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ABSTRACT. The aim of this note is to provide a complete proof of existence of isoperi-
metric sets in sub-Finsler Carnot groups, and to establish some properties of such sets.

1. INTRODUCTION

The aim of this note is to provide a complete proof of existence of isoperimetric sets
in Carnot groups endowed with a sub-Finsler structure, and to obtain some properties
of such sets. In the particular case of a sub-Riemannian structure, such results were
provided by Leonardi and Rigot [21]. In the first Heisenberg group H! with a symmetric
sub-Finsler structure a sketch of the proof of the existence result appeared in Franceschi
et al. [12]. For nilpotent groups with a sub-Finsler structure existence of isoperimetric
sets was proven by Pozuelo [30]. It is worth mentioning that the asymmetry of the
sub-Finsler structure prevents the straightforward use of results known for sets of finite
perimeter in metric spaces, since an asymmetric sub-Finsler structure does not have an
associated distance as the symmetry property is missing.

We follow for the most part the strategy of Leonardi and Rigot, introducing in several
parts of the proof some simplifying, from the conceptual point of view, ideas that have
been developed in recent years and can be found in works by Morgan [26, 27], Ritoré
and Rosales [32], Galli and Ritoré [14], Nardulli [28], Leonardi et al. [22], and Antonelli
et al. [3, 6, 4]. In the Riemannian case one can follow §4.4 in the recent monograph [31].

An essential technique when working with isoperimetric sets (or variational problems
with a volume constraint) is to have a geometric way of restoring the original volume of
a set after a geometric operation has been performed on the set. For this purpose, flows
of vector fields have been used in Euclidean spaces or Riemannian manifolds (e.g., §1.4.5
in [31] and the references therein), Euclidean dilations in [8], or Cheeger sets in [30].

The main differences of our proof with the one in Leonardi and Rigot’s paper [21] are
the geometric use of the strict concavity of the isoperimetric profile function and the use
of structure results for minimizing sequences introduced in [32] to simplify the existence
proof, and the systematic use of dilations to adjust the volume of a set after some previous
geometric transformation. Although our result is contained in the one by Pozuelo on
nilpotent groups with a sub-Finsler structure, the strict concavity of the isoperimetric
profile greatly simplifies the proof and allows us to obtain the stronger result that an
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isoperimetric set in a Carnot group with a sub-Finsler structure is indecomposable, a
notion of connectedness for finite perimeter sets.

In addition to the existence of isoperimetric sets we also prove some mild regularity
results for their boundaries. In particular, we show in Theorem 5.2 that the boundary of
an isoperimetric set is Ahlfors regular. Very few results are known about the regularity
of isoperimetric boundaries in Carnot groups, or even in the simpler case of the first
Heisenberg group H'. A lack of a regularity result similar to the Euclidean one proven
by Gonzalez et al. [18] is one of the major drawbacks of the theory. Giovannardi and
Ritoré [17] proved such a regularity for (X, Y)-Lipschitz surfaces in the first Heisenberg
group H! with prescribed mean curvature, a concept introduced by Massari in [23]
and later considered in [19, 7]. In the paper [17] is proven that isoperimetric sets with
(X, Y)-Lipschitz boundary have constant prescribed mean curvature.

Our main result in this paper is Theorem 2.16, where we prove

If G is a Carnot group endowed with a sub-Finsler norm || - ||x then K-
isoperimetric sets exist on G for any positive volume. Moreover, the isoperi-
metric profile I is strictly concave and any isoperimetric set is essentially
bounded and undecomposable.

We have organized this paper into several sections. In the next one we present some
preliminaries on Carnot groups, sub-Finsler norms and the sub-Finsler perimeter. In the
third section we include some results on the isoperimetric profile of a sub-Finsler Carnot
group. In the fourth one we complete the proof of existence of isoperimetric sets, where
the concavity of the isoperimetric profile will play an important role. In the last section,
we prove some density estimates for isoperimetric sets and the Ahlfors regularity of their
boundaries.

2. PRELIMINARIES

2.1. Carnot groups. We refer the reader to the first chapter in Vittone’s Ph.D. Thesis
[34] for a good introduction to the geometry of Carnot groups.

A stratified or Carnot group is a connected and simply connected n-dimensional real
Lie group G whose Lie algebra € admits a step-k stratification: a family of subspaces
Vi, ..., Vi C € such that

C=V,® - ®Vp
and

(2.1) [V1, Vj] = V. forall j =1,...,k, with V}.,; = {0}.

The subspaces V; are known as strata or layers and V7, also denoted by #, is usually
referred to as the first layer or the horizontal distribution. Iterated Lie brackets of vector
fields in V; generate the whole Lie algebra €. A consequence of (2.1) is that

Hence, letting 6;,, = [€, §;] foralli € N, with G, = €, we obtain that every element
€, of the lower central series satisfies

gigVi+1@"'@Vk, i=0,...,k,

and G, = {0}. This implies that G is a nilpotent group of step at most k. In particular,
the exponential map exp : € — G is a diffeomorphism, as proven in Proposition 1.2(a)
in[11].
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Choosing a basis of left-invariant vector fields Xj, ..., X}, of € provides an identifica-
tion between R” and €. The composition of the inverse log = exp~! : G — € with
the identification provides a global chart on G whose coordinates are called canonical
coordinates of the first kind. In such coordinates the group product can be recovered
from the Baker-Campbell-Hausdorff-Dynkin formula, see formula (1.7.3) in [9]. Given
X,Y € G, and letting Z = log(exp X - exp Y) we get

(o]
—_1)m 1
Z=x+v+ Y ST { >,
m=1 M +1 ap,...,am=0, I+ zi=1 a;
bi,...,bm=0,
(2.3) 1ai+bi>0
a b am bm
a1! bl' am! bm'

where (ad X)(Y) = [X, Y] for any X, Y € €. If G is nilpotent of step k then the sum (2.3)
only extends from m = 1 to k and, moreover Z?il(ai +b;) <k.

Assume that we have ordered the vector fields Xj, ..., X}, so that consecutively we
have bases for V7, ..., Vi, and let

d = dlm Vl'

We want to express the group product - in canonical coordinates of the first kind. Taking
n n .
X=X X0, Yy = O s Yp)yand X = 300 X, Y = 3. yiX;, from (2.3) we obtain

(2.4) x-y=x+y+P(x,y),

where P = (Py,...,P,) : R" X R" — R" is a polynomial of degree at most k. As
for any X,Y € € the last summand in (2.3) belongs to §; C V, @ --- @ V) we have
P, = .-+ = Py = 0. Moreover, if V; = span{X,,1, ..., X545} then the last summand in
(2.3) belongs to V; only if the involved vectors belong to V; @ --- @ V;_;. This means that
forany s € {a + 1, ..., a + b}, the polynomial Py only depends on x;, y1, ..., Xg, Vq- AS
a < s this implies that

(2.5) Py(x,y) = Py(X1s.ee s Xg_15 V15 -+ » Ys—1), fOTr 8 > d.

Because of (2.4) and (2.5), the differential of a left-traslation in canonical coordinates
of the first kind is given by a lower triangular matrix with ones in the diagonal. Hence
the Lebesgue measure in R" with canonical coordinates is left-invariant and coincides
(up to a constant) with the Haar measure of G.

In addition, if we want to express any vector field Xj, ..., Xy in the first layer in terms
of 0/9xy, ...,0/9xy, as Xj(x) is the image by (d¢,), of the j-th coordinate vector in R",
we would have

G - 3
(2.6) Xi(x)==—+ a;i(x)=—, j=1,..,d,
J dx; izgil A 0x; J
aP;
where a;;(x) = a(x, 0) = a;j(Xy, .- » Xj—1)-
J

In a Carnot group € we can define in canonical coordinates a family of intrinsic
dilations h, : G — G, for A € R, by the formula

2.7 (21, . zp) = (Azq, ..., Az, o, ARz,

where (zy, ..., zx) = (X1, ..., X,) With z; € RY™Vi, Each z; correspond to the coordinates
in (xy, ..., x,) associated to the vector fields in V;. Because of (2.2) the intrinsic dilations
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satisfy
[h(X), (V)] = hy([X,Y)), forall X, Y € €.
By (2.3) we get hy(x - y) = hy(x) - hy(y) for all x,y € G. Sometimes we will write AE
instead h,(E) for subsets E C G.
The homogeneous dimension of the group G is defined by

k
Q =) idim(V)).
i=1

The Haar measure of a Borel measurable set E C G will be denoted by |E|. As the Haar
measure coincides with the Lebesgue measure in canonical coordinates, the expression
(2.7) immediately provides

[ha(B)| = A2|E],
for any measurable set E C G and any 4 > 0. We also have that, for any left-translation
¢, with x € G, we have

[€x(E)| = |E|

for any measurable set E C G.

2.2. Sub-Finsler structures in a Carnot group. Our notion of norm is the one of
asymmetric norm. This is a non-negative function || - || : V — R defined on a finite-
dimensional real vector space V satisfying
1. ||v|| = 0if and and only if v = 0,
2. ||[Av]|| = A]|v||, for allA > 0and v € V, and
3. [Jlv+w|| < |Jv]| + [|w]], for all v, w € V.
We stress the fact that we are not assuming the standard symmetry property || —v|| = |[v]|.
Associated to a given a norm || - || in V' we have the set K = {u € V : ||u|| < 1}, which
is compact, convex and includes 0 in its interior. Reciprocally, given a compact convex
set K with 0 € int(K), the function ||u||x = inf{A > 0 : u € AK} defines a norm in V' so
thatK ={u eV : ||u|]|g < 1}.
Given a norm || - || and an scalar product (-, -) in V, we consider the dual norm || - ||,
of || - || with respect to -, -) defined by
|[ull = sup (u,v).
llvll<1
The dual norm is the support function /4 of the unitball K = {u € V : ||u|| < 1} with
respect to the scalar product (-, -).
A norm is said to be smooth if it is C*® in V' \ {0}. It is strictly convex if

[[Au+ (1 —2A)v|| <1, foralld € (0,1),whenu #uv,||lu|| =|[v]| = 1.

Given u € V, the compactness of the unit ball of || - || and the continuity of || - ||
implies the existence of u, € V satisfying equality ||u||, = (u,uy). Moreover, it can
be easily checked that ||uy]| = 1. In general, a point u, satisfying this property is not
unique, but uniqueness follows from the assumption that || - || is strictly convex: this
is proved by contradiction assuming the existence of another point ug with ||ug|| < 1
satisfying ||u||,. = (u, ug). Of course u, must also satisfy ||ug|| = 1. Then all the points
v in the segment [u, ug] satisfy ||v]| < 1 and ||u||, = (u,v); hence ||v]| = 1. But this
contradicts the strict convexity of || - || unless u, = u;,. We shall define 7(u) as the only
vector satisfying ||7(u)|| = 1 and

h(u) = |ull, = (u, 7(u)).
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If 1 > 0 then it is easily checked that 7(Au) = 7(u).

We say that a convex body K is of class C¢, with £ > 2 when 9K is of class C%, ¢ > 2,
and the principal curvatures of dK are everywhere positive. Hence the Gauss map
N : 9K — S! to the unit sphere is a diffeomorphism of class C/~!. Since 7 = N~! we
conclude that 7 is of class C¢~1. Moreover, by Corollary 1.7.3 in [33] we have

u
Vh(u) = N‘1<—>,
|ul
and so h is of class C?. If K is of class C2 then it is strictly convex and, if 0 € int(K), then

the norm || - || is strictly convex.

We now consider left-invariant norms in Carnot groups. Let G be a Carnot group and
let # be the horizontal distribution in G, determined by the left-invariant vector fields of
the first layer. For p € G, we denote by #, C T,G the subspace {X,, : X € #}. Given a

norm || - || in #y, we extend it by left-invariance to a norm || - || in the whole horizontal
distribution # by means of the formula
(28) lollp = 1465 @)llo, P € G,V € T,

In particular, for a horizontal vector field fiX; + ... f3X4, its norm at a point p € G is
given by || fi(p)(X1)o + -+ + fa(p)(Xq)o||- A sub-Finsler norm in G is a left-invariant norm
in #Z. If K C #, is the closed unit ball for || - ||, we will frequently denote the sub-Finsler
norm by || - ||

We consider the norm (|| - ||o)«, dual to || - ||g in #, and we extend it by left-invariance
to anorm || - ||, in #. It can be checked that (|| - ||.), is the dual norm to || - ||, since

(Ilvll)p = ldey ' )llo)s = sup[wllo < 1w € Ho(d, (v), w)
= sup [[w'[|, < L,w" € #p(v,w")

= (”v”p)*
When || - ||o is CL with [ > 2, all norms || - ||, are CL. Given a horizontal vector field
U of class C!, we define 7r(U) as the C! horizontal vector field satisfying
(2.9) U1l = U, 7(U)),

or, equivalently, (||Up|lp)« = (Up, m(U),) for all p € G. We recall that 7(fU) = #(U) for
any positive smooth function f.

Acurvey : [a,b] C R = G of class C! is horizontal if y'(t) € Py forallt € [a,b].
Given a sub-Finsler norm, the sub-Finsler length of a curve y : [a,b] — G is defined by

b
L&) = f @Ol dt.

Since any two given points in G can be connected by a smooth horizontal curve by
Chow’s Theorem (Theorem 2.1.2 in [25]), we may define the sub-Finsler distance in G by

d(p,q) = inf L(y),

where y : [a,b] — G is any C! horizontal curve with y(a) = p, y(b) = q. Observe that d
is an asymmetric distance satistying d(p, q) > 0, d(p, q) = 0 if and only if p = g, and the
triangle inequality, but not the symmetry property d(p, q) = d(q, p) because || - || is not
symmetric. Observe also that the sub-Finsler distance is invariant by left-translations
and that

d(hy(p), hi(q)) = Ad(p,q)



6 M. RITORE

for any 4 > 0. This follows from the fact that i o y is horizontal when y is horizontal
and ||(hy o y)' Ol = A|ly' (Dl for all ¢ € [a, b].
The sub-Finsler open ball of center p € G and radius r > 0 is defined by
B(p,r) ={q € G : d(p,q) <r}.

For aleft-translation €, we have €,(B(p, r)) = B(¢,4(p), r) and, for dilations, h;(B(p, r)) =

B(hp(p), Ar).
Given two convex bodies K, K’ C V; containing 0 in its interior, we can compare the
sub-Finsler distances by observing that there exist constants «, 8 > 0 such that

(2.10) allx|lg < [Ixllx < Bllxllgs, forallx € V.
Ify : [a,b] = Gisa C! curve connecting the points p,q € G then we have

aLg(y) < Lg(y) < BLg (7).
Henceforth
adg:/(p,q) < dg(p,q@) < Bdg:(p,q)
for all p,q € G.

2.3. Convolutions in Carnot groups. For this section we refer the reader to §1.2.7 in
Vittone’s Ph.D. Thesis [34] or Proposition 1.20 and pages 21-22 in Folland-Stein [11]. We
start with a function ¢ € C§°(G) satisfying

0<p<1, /godG =1, o(x) = e(x).
G

For € > 0 we define
Pe(x) = e %(hy5(x)), x €G,
and, for a function f € I} (G),

loc
FE0) = (s % f)(x) = f . )f (! - x) d6(y) = f o.(x - YD) dBO).
G G

Given a function ¢ in the previous conditions, we define, for everyset A C Gand e > 0,
the set A, as hy,.(supp(@)) - A, where supp is the standard support of a function and, for
any pair of subsets B, C C G, its Minkowski product B-Cisdefined as{b-c : b € B,c € C},
where b - ¢ is the product in G. We have the following properties

Proposition 2.1. Let Q C G be an open set.

1. supp(f€) C supp(f)e.

2. If f € L}, .(Q) then f¢ € C®(Q,).

. If f € C°(Q) then f¢ converges to f uniformly on compact subsets of Q.
CIff e, (Q)for1 < p < cothen f& - finI (Q).

. Forevery f € I}{(Q) and g € L®(Q) we have

LfsgdG:LfgsdG.

6. Xf¢ = (X[): forany f € CY(Q) and each left-invariant vector field X € €.

wm A~ W
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7. If f € Lip,, (Q, || - ||p) then X f* = (X f)* for almost everywhere x € Q. and

f = VifillxadS — [ 1= Vaflix. dG
Q' Q/

on any bounded open set Q' C Q.

Proof. The proof follows, for the most part, the classical Euclidean one which can be
found, for instance, in Theorem 1, page 123, of Evans-Gariepy [10].

Let us check the proof of 6, where the geometry of the Carnot group intervenes. Take
z € G. We denote, as customary in the theory of smooth manifolds, the derivative of the
smooth function g in the direction of X at the point z by X, g or (Xg)(z). Then

Xzf€=f¢s(y)thde(y),
G

where h,(x) = f Gl-x)=(fo £y-1)(x). As X is a left-invariant vector field, we have
X;hy = X,(f 0 €)-1) = [(d€y-1),X;|f = X)-1.,f, and so the last integral is equal to

/ 0 NXNO - 2)d6() = (X (2),
G

as stated.

To check 7, we take a D-orthonormal basis Xj, ..., X; of the first layer. Then X; f exists
almost everywhere for all 1 < i < d by Pansu-Rademacher Theorem [29]. By the same
argument as in item 6, we have X f¢ = (X f)f almost everywhere for any € > 0, and so

Il = Vifellk s = Il = Vifllk | dG < Cf IVif® = Vifllp dG
Q' Q'

< Cm'? max {f X — X;f] dG},
QI

1<ism

where C is the constant in the inequality || - ||x « < C|| - ||p- By 4, X; ¢ converges to X; f
in} (Q)foralll<1<d. O

loc

2.4. The sub-Finsler perimeter in a Carnot group. Let E C G be a measurable set,
| - ||k the left-invariant norm associated to a convex body K C V; so that 0 € int(K), and
Q C G an open subset. Let us fix on G a left-invariant Riemannian metric and let div
and dG be the divergence and the left-invariant Riemannian volume with respect to this
Riemannian metric. We say that E has locally finite K-perimeter in Q if for any relatively
compact open set Q' C Q, the quantity

(2.11) Pr(E, Q') = sup{f
E
called the K-perimeter of E in Q', is finite. The quantity Px(E, Q') is called the (relative)
perimeter of E in Q'. In this expression, x(l)’H(Q’) is the space of horizontal vector fields
of class C! with compact support in Q’, and ||U||g,c = SUP, g [|Upl|x- The set E has
finite K-perimeter in an arbitrary open set Q' if (2.11) is finite.
The definition of perimeter is a particular case of the notion of function of bounded
variation. Given an open subset Q C G, we say that a function f € I} .(Q) is of bounded

loc
local variation in Q if for all relatively compact open subsets Q' C Q the quantity

AVU)AG : U € B (@), 1V < 1]

(2.12) varg(f,Q') = sup{f fdiv(U)dG : U € x(l)’H(Q’), Ullk,00 < 1},
Q
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called the total variation of f in Q',isfinite. If E C G is measurable then the characteristic

function yz belongs to Lj,.(G) and we have

PK(E’ Q,) = VarK(XE! Q,)’

for any bounded open set Q'. The function f € I!(Q’) has K-bounded variation in Q' if
(2.12) is finite.

For any convex body K and ¢ € C*(Q), we consider a left-invariant scalar product
(-,-) on #. From the definition of the dual norm || - || ., for any relatively compact open
set Q' C Qand U € #(Q") with [|U||k.e < 1, we obtain (=V,¢, U) < || = Vidllg 4
and so

(213)  varg($, Q) < f

Ql
If K is of class C2 we can work with the C! vector field U = mg(—V;,¢) as in the
classical Euclidean case, approximating the vector field by smooth vector fields when
mx(—Vy,¢) # 0, to conclude

$ divW)de = [ (Vg 0)d6 < [ 1= Viglx..de.
Q/ Q'

(214 varg(.0) = [ 1= Vilx..de.

QI
In the general case, when K is an arbitrary convex set, we approximate it in Hausdorff
distance by a sequence of convex sets {K;};cn of class C2 (e.g., Theorem 2.7.1 in [33]).
For any vector field U # 0 with compact support we have

Il = Vidllgk, dG = lim [ || = Vp ||k, . dG
o i=oo Jo
= lim varg (¢, Q')
1—>00

< lim/ ¢ div(ﬁ)d@

i—oo
< varg(¢, Q).

This inequality, together with (2.13), implies the validity of the formula (2.14) for any
smooth function ¢ € C*®(Q), a relatively compact open subset Q' C Q, and an arbitrary
convex body K with 0 € int(K). So we have proven

Proposition 2.2. Let (G, || - ||x) be a Carnot group with a sub-Finsler norm, and Q C G
an open set. Then the total variation of a function ¢ € C*(Q) is any relatively compact
open set Q' C Q is given by

(2.15) varg(¢, Q') = Il = Viéllk,« dG.
QI

Remark 2.3. If (-,-) is a scalar product in # with unit ball D then we have a sub-
Riemannian structure on G. Assuming that ¢ is a D-Lipschitz function, then V¢
exists almost everywhere in G by Pansu-Rademacher’s Theorem [29] and formula (2.15)
still holds for ¢.

It is not difficult to prove that Bg(x, ) has finite K-perimeter and to estimate it from
above. Let U be a C! horizontal vector field in G with compact support satisfying
[lUllk,o < 1, and {@;};er the associated one-parameter group of diffeomorphisms.
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For fixed z € G, let 7,(t) = ¢,(2), t € R, be the integral curve of U with initial condition
7,(0) = z. If z € Bg(x,r) then

t t
de(z @) < [ 11Ol = [ 11U 0lkede <t
0 0

and so
dg(x, 9(2)) < dg(x,2) + dg(z, 9,(2)) <7 + t.
This implies ¢;(Bg(x,r)) C Bg(x,r + t) for all t € R. Hence, letting

wg = |Bg(0,1)],

we have, by the first variation of volume, Theorem 1.11 in [31],

. d
| avwids=5| e+ o)
Bg(x,r)

t=0
B )]~ B 1)
t—0 t
i BT 0 = 1B )
t—0 t
QR — @
=cuKlin3( i )t " = Qug rQ!
t—

Taking the supremum over all vector fields U with compact supportin G and ||U||g, o < 1
we have

(2.16) Pg(By(x, 7)) < Qug r@?
forallx € Gandr > 0.
The following properties of the perimeter are quite standard. We assume Q to be a

bounded open set, and E, F measurable sets.

1. Px(E, Q) = Px(F,Q) whenever EAF = (E U F) \ (E N F) has measure 0.

2. PR(EUF, Q)+ Px(ENF,Q) < Py(E, Q) + Px(F, Q),

3. The function E — Pg(E, Q) is lower semicontinuous with respect to the Lj,.(Q)
topology.

4. The set function Q — Pg(E, Q) is the restriction to the open subsets of a finite
Borel measure Px(E, -) defined by

Px(E,A) = inf{Pg(E,Q) : A C Q,Q open}.
5. If D is the unit ball of a sub-Riemannian structure on G, x € G and p > 0, then
Px(E N Bp(x, p)) < Px(E, Bp(x, p)) + Px(E N Bp(x, p), 8Bp(x, p)),
Px(E \ Bp(x, p)) < Pg(E, G \ Bp(x, p)) + Pg(E \ Bp(x, p), 0Bp(x, p))-

Remark 2.4. We observe that the classical property Px(E, Q) = Px(G\E, Q) does not hold
here since the norm || - ||g is not symmetric. If the boundary of E is a C! hypersurface,
then there holds

(2.17)

D= [ Nl ds,
0ENQ
where Ny, is the orthogonal projection to # of inner unit normal N to E and dS is the

Riemannian area element in JE, both with respect to a fixed left-invariant Riemannian
metric on G. This formula is proven in two steps, first considering the case when K
is of class C2 extending the vector field 7x(Ny,), and then approximating a general
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convex set by sets of class CZ. If || - || is asymmetric then so it is || - ||k . and hence
Px(E,Q) # Pg(G \ E, Q) in general.

Theorem 2.5 (Approximations by smooth functions). Let Q C G an open set. Then for
any function u € BVg(Q) of bounded variation in Q, there exists a sequence {u;};en in
C*(Q) such that

L limy o [|u; — ul|L1@) = 0,
2. lim;_, , varg(u;, Q) = varg(u, Q).

Proof. Asin Theorem 1.14 in [16]. One can also use the classical proof from Theorem 3.9
in [2] together with the group convolution. O

Remark 2.6. Should we consider a different left-invariant Riemannian metric on G we
would obtain the same value for the perimeter up to some constant independent of the
sets. We simply observe that dG is, up to a constant, the Haar measure of G, and that the
integral

f div(U) dG
E

is the derivative at s = 0 of the Haar measure of ¢4(E), where {¢};cR is the one-parameter
group of diffeomorphisms associated to the vector field U (e.g., Theorem 1.11 in [31]).

Remark 2.7. Let us take a sub-Riemannian metric on V;. We compute div(U) explic-
itly. Choose an orthonormal basis Xj, ..., Xy in V; and extend it to an orthonormal
basis Xj, ..., X,, in € adapted to the layers. Let V be the Levi-Civita connection of the
Riemannian metric. A C! horizontal vector field U can be expressed as

d
U = Z ﬁXi,
i=1

for some C! functions f;, and so
d d
div(U) = div( )] fiX;) = D) Xif; + f div(X)).
i=1 i=1
Fori =1,...,n we have
n n n
div(Xy) = D (Vx X X)) = D (V. X, X)) + D (X, Xi1. X)) = 0,
j=1 j=1 j=1

since <VXin,X}'> = 0 and, in case X; € Vi, X; € V,, the vector fields X; and [Xj,Xi] lie in

the different strata V., V., and they are orthogonal. So we have

fEdiV(U)dG - L(ngiﬁ)dG.

This expression implies that our definition of perimeter Py, with D the closed unit ball in
#¢ associated to the sub-Riemannian metric, coincides with the classical sub-Riemannian
perimeter in the Heisenberg group considered in [13].

If E C G is a set of locally finite K-perimeter in Q then, for any relatively compact
subset Q' C Q and any vector field U € x})’H(h,l(Q’)) we have

f div(U) dG = A9 f (div(U) o h;) dG.
hi(Q") Q/
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IfU = Z?zl fiX;, with X, ..., X3 orthonormal for some scalar product on # then

d
div(U) = ). X ;.
i=1

So we have
d

div(U) o hy = 271 div (D (fi o hp) Xy).

i=1

Letting U, = Z?zl(ﬁ o hy) X; we get

f div(U) dG = 121 / div(U,) dG.
ha(Q") Q/

Since ||U||g,00 = ||Usllk,c0 We finally obtain
(2.18) Pg(ha(E), hi(Q)) = 297 Pg(E, Q).

Remark 2.8. When K is a centrally symmetric convex body (e.g., K = —K) containing 0
in its interior, || - ||g induces a truly distance with the symmetry property. In such case,
the arguments in §5.3 of Miranda [24] imply that the perimeter in the associated metric
space coincides with the K-perimeter defined here.

Remark 2.9. The sub-Riemannian perimeter for systems of vector fields satisfying the
Hormander condition was introduced by Garofalo and Nhieu in their remarkable paper
[16]. Let us recall their definition. One considers in R” a system X = {Xj, ..., Xy} of
vector fields
&, 0
X}'zzbjia_xi’ .]=1""’d’
i=1

with locally Lipschitz continuous coefficients bj; satisfying Hormander condition (e.g.,
Lie brackets of X, ..., X; generate the tangent space to R"). Let

n
d
* —_— JE— ae e .:
X = izzlaxi(b], ), j=1,..,d,

denote the formal adjoint of X;. Then the X-perimeter of a measurable set E C R" inside
an open set Q C R" is defined as

o) =swo| [ (559)arm : ¢ € 5e@)

where F(Q) = {$ = ($1, . ¢a) € CHQRY) : ||$lloo = sup, o BT, &7 <1},

Let us consider now a Carnot group G with a Riemannian metric in the d-dimensional
horizontal distribution #, which we extend to a Riemannian metric in G so that the
layers are orthogonal. We take an orthonormal basis X7, ... , X, of € adapted to the layers.
We can express the vector fields Xj, ... , X in canonical coordinates of the first kind using
formula (2.6), which immediately implies

X*=-X

j j’ J=1,,d

Hence the X-perimeter Px and the sub-Riemannian perimeter Pp, associated to the
closed unit ball D C #, coincide.
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Let K, K’ bounded convex bodies containing 0 in its interior. Let E C G be a measurable
set, QO C G an open set. Take U € % () a horizontal vector field with ||U]|g o < 1.
Hence ||aU||k’ 0 < ||U]lk,0 < 1by(2.10) and

fdiV(U) dG = a~! f div(aU) dG < a 'Px/(E, Q),
E E
Taking supremum over the set Xg ;(Q) of C* horizontal vector fields with compact
support in Q and || - ||g < 1, we get Px(E, Q) < a™'Pg/(E, Q). In a similar way we get
the inequality 8~ 1Pg/(E, Q) < Px(E, Q), so that we have

(2.19) B Px/(E, Q) < P(E, Q) < a 'Pxi(E, Q).

As a consequence, E has locally finite K-perimeter if and only if it has locally finite
K'-perimeter.

Hence, fixing a sub-Riemannian metric on # with unit ball D, there follows the
existence of a constant Cx > 0 such that

(2.20) Cx'Pp < Py < CgPp.

As a consequence of the previous discussions, we now prove three important results, a
compactness theorem for sets of finite K-perimeter, a version of Ambrosio’s localization
lemma, and a version of the local isoperimetric inequality.

Theorem 2.10 (Compactness). Let Q C G be an open set in a Carnot group G equipped
with a sub-Finsler norm || - ||x, and {E;}ien a sequence of sets of uniformly bounded
volume and uniformly bounded K-perimeter Px(E;, Q') in any relatively compact subset
Q; C Q. Then there is a set of locally finite K-perimeter E C G and a subsequence of {E;};en
converging in L}_.(Q) to E.

loc

Proof. We consider a sub-Riemannian metric in # with unit ball D. Since Pp < CgPg
from (2.20), the perimeters Pp(E;, Q") are uniformly bounded on every relatively compact
set Q' C Q. Hence the result follows from Remark 2.8 and Theorem 3.7 in Miranda [24]
and the fact that Py < CxPp. U

In the statement of the next two theorems, recall that D is the unit ball associated
to an scalar product in #. Hence || - ||p induces a distance with associated open balls
Bp(x,r) centered at x € G of radius r > 0.

Theorem 2.11 (Localization Lemma). Let E C G be a set of finite K-perimeter in G and
X € G, and let D be the unit ball for a fixed sub-Riemannian metric on #. Then, for almost
every p > 0, the sets E N Bp(x, p) and E \ Bp(x, p) have finite perimeter in G and we have

mg(x,r),
r=p

where mg(x,r) = |E N Bp(x, r)| and Ck is the constant in (2.20).

d
(2.21) Pg(E \ Bp(x, p),dBp(x,p) < Cx a

Proof. By Remark 2.8 and Ambrosio’s Localization Lemma, Lemma 3.5 in [1], we have

d
Pp(E \ Bp(x,p),0Bp(x, p)) < ar mg(x,r).
r=p

for almost every p > 0. Inequality (2.21) then follows from (2.20). O
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Theorem 2.12 (Local isoperimetric inequality). Let E C G be a set of finite K-perimeter,
and D the unit disk for a sub-Riemannian metric on #. Then, forany x € Gandr > 0,
we have

(2.22) Pr(E, Bp(x,r)) > Cpmin{|E 0 Bp(x, )|, |Bp(x, ) \ B[}

where the positive constant Cp only depends on D and K.

Q-1)/Q

Proof. We choose a D-orthonormal frame Xj, ..., X; of # and consider the associated
Carnot-Carathéodory distance dp. Let Cx > 0 be the constant in (2.20). By Remark 2.9,
Theorem 1.18 in [16] and inequality Px(E, -) > Cx'Pp(E, -) we have

- —1v (Q-1/Q
PK(E’ BD(xs r)) = CKIPD(E’ BD(xs r)) = CKIC {lE nBD(xa r)la |BD(X, V) \E|} s

where C’ > 0 only depends on K and D. Hence Cp = Cx'C’ only depends on K and
D. 0

2.5. The isoperimetric profile.

Definition 2.13. Let G be a Carnot group endowed with a sub-Finsler norm || - ||x. The
isoperimetric profile I of (G, || - ||k) is the function Iy : (0,00) — R* defined by

Ig(v) = inf{Pg(E) : E C G, |E| = v}.
Definition 2.14. A measurable set E C G is K-isoperimetric if Pg(E) = Ix(|E|).

If a set E is K-isoperimetric then we have
Py(E) > Pg(F)
for any other measurable set F C G such that |E| = |F|.
Definition 2.15. A set of finite K-perimeter E in G is decomposable if there exists two

disjoint sets F, F, C G with positive volume and finite K-perimeter such that E= K UE
and Px(E) = Px(F) + Pg(F). We say that E is indecomposable if it is not decomposable.

One of our main results in these notes is

Theorem 2.16. Let G be a Carnot group endowed with a sub-Finsler norm || - ||x. Then
K-isoperimetric sets exist on G for any positive volume. Moreover, the isoperimetric profile
Iy is strictly concave and any isoperimetric set is essentially bounded and undecomposable.

The behaviour of the perimeter and volume with respect to the intrinsic dilations of
G immediately implies that the K-isoperimetric profile of a Carnot group satisfies

(2.23) I(v) = Co@-DIQ,

where C > 0 is a constant and Q is the homogeneous dimension of G. The fact that
the constant C is indeed strictly positive will be obtained in the proof of Theorem 2.16,
where we ensure the existence of isoperimetric sets.

3. AUXILIARY RESULTS

In the proof of the main existence result, Theorem 2.16, we shall need some prelimi-
nary results and definitions. In this section (G, || - ||x) is @ Carnot group with a sub-Finsler
structure and D is the closed unit disk associated to a fixed sub-Riemannian metric on
#.



14 M. RITORE

3.1. Concentration of area. Two important consequences of the local isoperimetric
inequality (2.22) are the following

Corollary 3.1. Let E C G be a set with positive finite K-perimeter and positive volume. Let
m € (0, |Bp(0,1)|/2) such that |E N Bp(p,1)| < mforall p € G. Then there is a constant
C > 0, depending only on K, D and Q, such that

1/Q
(3.1) Pe(E) > (%) IE].

Proof. We consider a maximal family o of points in G such that dp(p, p’) = 1/2 for all
p# p'ind, and |[E N Bp(p,1/2)| > 0 for all p € o (e.g, Lemma B.7.1 in [20]). Then

E\ | Bo(p. 1) =0.
peA

Otherwise we could find a point q of density 1in E'\ Upe - Bp(p, 1) and the family o/ U {q}
would deny the maximality of &f. So we have

El = [En (| Bo(p, D)l

ped

< Y IENBp(p, D)
ped

ped

< Cptm'Q Y Pr(E N Bp(p, 1)),
peA

where the last inequality follows since |[ENBp(p,1)| < m < |Bp(0,1)|/2forall p € G and
the local isoperimetric inequality (2.22) in G. The constant Cp > 0 is the one appearing
in (2.22), which only depends on K and D.

To complete the proof we only need to control the overlap of the balls Bp(p, 1) when
ped. Letz € Upe&i Bp(p,1) and let

d(z)={ped :dp(z,p) <1}.

The balls Bp(p,1/4), p € o, are disjoint because of condition dp(p, p') > 1/2 for all
distinct p, p" € d. Since Bp(p, 1/2) C Bp(z,1 + 1/2) for all p € 94(z) we get

#4(z) wp (%)Q < wp (%)Q,
and so #9(z) < 39. Hence
|E| < 32 Cp' mYQ Py (E),
as claimed. O

Corollary 3.2 (Isoperimetric inequality for small volumes). There exists vy > 0 and a
positive C; > 0, only depending on K, D and Q, such that

Px(E) > C;|E|(Q-D/Q

for any measurable set of volume 0 < |E| < vy.
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Proof. Letvy = |Bp(0,1)|/2 and let E C G a measurable set of volume |E| < v,. Consider
again a maximal family o of points in G such that dp(p, p’) > 1/2 for all distinct
p,p' € dand |ENBp(p,1)| > 0forall p € A.

As in the proof of Corollary 3.1, we can bound the overlapping of the balls Bp(p, 1)
from above by 39, so that, by the local isoperimetric inequality (2.22) we get

39P(E) > ) Px(E,Bp(p,1)) > Cp D, |[EN Bp(p,1)|Q~D/Q > Cp |E|(Q-D/C,
peEHA ped

The last inequality follows, as in the proof of Corollary 3.1, since the measure of the set
E\ Upe o Bp(p, 1) is equal to 0. To complete the proof we simply take C; = Cp/3°. O

3.2. Boundedness of isoperimetric sets. We start this section with a classical result.
See §4.4.2 in [31] and the references therein.

Theorem 3.3. Let E C G be a K-isoperimetric set. Then E is essentially bounded.

Proof. Let v = |E|. Assume that E is not bounded. This means that the decreasing
function m(r) = |E \ Bp(0, r)| is positive for all r > 0. For every r > 0 we consider the set

E(r) = EnBp(0,r),

which has finite K-perimeter in G, and the intrinsic dilation of ratio A(r) so that |A(r)E(r)| =
|E|. This implies

Q_ |E| _ v
A= B = o=

Since E is isoperimetric we have
(32) Pg(E) < Pg(A(r)E(r)).

As E has finite volume, we have m(r) - 0 when r — 0. By standard properties of
sets of finite perimeter, (2.17) and (2.21), we get

A(r)~Q=DPg(AUr)E(r)) < Px(E) — Px(E \ Bp(0,r)) — 2Cxm’(r)

for almost everywhere r > 0. From this inequality, the isoperimetric inequality for small
volumes applied to E(r) and (3.2) we get

(Q-1)/Q
—2Cgm'(r) > Cym(r)(@-D/Q — PK(E)(l _ (v —;W)) )

When m(r) is small enough, there is a positive constant C > 0 such that the last summand
is bigger than or equal to —Cm(r). Hence we get

—2Cxm/(r) > Cim(r)Q=Y/Q — Cm(r) = Cym(r)(Q-V/Q(1 - C£ m(r)'/Q)
T

> S r@-vre
2 b
for r > 0 large enough. Hence, as m(r) > 0 for all r > 0 we have, for almost everywhere
r>0,

_ QY — o- (1-Q)/Q,,/ 1 G
(m(VQ) = Q7 'm(r) () > Q7 5a- = C >0

and, as m(r)l/ Qisa decreasing function, we have, for a < b large enough

b
—(m(b)"Q — m(a)"'?) > — / (m(NMQ)dr > C(b - a).
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This forces m(b) to be negative for b large enough, which provides a contradiction. [J

3.3. Behaviour of minimizing sequences. In this section we define minimizing
sequences for given volume and prove some of their main properties. When working
with an isoperimetric set E, we often make some geometric construction removing
or adding some small volume from E to obtain a new set F. In order to compare the
perimeters of E and F using the isoperimetric property it is necessary to apply a new
transformation to F to obtain a new set G satisfying |E| = |G|. In these notes the second
deformation will be obtained from the intrinsic dilations of the group. In some other
cases, deformations by vector fields [31], or by employing Cheeger sets [30], have been
used.

Definition 3.4. Given v > 0, a sequence {E;};cy of measurable sets with finite K-
perimeter is a minimizing sequence of volume v if

1. |Ej| =vforalli € N, and
2. Hmi_,oo PK(EI) = IK(U)

In non-compact spaces, isoperimetric sets for some given volume do not necessarily
exist. For instance, in a Riemannian plane of revolution with increasing Gauss curvature,
there are no isoperimetric sets for any value of the area, see Theorem 2.27 in [31]. The
reader can also consult [5], a recent result on non existence of isoperimetric sets. However,
in general, in Riemannian homogeneous spaces, isoperimetric sets do exist indeed, see
§4.4in [31] or [15]. Thus the convergence behavior of minimizing sequences must be
analyzed carefully.

A first refinement we shall use later is that we can always find a minimizing sequence
composed of bounded sets.

Lemma 3.5. Let (G, || - ||x) be a sub-Finsler Carnot group, and let v > 0. Then there exists
a minimizing sequence of volume v composed of bounded sets. In particular, for any § > 0
we can find a set of volume v and finite K-perimeter such that Px(F) < Ix(v) + 6.

Proof. Let D the closed unit disk associated to a fixed sub-Riemannian metric in #. We
take a minimizing {E;};cn sequence of volume v. Since each set E; has finite volume, we
choose a family of increasing radii {r;};cy such that s, — 7 > iand |E; \ Bp(1;)| < 1/i for
alli € N. Here Bp(t) = Bp(0, t). Let m;(t) = |E; N Bp(t)|. Since m; is increasing we have

Fit1
f m;(t)dt < v.
Fi
and so the set of points t € [r,1,1] where m;(t) exists and satisfies m;(t) < 2v/i has
positive measure. Hence, for each i € N we can find s; € (1,1, ;) such that m(s;) exists

and satisfies
2v
mi(s;) < —.

Now we take F, = 4;(E; N Bp(s;)), where 4; is computed so that |F| = v. As
1
v = |E;n Bp(s)l = |Eil = |E: 0 Bp(sp)l = |5; \ B(si)l < |E; \ Bp(n)l < =

and |E; N Bp(s;)| < v, we get lim;_, , |E; N Bp(s;)| = vand so lim;_, , 4; = 1.
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Then we have, by (2.17) and Theorem 2.11,
-1 -1 ’
P(B) = 287 P(E; 0 Bp(sy)) < A7 (P(By, Bo(s1) + Cgmi(sy))
-1 ’
< AIQ (PK(EL) + CKmi(S,-)).
Taking lim sup we obtain
lim sup Px(E) < lim sup Px(E;) = Ix(v).
i—oo i—>oo
On the other hand Pg(E) > Ix(v) and so lim;_,, Px(F) = Ix(v). We conclude that

{E};en is @ minimizing sequence of volume v and it is composed of bounded sets. The
last assertion in the statement of the Lemma follows immediately. O

Theorem 3.6. Let (G, || - ||g) be a sub-Finsler Carnot group, and let v > 0. Consider a
minimizing sequence {E;};en of volume v > 0. Then we can find sequences {ES lien» {E ) ien
such that

1. A non-relabeled subsequence of {E;};cn converges in L, .(G) to a set E C G with
finite volume |E| < v and finite K-perimeter.

The sequence {Ef };cn converges in L}, .(G) to E and lim;_, o, |E| = |E|.

lim,_, o (|Ef| + |Ef]) = v.

If |[E| > O then the set E is isoperimetric for its volume.

liminf;, o, Px(E}) = Pg(E) = Ix(|E]).

liminf;_, o, Px(EY) = Ix(v — |E)).

Ix(v) = Ix(|E]) + Ix(|E| — v).

N kAW

Proof. We take a sub-Riemannian metric in # and we consider the associated closed
unit disk D. For any r > 0, we denote Bp(r) = Bp(0, ).

1. By the Compactness Theorem 2.10, for every r > 0 we can extract a subsequence
of {E;}ien converging in L(Bp(r)) to a set of finite perimeter. Choosing a diverging
increasing sequence of radii and applying a diagonal argument, we may assume that
a non-relabeled subsequence of {E;};cn converges in L} (G) to a set of finite perimeter

E C G, which might be empty. By Fatou’s Lemma,

loc

|E| < liminf|E;| < v.
1= 00

By the lower semicontinuity of the K-perimeter, the set E has finite K- perimeter.
We choose a sequence {1};cn of increasing radii such thatr,, —r > iforalli € N
with ) = 0. Passing again to a subsequence, we may assume

1
f |xXe, — Xl dG < >
Bp(riy1)

Reasoning as in the proof of Lemma 3.5 we get s; € (1, ;1) such that mi(s;) < 2v/i for
alli € N, where m;(t) = |E; N Bp(t;)|-
We define

Ef = E; N Bp(sy),
Eld =Ein \BD(Si+1)'

The set Ey is bounded for all i € N and the sequence {E{i}ie,\, is divergent.
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2. Given r > 0 we have

| -aids< [ im-alds <
Bp(si) Bp(rit1)
This implies lim;_, , |Ef| = |E]|.

3. It follows from the equality |E, | + |EZ| = v and 2.

4. Assume that the set E is not isoperimetric for its volume. Then Ix(|E|) < Pg(E).
By Lemma 3.5 there exists a bounded set F C G of volume |E| such that Ix(|E|) <
Px(F) < Pg(E) — p for some p > 0. For i large enough the sets F and E{i are disjoint
and |F UEid| = |F|+ |E{1| — |E| + (v — |E]) = v by 2 and 3. Then there is a sequence 4;
converging to 1 such that |1;(F U E%)| = v and

Pe(Ay(F U Ef) = 1371 (Px(F) + Pr(E)) < 1371 (Px(E) — p + Pi(ED))
<A77 (lim inf Pg(Bf) — p + Pi(ED)).

Hence the K-perimeters of a subsequence of {1;(F U E{i)}ie,\, converge to Ix(v) — p, thus
providing a contradiction to the fact that {E;};cy is @ minimizing sequence for volume v.

5. By the lower semicontinuity of perimeter we have Px(E) < liminf;_,  Px(E}). If
the strict equality holds then there is p > 0 such that Pg(F) < liminf;_, , Pg(Ef) — p. As
E is isoperimetric, it is bounded, so that E and Eid are disjoint for large i and |E UEid| - 0.
We take 4; converging to 1 so that |4;(E UE{i)l = v. Wereason as in 4 so that a subsequence
of L(Eu E{i) has limit K-perimeter strictly smaller than Ix(v). This contradiction proves
liminf;_, , Pg(Ef) = Pg(E) = Ix(v).

6. Since |E{i| — v—|E|, there is a sequence 4; converging to 1 such that |/1iE{i| =v—|E|.
Hence Ix(v — |E|) < PK(/ll-El-d) = AiQ_lPK(E{i) and so

Ix(v — |E]) < lim inf Pg(E®).
1= 00

If we had strict inequality then there would exist a bounded set F of volume v — |E| such
that

Ix(v — |E|) < Pg(F) < liminf P(EY) — p,
1—>00
for some p > 0. Since the sets E{ and F are bounded we can find left-tranlations ¢; such

that Ef and ¢;(F) are disjoint. As |Ef U ¢;(F)| = |Ef| + |F| — v, we can find a sequence
A; converging to 1 so that |4;(Ej U €;(F))| = v — |E|. So we have

PR(y(ES U 6(F)) = A2 (P(Ef) + P(F)) < A7 (Py(Ef) + lim inf P (Ef) — p).
As in previous cases, the K-perimeters of a subsequence of {4;(Ef U ¢;(F))};en converge
to a limit no larger than Ix(v) — p. This provides a contradiction that shows Ix(v —|E|) =
lim inf;_, o, Px(E®).

7. 1t follows from properties 5 and 6. O

4. PROOF OF THEOREM 2.16

Proof of Theorem 2.16. Let {E;};cn be a minimizing sequence for volume v > 0. Let us
choose m > 0 so that

m<min{l|BD(0,1)| CvQ! }
b 2 U+ 1R)
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where C > 0 is the constant that appears in inequality (3.1). In particular

Bp(0,1
<|D( )|_

mv
2

If |[E;nBp(p,1)| < mv = m|E;| foralli € Nand p € G, then Corollary 3.1 and the choice
of m imply

C 1/Q C 1/Q
Pg(E;) > (@) |E;| = (E) v(@V/Q > [Ty (v) + 1.

This leads to a contradiction since {E;};cy is @ minimizing sequence. Hence there follows
the existence of a non-relabeled subsequence of {E;};cn and points p; € G such that

|E; N Bp(p;, 1)| > m|E;]

foralli € N.

Using left-translations, which preserve the volume and the K-perimeter, we can assume
that p; = 0 for all i € N. Hence there is a non-relabeled subsequence converging in
Lj,.(G) to a measurable set E with finite perimeter and volume

|E| > |E N Bp(0,1)| > m|E| = mv > 0.

In particular, this implies that the isoperimetric profile function Iy is strictly concave
since Pg(E) > 0 and, by the local isoperimetric inequality (2.22) applied at some point
of the measure theoretic boundary, the non-negative constant in the expression (2.23) of
the isoperimetric profile is strictly positive.

Assume |E| < v. Then we have

Ix(v) < Ig(|E]) + Ig(v — |E])
since the strict concavity of Iy and the fact that Ix(0) = 0 imply

Ig(ED — Ig(0) _ Ig() — Ig( — |E])
|E] =0 v—(—IE)

But we know from Theorem 3.6 that Ix(v) = Ix(|E|) + Ix(v — |E|). This provides a
contradiction that shows |E| = v. Hence E is an isoperimetric set of volume v.
The essential boundedness of any isoperimetric set now follows from Theorem 3.3.
To prove the indecomposability of an isoperimetric set E C G, we assume that it is
decomposable and so we can find two disjoint sets F, F, of positive volume and finite
K-perimeter such that E = F; UF, and Py = Px(F) + Pg(E). Letting v; = |E| fori = 1,2,
we have

Ig(vy + vy) = Pg(E) = Px(F) + Pg(%) 2 Ig(vy) + Ig(vy).
But this inequality cannot hold since the strict concavity of Iy together with Ix(0) = 0
imply as above

Ig(vy) = Ig(0) _ Ig(vy +0;) — Ig(Vy)
v —0 (L1 +v) =1y

and so
Ix(v; + ;) < Ig(vy) + Ig(vy).

This contradiction implies that E is indecomposable. 0
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5. DENSITY ESTIMATES FOR ISOPERIMETRIC SETS

In this section we prove that an isoperimetric set coincides essentially with the set of
its density 1 points. The discussion follows the one in §5 in Leonardi and Rigot [21].
We consider the function h defined on G X (0, c0) by

h(x,r) = r?min{|Bp(x,r) \ E|, |Bp(x,r) N E|}.
Lemma 5.1. Let (G, || - ||x) be a Carnot group endowed with a sub-Finsler structure,

and D the closed unit disk associated to a sub-Riemannian metricon #. Let E C G be a
K-isoperimetric set of volume v > 0. Take any € > 0 satisfying

(5.1) €< min{v, <4QCéK>Q, (v%)o}

Then, if h(x,r) < eand 0 <r < 1, then
|Bp(x,r/2)\ E|=0 or |Bp(x,r)NE|=0.

Proof. We consider two cases.
Assume first that h(x, r) = r~9|Bp(x, ) \ E|. By hypothesis [Bp(x,7) \ E| < er? is very
small. We define the set E; = E U Bp(x, t) and the increasing volume function
m(t) = |Bp(x, ) \ E|.
For every t > 0 consider A(t) > 0 so that A(¢)E; has volume v. This implies
10=() " <1
“\v+m() ’

Since E and A(t)E; have volume v and E is isoperimetric, from standard properties of the
K-perimeter there follows, for almost everywhere ¢ > 0,

Pr(E) < Pg(A(DE,) = A1) Pk(E,)
S AU Y(Pg(E) — Px(Bp(x,t) \ E) 4+ 2Cxm'(1)).

As |Bp(x,t)\ E| < er? < € < vpand A(t) < 1 we obtain from the isoperimetric inequality
for volumes no larger than vy,
2Cm' () = Cym()(Q-D/Q 4 (/I(t)‘(Q‘l) —1)K(E) > Cym(t)(@-1D/Q,

If m(r/2) > 0 then m(t) > 0 for all t € [r/2,r]. In this interval the function m(t)"/? is
increasing and, since it does not vanish ay any point, we have for almost everywhere ¢

1 C
1/QY () = = ' 1-Q)/Q 5 _~=I
(mR) (1) QM(I)M(t) > 20ce
So we have
,
ST < [ mRy(de < mVr) — mVr/2) < mir) < Vor,

2QCk r/2
which contradicts the choice of €. Hence m(r/2) = 0.

Assume now that h(x,r) = r~?|Bp(x,r) N E|. In this case the volume of E inside the
ball Bp(x, t) is very small compared to the total volume of Bp(x, t). Let

m(t) = |E N Bp(x,t)|,
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and take the set E! = A(t)(E \ Bp(x, t)), where

/1(t)=< v )I/Q >1

v—m(1)
is computed so that |E| = |[E| = v. So we have, for almost everywhere ¢ > 0,
Px(E) < Pg(E") = ()" Px(E")
S AU (Py(E) — Px(E N Bp(x, 1)) + 2Cxm'(1)).
As |[ENBp(x,t)| < er? < v, we get, from the isoperimetric inequality for small volumes,

2Ckm'(t) > Cym()QV/Q 4 (A()'~Q — 1) Pk (E).

Note that
B Q-1)/Q
AR —1= (va(t)> —1<o.
The function f : [0,v] - R defined by
_\(@-D/Q
fo=(55) -

satisfies f”(x) < 01in (0,v), and so f(x) > —(1/v)x in the interval [0, v]. So we get
1 C
2Cgm'(t) > m(t)(Q‘l)/Q<CI - Bm(t)lfQ) > ém(t)(Q—l)/Q

whenever

C
m(t)'e < v,
and this last inequality holds because of out choice of ¢ Finally we reason as in the
previous case: if m(r/2) > 0 then we get (mY/Q)'(t) > C;/(4QCk) for almost everywhere
t, and so

C r
r < (ml/Q)/(t)dt < ml/Q(r) < El/Qr,
4QCk r/2

providing a contradiction because of our choice of . 0

Given an isoperimetric set E C G of volume v > 0 we now define the sets

E; ={x € G : 3r > 0with [Bp(x,r) \ E| = 0},
Ey ={x € G : 3r > 0with |[Bp(x,r) N E| = 0},
S={x€ G : h(x,r)>eforallr <1},

where ¢ > 0 is one defined in (5.1). With these definitions we have

Theorem 5.2. Let E C G be a K-isoperimetric set of volume v > 0.

1. Ey, Ey, S form a partition of G,

2. E, and E; are open sets,

3. E; coincide with the set of Lebesgue points of E, and E, with the set of points of E of
density 0,

4. S = 8E, = 3E,
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5. Forany x € S here is a constant C > 0 so that
C™'r7! < Pg(E, Bp(x, 1)) < Cro!

forallx € Sand 0 < r < 1. The constant C depends on the constant € > 0 in (5.1),
the Poincaré constant Cp in (2.22), the homogeneous dimension Q and the constant
Cx defined in (2.20).

Proof. The proof of 1-4 follows closely that of Theorem 5.3 in [21] and is straightforward.
As for 5, we have, for any x € Sand r € (0, 1), that h(x, r) > €. By the local isoperimetric
inequality (2.22) we obtain the lower bound

Px(E, Bp(x,r)) > Cp(r?h(x, r))(Q_l)/Q > Cpe(Q-1/QpQ-1,
To obtain the upper inequality we use
Pg(E U Bp(x,r)) + Pg(E N Bp(x,r)) < Pg(E) + Px(Bp(x,1)).
As the isoperimetric profile I is increasing we have

Pg(E U Bp(x,1)) 2 Ix(|E U Bp(x,1)]) 2 Ik(|E]) = Pk(E).
Hence
Px(E N Bp(x,r)) < Px(Bp(x,1)).
Now the proof is complete since, by (2.16), we obtain

Px(Bp(x, 1)) < CxPp(Bp(x,r) < QCk|Bp(0,1)[r!
and PK(E, BD(X, r)) < PK(E N BD(X, V)) O
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