6 −αA(S)α−2, inf
S

Ric(N,N)

6 −α(I(v0)α)(α−2)/αK0

since

|σ|2 − (α− 1)H2 > |σ|2 − H2

m− 1
> 0

by our hypothesis on α and inequality k
∑k

i=1 a
2
i >

(∑k
i=1 ai

)2
.

To prove the concavity property of Iα we use Lemma 6.1. For 0 < v1 < v2 < |M |,
the continuity of the isoperimetric profile implies the existence of a constant C such
that

(14) − αI(v0)α−2

{
inf

S,|e|=1
Ric(e, e)

}
6 C,

for all 0 < v1 < v < v2. This implies, by Lemma 6.1, that Iα − Cv2 is a concave
function.

The differentiability properties, as well as the absolute continuity, follow from the
corresponding ones for concave functions, see [15, § 24]. �

Remark 6.4. It is immediate to check that the m/(m−1) power of the renormalized

isoperimetric profile h satisfies the same differential inequality as Im/(m−1)

(15) (hm/(m−1))′′ 6 K0(hm/(m−1))−(m−2)/m,

where K0 = −(m/(m − 1)) inf |v|=1 Ric(v, v). Equality holds in (15) for some
λ0 ∈ (0, 1) if the Ricci curvature of M is equal to −(m− 1)K0/m and there exists
an isoperimetric region in M of volume λ0|M | with totally umbilical boundary.

Corollary 6.5. Let M be a compact Riemannian manifold with non-negative Ricci
curvature. Then, for all 1 6 α 6 m/(m−1), the function Iα is concave. In particular,
the isoperimetric profile is a strictly concave function.

Proof. It follows from the proof of Theorem 6.3 simply by taking the constant C in
(14) equal to 0. �

The strict concavity of the isoperimetric profile is an important property related
to the connectedness of isoperimetric regions in M .

Theorem 6.6. Let M be a compact Riemannian manifold and assume that I is
strictly concave. Then isoperimetric regions in M are connected. In particular, the
hypothesis is satisfied when M has non-negative Ricci curvature.

Proof. Assume that an isoperimetric region E ⊂M of volume v has two connected
components E1, E2 of volumes v1 > 0, v2 > 0, respectively. Then we have

I(v1) + I(v2) 6 P (E1) + P (E2) = P (E) = I(v).

But this is a contradiction since for the concave function I satisfying I(0) = 0, we
should have I(v) < I(v1) + I(v2) when v = v1 + v2 and v1, v2 > 0. �
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Theorem 6.7. Let M be a compact Riemannian manifold and let I be its isoperi-
metric profile.

(1) If I is regular at v0 then all isoperimetric regions have boundary mean curva-
ture equal to I ′(v0).

(2) If I is not regular at v0, there exists two isoperimetric regions in M of volume
v0 with boundary mean curvatures I ′+(v0) and I ′−(v0).

Proof. For the first assertion, we take an isoperimetric region E ⊂M of volume v0.
We take the deformation {Et}t∈R associated to any vector field X with compact
support in M such that supp(X) ∩ S0 = ∅ and

∫
E divX dM 6= 0. Then we can

express this deformation taking the volume as a parameter to get a function A(v)
whose derivative at v = v0 is the mean curvature H of the boundary of E. Since
I 6 A and I(v0) = A(v0), and I is regular at v0, we get I ′(v0) = A′(v0) = H.

To prove the second assertion, we take a sequence (vi) of regular values of I so
that vi decreases to v0. We take a sequence of isoperimetric regions (Ei) of volumes
vi and boundary mean curvature Hi. Then Ei converges in the L1 topology to a set
E ⊂M of volume v that is isoperimetric. We have

H = lim
i→∞

Hi = lim
i→∞

I ′(vi) = I ′+(v0).

Analogously, we can construct an isoperimetric region with boundary mean curvature
I ′−(v0). �

We end this section with a proof of the Levy-Gromov inequality using the differ-
ential inequality (15). For the most part of the proof we follow Bayle [3].

Theorem 6.8 (Levy-Gromov inequality). Let M be a compact Riemannian manifold
satisfying

Ric > (m− 1)κ0,

for some κ0 > 0. Then we have

h(λ) > h0(λ),

for any λ ∈ (0, 1), where h0 is the isoperimetric profile of the sphere Sκ0 of constant
sectional curvature κ0. If equality holds for some λ0 ∈ (0, 1), then M is isometric to
Sκ0.

Proof. Let f = hm/(m−1) and f0 = h
m/(m−1)
0 . Then f ′′ 6 g(f) in weak sense, where

g(x) = −(mκ0/(m − 1))x−(m−2)/m by Remark 6.4. We also have that f ′′0 = g(f0),

where f0 = h
m/(m−1)
0 .

Assume by contradiction that there exists λ0 ∈ (0, 1) so that f(λ0) < f0(λ0). Take
a maximal interval J ⊂ [0, 1] containing λ0 so that f < f0 in the interior of J . Then
we have f0 − f > 0 in the interior of J and

(f0 − f)′′ > g(f0)− g(f) > 0

in the interior of J by the strict monotonicity of g. But this not possible since f −
f0 would be a strictly positive strictly convex function in the interior of J vanishing
at the end points of the interval. This shows that f > f0 and so h > h0.

Let us now discuss the equality case. Assume the existence of λ0 ∈ (0, 1) such that
f(λ0) = f0(λ0). By the symmetry of the renormalized isoperimetric profiles with
respect to λ = 1

2 , we may assume that λ0 ∈ (0, 1
2 ]. Let us distinguish two cases:

Case 1. If λ0 <
1
2 , we take any ε > 0 so that λ0 + ε < 1

2 and define

f ε0 (λ) := f0(λ+ ε)− f0(λ0 + ε) + f0(λ0).
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The function f ε0 is obtained translating the graph of f0 to the left a distance ε and
then translating it down so that f ε0 (λ0) = f0(λ0) = f(λ0). We have the following
properties

• f ε0 (λ0) = f(λ0),
• f ε0 > f in (λ0 − δ, λ0) for some small δ > 0,
• f ε0 (0) > 0 = f(0),
• (f ε0 )′′ > g(f ε0 ),

The first property follows from the definition of f ε0 . For the second one we observe
that f ′−(λ0) = f ′0(λ0) > f ′0(λ0 +ε) = (f ε0 )′(λ0). For the third one, the strict concavity
of f0 implies f0(λ0 + ε)− f0(λ0) < f0(ε) since f0(0) = 0. For the last property, we
compute

(f ε0 )′′(λ) = f ′′0 (λ+ ε) = g(f0(λ+ ε)) > g(f ε0 (λ)),

the last inequality since f0(λ+ ε) > f ε0 (λ), an inequality equivalent to f0(λ0 + ε) >
f0(λ0).

We claim that f ε0 > f in the interval (0, λ0]. Otherwise there exists some
µ0 ∈ (0, λ0) such that f ε0 − f > 0 in (µ0, λ0) and (f ε0 − f) vanishes at the end
points of the interval. But (f ε0 − f)′′ 6 g(f ε0 )− g(f) > 0, a contradiction.

So we have f ε0 > f in the interval (0, λ0] for all ε > 0 such that λ0 + ε < 1
2 . Letting

ε→ 0, we get f0 > f and, since f > f0 we obtain f = f0 in the interval [0, λ0]. By
the asymptotic expansion for h, h0 at λ = 0, we get |M | = |Sκ0 |. We conclude that
M is isometric to Sκ0 by the rigidity part of Bishop’s volume comparison theorem,
see Theorem xx in [].

Case 2. Assume that λ0 = 1
2 . Consider, for ε > 0 small enough, the function

f ε0 (λ) := f0(λ+ ε) + f(1
2 − ε)− f0(1

2).

The following properties can be obtained using arguments similar to the ones in
Case 1.

• f ε0 (1
2 − ε) = f(1

2 − ε).
• f ε0 > f in (1

2 − ε− δ,
1
2 − ε) for some δ > 0,

• f ε0 (0) > 0 = f(0),
• (f ε0 )′′ > g(f ε0 )

Now we reason as the first case to conclude that f ε0 > f in the interval (0, 1
2 − ε].

Letting ε→ 0 we get f0 > f in (0, 1
2 ] and so f0 = f in [0, 1

2 ]. We conclude the proof
as in the previous case. �

Remark 6.9. The techniques used allow to prove that the isoperimetric regions
in the sphere Smκ are the geodesic balls, bounded by totally umbilical spheres with
constant mean curvature. This follows easily by taking the renormalized isoperimetric
profile f = hm/(m−1) of Smκ , that satisfies the differential inequality f ′′ 6 g(f), where

g(x) = − m

m− 1
κx−(m−2)/m,

We also take the relative isoperimetric profile of geodesics spheres f0 = h
m/(m−1)
0 ,

that satisfies the differential equation f ′′0 = g(f0). We obviously have

f0 − f > 0,

and also

(f0 − f)′′ > g(f0)− g(f) > 0,

what implies f = f0.
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(4), 15(3):513–541, 1982.

[6] J. Bokowski and J. E. Sperner. Zerlegung konvexer Körper durch minimale Trennflächen. J.
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