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Abstract. The aim of this note is to provide a complete proof of existence of isoperi-
metric sets in sub-Finsler Carnot groups, and to establish some properties of such sets.

1. Introduction

The aim of this note is to provide a complete proof of existence of isoperimetric sets
in Carnot groups endowed with a sub-Finsler structure, and to obtain some properties
of such sets. In the particular case of a sub-Riemannian structure, such results were
provided by Leonardi and Rigot [21]. In the first Heisenberg group ℍ1 with a symmetric
sub-Finsler structure a sketch of the proof of the existence result appeared in Franceschi
et al. [12]. For nilpotent groups with a sub-Finsler structure existence of isoperimetric
sets was proven by Pozuelo [30]. It is worth mentioning that the asymmetry of the
sub-Finsler structure prevents the straightforward use of results known for sets of finite
perimeter in metric spaces, since an asymmetric sub-Finsler structure does not have an
associated distance as the symmetry property is missing.
We follow for the most part the strategy of Leonardi and Rigot, introducing in several

parts of the proof some simplifying, from the conceptual point of view, ideas that have
been developed in recent years and can be found in works by Morgan [26, 27], Ritoré
and Rosales [32], Galli and Ritoré [14], Nardulli [28], Leonardi et al. [22], and Antonelli
et al. [3, 6, 4]. In the Riemannian case one can follow §4.4 in the recent monograph [31].
An essential technique when working with isoperimetric sets (or variational problems

with a volume constraint) is to have a geometric way of restoring the original volume of
a set after a geometric operation has been performed on the set. For this purpose, flows
of vector fields have been used in Euclidean spaces or Riemannian manifolds (e.g., §1.4.5
in [31] and the references therein), Euclidean dilations in [8], or Cheeger sets in [30].
The main differences of our proof with the one in Leonardi and Rigot’s paper [21] are

the geometric use of the strict concavity of the isoperimetric profile function and the use
of structure results for minimizing sequences introduced in [32] to simplify the existence
proof, and the systematic use of dilations to adjust the volume of a set after some previous
geometric transformation. Although our result is contained in the one by Pozuelo on
nilpotent groups with a sub-Finsler structure, the strict concavity of the isoperimetric
profile greatly simplifies the proof and allows us to obtain the stronger result that an
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isoperimetric set in a Carnot group with a sub-Finsler structure is indecomposable, a
notion of connectedness for finite perimeter sets.
In addition to the existence of isoperimetric sets we also prove some mild regularity

results for their boundaries. In particular, we show in Theorem 5.2 that the boundary of
an isoperimetric set is Ahlfors regular. Very few results are known about the regularity
of isoperimetric boundaries in Carnot groups, or even in the simpler case of the first
Heisenberg group ℍ1. A lack of a regularity result similar to the Euclidean one proven
by Gonzalez et al. [18] is one of the major drawbacks of the theory. Giovannardi and
Ritoré [17] proved such a regularity for (𝑋, 𝑌)-Lipschitz surfaces in the first Heisenberg
group ℍ1 with prescribed mean curvature, a concept introduced by Massari in [23]
and later considered in [19, 7]. In the paper [17] is proven that isoperimetric sets with
(𝑋, 𝑌)-Lipschitz boundary have constant prescribed mean curvature.
Our main result in this paper is Theorem 2.16, where we prove

If 𝔾 is a Carnot group endowed with a sub-Finsler norm || ⋅ ||𝐾 then 𝐾-
isoperimetric sets exist on 𝔾 for any positive volume. Moreover, the isoperi-
metric profile 𝐼𝐾 is strictly concave and any isoperimetric set is essentially
bounded and undecomposable.

We have organized this paper into several sections. In the next one we present some
preliminaries on Carnot groups, sub-Finsler norms and the sub-Finsler perimeter. In the
third section we include some results on the isoperimetric profile of a sub-Finsler Carnot
group. In the fourth one we complete the proof of existence of isoperimetric sets, where
the concavity of the isoperimetric profile will play an important role. In the last section,
we prove some density estimates for isoperimetric sets and the Ahlfors regularity of their
boundaries.

2. Preliminaries

2.1. Carnot groups. We refer the reader to the first chapter in Vittone’s Ph.D. Thesis
[34] for a good introduction to the geometry of Carnot groups.
A stratified or Carnot group is a connected and simply connected 𝑛-dimensional real

Lie group 𝔾 whose Lie algebra 𝒢 admits a step-𝑘 stratification: a family of subspaces
𝑉1,… , 𝑉𝑘 ⊂ 𝒢 such that

𝒢 = 𝑉1 ⊕⋯⊕𝑉𝑘,
and

(2.1) [𝑉1, 𝑉𝑗] = 𝑉𝑗+1. for all 𝑗 = 1,… , 𝑘, with 𝑉𝑘+1 = {0}.

The subspaces 𝑉𝑖 are known as strata or layers and 𝑉1, also denoted byℋ, is usually
referred to as the first layer or the horizontal distribution. Iterated Lie brackets of vector
fields in 𝑉1 generate the whole Lie algebra 𝒢. A consequence of (2.1) is that

(2.2) [𝑉𝑖, 𝑉𝑗] ⊆ 𝑉𝑖+𝑗 for all 𝑖, 𝑗 ∈ ℕ with 𝑉𝑖+𝑗 = {0} if 𝑖 + 𝑗 > 𝑘.

Hence, letting𝒢𝑖+1 = [𝒢,𝒢𝑖] for all 𝑖 ∈ ℕ, with𝒢0 = 𝒢, we obtain that every element
𝒢𝑖 of the lower central series satisfies

𝒢𝑖 ⊆ 𝑉𝑖+1 ⊕⋯⊕𝑉𝑘, 𝑖 = 0,… , 𝑘,

and 𝒢𝑘 = {0}. This implies that 𝔾 is a nilpotent group of step at most 𝑘. In particular,
the exponential map exp ∶ 𝒢 → 𝔾 is a diffeomorphism, as proven in Proposition 1.2(a)
in [11].
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Choosing a basis of left-invariant vector fields 𝑋1,… , 𝑋𝑛 of 𝒢 provides an identifica-
tion between ℝ𝑛 and 𝒢. The composition of the inverse log = exp−1 ∶ 𝔾 → 𝒢 with
the identification provides a global chart on 𝔾 whose coordinates are called canonical
coordinates of the first kind. In such coordinates the group product can be recovered
from the Baker-Campbell-Hausdorff-Dynkin formula, see formula (1.7.3) in [9]. Given
𝑋, 𝑌 ∈ 𝒢, and letting 𝑍 = log(exp𝑋 ⋅ exp𝑌) we get

𝑍 = 𝑋 + 𝑌 +
∞
∑
𝑚=1

(−1)𝑚
𝑚+ 1 ⋅ { ∑

𝑎1,…,𝑎𝑚⩾0,
𝑏1,…,𝑏𝑚⩾0,
𝑎𝑖+𝑏𝑖>0

1
1 +∑𝑚

𝑖=1 𝑎𝑖
×

× ((ad𝑋)
𝑎1

𝑎1!
∘ (ad𝑌)

𝑏1

𝑏1!
∘ … ∘ (ad𝑋)

𝑎𝑚

𝑎𝑚!
∘ (ad𝑌)

𝑏𝑚

𝑏𝑚!
)(𝑋)},

(2.3)

where (ad𝑋)(𝑌) = [𝑋, 𝑌] for any 𝑋, 𝑌 ∈ 𝒢. If 𝔾 is nilpotent of step 𝑘 then the sum (2.3)
only extends from𝑚 = 1 to 𝑘 and, moreover∑𝑚

𝑖=1(𝑎𝑖 + 𝑏𝑖) ⩽ 𝑘.
Assume that we have ordered the vector fields 𝑋1,… , 𝑋𝑛 so that consecutively we

have bases for 𝑉1,… , 𝑉𝑘, and let
𝑑 = dim𝑉 1.

We want to express the group product ⋅ in canonical coordinates of the first kind. Taking
𝑥 = (𝑥1,… , 𝑥𝑛), 𝑦 = (𝑦1,… , 𝑦𝑛), and𝑋 = ∑𝑛

𝑖=1 𝑥𝑖𝑋𝑖, 𝑌 = ∑𝑛
𝑖=1 𝑦𝑖𝑋𝑖, from (2.3) we obtain

(2.4) 𝑥 ⋅ 𝑦 = 𝑥 + 𝑦 + 𝑃(𝑥, 𝑦),

where 𝑃 = (𝑃1,… , 𝑃𝑛) ∶ ℝ𝑛 × ℝ𝑛 → ℝ𝑛 is a polynomial of degree at most 𝑘. As
for any 𝑋, 𝑌 ∈ 𝒢 the last summand in (2.3) belongs to 𝒢1 ⊆ 𝑉2 ⊕⋯ ⊕ 𝑉𝑘 we have
𝑃1 = ⋯ = 𝑃𝑑 = 0. Moreover, if 𝑉𝑗 = span{𝑋𝑎+1,… , 𝑋𝑎+𝑏} then the last summand in
(2.3) belongs to 𝑉𝑗 only if the involved vectors belong to 𝑉1⊕⋯⊕𝑉𝑗−1. This means that
for any 𝑠 ∈ {𝑎 + 1,… , 𝑎 + 𝑏}, the polynomial 𝑃𝑠 only depends on 𝑥1, 𝑦1,… , 𝑥𝑎, 𝑦𝑎. As
𝑎 < 𝑠 this implies that

(2.5) 𝑃𝑠(𝑥, 𝑦) = 𝑃𝑠(𝑥1,… , 𝑥𝑠−1, 𝑦1,… , 𝑦𝑠−1), for 𝑠 > 𝑑.

Because of (2.4) and (2.5), the differential of a left-traslation in canonical coordinates
of the first kind is given by a lower triangular matrix with ones in the diagonal. Hence
the Lebesgue measure in ℝ𝑛 with canonical coordinates is left-invariant and coincides
(up to a constant) with the Haar measure of 𝔾.
In addition, if we want to express any vector field 𝑋1,… , 𝑋𝑑 in the first layer in terms

of 𝜕/𝜕𝑥1,… , 𝜕/𝜕𝑥𝑛, as 𝑋𝑗(𝑥) is the image by (𝑑ℓ𝑥)0 of the 𝑗-th coordinate vector in ℝ𝑛,
we would have

(2.6) 𝑋𝑗(𝑥) =
𝜕
𝜕𝑥𝑗

+
𝑛
∑

𝑖=𝑑+1
𝑎𝑖𝑗(𝑥)

𝜕
𝜕𝑥𝑖

, 𝑗 = 1,… , 𝑑,

where 𝑎𝑖𝑗(𝑥) =
𝜕𝑃𝑖
𝜕𝑥𝑗

(𝑥, 0) = 𝑎𝑖𝑗(𝑥1,… , 𝑥𝑖−1).

In a Carnot group 𝒢 we can define in canonical coordinates a family of intrinsic
dilations ℎ𝜆 ∶ 𝔾 → 𝔾, for 𝜆 ∈ ℝ, by the formula

(2.7) ℎ𝜆(𝑧1,… , 𝑧𝑘) = (𝜆𝑧1,… , 𝜆𝑖𝑧𝑖,… , 𝜆𝑘𝑧𝑘),

where (𝑧1,… , 𝑧𝑘) = (𝑥1,… , 𝑥𝑛) with 𝑧𝑖 ∈ ℝdim𝑉𝑖. Each 𝑧𝑖 correspond to the coordinates
in (𝑥1,… , 𝑥𝑛) associated to the vector fields in 𝑉𝑖. Because of (2.2) the intrinsic dilations
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satisfy
[ℎ𝜆(𝑋), ℎ𝜆(𝑌)] = ℎ𝜆([𝑋, 𝑌]), for all 𝑋, 𝑌 ∈ 𝒢.

By (2.3) we get ℎ𝜆(𝑥 ⋅ 𝑦) = ℎ𝜆(𝑥) ⋅ ℎ𝜆(𝑦) for all 𝑥, 𝑦 ∈ 𝔾. Sometimes we will write 𝜆𝐸
instead ℎ𝜆(𝐸) for subsets 𝐸 ⊆ 𝔾.
The homogeneous dimension of the group 𝔾 is defined by

𝑄 =
𝑘
∑
𝑖=1

𝑖 dim(𝑉𝑖).

The Haar measure of a Borel measurable set 𝐸 ⊂ 𝔾 will be denoted by |𝐸|. As the Haar
measure coincides with the Lebesgue measure in canonical coordinates, the expression
(2.7) immediately provides

|ℎ𝜆(𝐸)| = 𝜆𝑄|𝐸|,
for any measurable set 𝐸 ⊆ 𝔾 and any 𝜆 > 0. We also have that, for any left-translation
ℓ𝑥 with 𝑥 ∈ 𝔾, we have

|ℓ𝑥(𝐸)| = |𝐸|
for any measurable set 𝐸 ⊆ 𝔾.

2.2. Sub-Finsler structures in a Carnot group. Our notion of norm is the one of
asymmetric norm. This is a non-negative function || ⋅ || ∶ 𝑉 → ℝ defined on a finite-
dimensional real vector space 𝑉 satisfying

1. ||𝑣|| = 0 if and and only if 𝑣 = 0,
2. ||𝜆𝑣|| = 𝜆||𝑣||, for all 𝜆 ⩾ 0 and 𝑣 ∈ 𝑉, and
3. ||𝑣 + 𝑤|| ⩽ ||𝑣|| + ||𝑤||, for all 𝑣, 𝑤 ∈ 𝑉.

We stress the fact that we are not assuming the standard symmetry property ||−𝑣|| = ||𝑣||.
Associated to a given a norm || ⋅ || in 𝑉 we have the set 𝐾 = {𝑢 ∈ 𝑉 ∶ ||𝑢|| ⩽ 1}, which

is compact, convex and includes 0 in its interior. Reciprocally, given a compact convex
set 𝐾 with 0 ∈ int(𝐾), the function ||𝑢||𝐾 = inf{𝜆 ⩾ 0 ∶ 𝑢 ∈ 𝜆𝐾} defines a norm in 𝑉 so
that 𝐾 = {𝑢 ∈ 𝑉 ∶ ||𝑢||𝐾 ⩽ 1}.
Given a norm || ⋅ || and an scalar product ⟨⋅, ⋅⟩ in 𝑉, we consider the dual norm || ⋅ ||∗

of || ⋅ || with respect to ⟨⋅, ⋅⟩ defined by

||𝑢||∗ = sup
||𝑣||⩽1

⟨𝑢, 𝑣⟩.

The dual norm is the support function ℎ of the unit ball 𝐾 = {𝑢 ∈ 𝑉 ∶ ||𝑢|| ⩽ 1} with
respect to the scalar product ⟨⋅, ⋅⟩.
A norm is said to be smooth if it is 𝐶∞ in 𝑉 ∖ {0}. It is strictly convex if

||𝜆𝑢 + (1 − 𝜆)𝑣|| < 1, for all 𝜆 ∈ (0, 1),when 𝑢 ≠ 𝑣, ||𝑢|| = ||𝑣|| = 1.

Given 𝑢 ∈ 𝑉, the compactness of the unit ball of || ⋅ || and the continuity of || ⋅ ||
implies the existence of 𝑢0 ∈ 𝑉 satisfying equality ||𝑢||∗ = ⟨𝑢, 𝑢0⟩. Moreover, it can
be easily checked that ||𝑢0|| = 1. In general, a point 𝑢0 satisfying this property is not
unique, but uniqueness follows from the assumption that || ⋅ || is strictly convex: this
is proved by contradiction assuming the existence of another point 𝑢′0 with ||𝑢′0|| ⩽ 1
satisfying ||𝑢||∗ = ⟨𝑢, 𝑢′0⟩. Of course 𝑢′0 must also satisfy ||𝑢′0|| = 1. Then all the points
𝑣 in the segment [𝑢0, 𝑢′0] satisfy ||𝑣|| ⩽ 1 and ||𝑢||∗ = ⟨𝑢, 𝑣⟩; hence ||𝑣|| = 1. But this
contradicts the strict convexity of || ⋅ || unless 𝑢0 = 𝑢′0. We shall define 𝜋(𝑢) as the only
vector satisfying ||𝜋(𝑢)|| = 1 and

ℎ(𝑢) = ||𝑢||∗ = ⟨𝑢, 𝜋(𝑢)⟩.



ISOPERIMETRIC SETS IN CARNOT GROUPS WITH A SUB-FINSLER STRUCTURE 5

If 𝜆 > 0 then it is easily checked that 𝜋(𝜆𝑢) = 𝜋(𝑢).
We say that a convex body 𝐾 is of class 𝐶ℓ

+, with ℓ ⩾ 2 when 𝜕𝐾 is of class 𝐶ℓ, ℓ ⩾ 2,
and the principal curvatures of 𝜕𝐾 are everywhere positive. Hence the Gauss map
𝑁 ∶ 𝜕𝐾 → 𝕊1 to the unit sphere is a diffeomorphism of class 𝐶ℓ−1. Since 𝜋 = 𝑁−1 we
conclude that 𝜋 is of class 𝐶ℓ−1. Moreover, by Corollary 1.7.3 in [33] we have

∇ℎ(𝑢) = 𝑁−1( 𝑢|𝑢|),

and so ℎ is of class 𝐶ℓ. If 𝐾 is of class 𝐶2
+ then it is strictly convex and, if 0 ∈ int(𝐾), then

the norm || ⋅ ||𝐾 is strictly convex.

We now consider left-invariant norms in Carnot groups. Let 𝔾 be a Carnot group and
letℋ be the horizontal distribution in 𝔾, determined by the left-invariant vector fields of
the first layer. For 𝑝 ∈ 𝔾, we denote byℋ𝑝 ⊂ 𝑇𝑝𝔾 the subspace {𝑋𝑝 ∶ 𝑋 ∈ ℋ}. Given a
norm || ⋅ ||0 inℋ0, we extend it by left-invariance to a norm || ⋅ || in the whole horizontal
distributionℋ by means of the formula

(2.8) ||𝑣||𝑝 = ||𝑑ℓ−1𝑝 (𝑣)||0, 𝑝 ∈ 𝔾, 𝑣 ∈ ℋ𝑝.

In particular, for a horizontal vector field 𝑓1𝑋1 + …𝑓𝑑𝑋𝑑, its norm at a point 𝑝 ∈ 𝔾 is
given by ||𝑓1(𝑝)(𝑋1)0+⋯+𝑓𝑑(𝑝)(𝑋𝑑)0||. A sub-Finsler norm in𝔾 is a left-invariant norm
inℋ. If 𝐾 ⊂ ℋ0 is the closed unit ball for || ⋅ ||, we will frequently denote the sub-Finsler
norm by || ⋅ ||𝐾.
We consider the norm (|| ⋅ ||0)∗, dual to || ⋅ ||0 inℋ0, and we extend it by left-invariance

to a norm || ⋅ ||∗ inℋ. It can be checked that (|| ⋅ ||∗)𝑝 is the dual norm to || ⋅ ||𝑝 since

(||𝑣||∗)𝑝 = (||𝑑ℓ−1𝑝 (𝑣)||0)∗ = sup ||𝑤||0 ⩽ 1,𝑤 ∈ ℋ0⟨𝑑ℓ−1𝑝 (𝑣), 𝑤⟩
= sup ||𝑤′||𝑝 ⩽ 1,𝑤′ ∈ ℋ𝑝⟨𝑣, 𝑤′⟩
= (||𝑣||𝑝)∗.

When || ⋅ ||0 is 𝐶𝑙
+ with 𝑙 ⩾ 2, all norms || ⋅ ||𝑝 are 𝐶𝑙

+. Given a horizontal vector field
𝑈 of class 𝐶1, we define 𝜋(𝑈) as the 𝐶1 horizontal vector field satisfying

(2.9) ||𝑈||∗ = ⟨𝑈, 𝜋(𝑈)⟩,

or, equivalently, (||𝑈𝑝||𝑝)∗ = ⟨𝑈𝑝, 𝜋(𝑈)𝑝⟩ for all 𝑝 ∈ 𝔾. We recall that 𝜋(𝑓𝑈) = 𝜋(𝑈) for
any positive smooth function 𝑓.

A curve 𝛾 ∶ [𝑎, 𝑏] ⊂ ℝ → 𝔾 of class 𝐶1 is horizontal if 𝛾′(𝑡) ∈ ℋ𝛾(𝑡) for all 𝑡 ∈ [𝑎, 𝑏].
Given a sub-Finsler norm, the sub-Finsler length of a curve 𝛾 ∶ [𝑎, 𝑏] → 𝔾 is defined by

𝐿(𝛾) = ∫
𝑏

𝑎
||𝛾′(𝑡)|| 𝑑𝑡.

Since any two given points in 𝔾 can be connected by a smooth horizontal curve by
Chow’s Theorem (Theorem 2.1.2 in [25]), we may define the sub-Finsler distance in 𝔾 by

𝑑(𝑝, 𝑞) = inf 𝐿(𝛾),

where 𝛾 ∶ [𝑎, 𝑏] → 𝔾 is any 𝐶1 horizontal curve with 𝛾(𝑎) = 𝑝, 𝛾(𝑏) = 𝑞. Observe that 𝑑
is an asymmetric distance satisfying 𝑑(𝑝, 𝑞) ⩾ 0, 𝑑(𝑝, 𝑞) = 0 if and only if 𝑝 = 𝑞, and the
triangle inequality, but not the symmetry property 𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) because || ⋅ || is not
symmetric. Observe also that the sub-Finsler distance is invariant by left-translations
and that

𝑑(ℎ𝜆(𝑝), ℎ𝜆(𝑞)) = 𝜆 𝑑(𝑝, 𝑞)
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for any 𝜆 > 0. This follows from the fact that ℎ𝜆 ∘ 𝛾 is horizontal when 𝛾 is horizontal
and ||(ℎ𝜆 ∘ 𝛾)′(𝑡)|| = 𝜆 ||𝛾′(𝑡)|| for all 𝑡 ∈ [𝑎, 𝑏].
The sub-Finsler open ball of center 𝑝 ∈ 𝔾 and radius 𝑟 > 0 is defined by

𝐵𝐾(𝑝, 𝑟) = {𝑞 ∈ 𝔾 ∶ 𝑑(𝑝, 𝑞) < 𝑟}.

For a left-translation ℓ𝑞we have ℓ𝑞(𝐵(𝑝, 𝑟)) = 𝐵(ℓ𝑞(𝑝), 𝑟) and, for dilations, ℎ𝜆(𝐵(𝑝, 𝑟)) =
𝐵(ℎ𝜆(𝑝), 𝜆𝑟).
Given two convex bodies 𝐾, 𝐾′ ⊂ 𝑉1 containing 0 in its interior, we can compare the

sub-Finsler distances by observing that there exist constants 𝛼, 𝛽 > 0 such that

(2.10) 𝛼 ||𝑥||𝐾′ ⩽ ||𝑥||𝐾 ⩽ 𝛽 ||𝑥||𝐾′, for all 𝑥 ∈ 𝑉1.

If 𝛾 ∶ [𝑎, 𝑏] → 𝔾 is a 𝐶1 curve connecting the points 𝑝, 𝑞 ∈ 𝔾 then we have

𝛼𝐿𝐾′(𝛾) ⩽ 𝐿𝐾(𝛾) ⩽ 𝛽𝐿𝐾′(𝛾).

Henceforth
𝛼𝑑𝐾′(𝑝, 𝑞) ⩽ 𝑑𝐾(𝑝, 𝑞) ⩽ 𝛽𝑑𝐾′(𝑝, 𝑞)

for all 𝑝, 𝑞 ∈ 𝔾.

2.3. Convolutions in Carnot groups. For this section we refer the reader to §1.2.7 in
Vittone’s Ph.D. Thesis [34] or Proposition 1.20 and pages 21–22 in Folland-Stein [11]. We
start with a function 𝜑 ∈ 𝐶∞

0 (𝔾) satisfying

0 ⩽ 𝜑 ⩽ 1, ∫
𝔾
𝜑𝑑𝔾 = 1, 𝜑(𝑥−1) = 𝜑(𝑥).

For 𝜀 > 0 we define
𝜑𝜀(𝑥) = 𝜀−𝑄𝜑(ℎ1/𝛿(𝑥)), 𝑥 ∈ 𝔾,

and, for a function 𝑓 ∈ 𝐿1𝑙𝑜𝑐(𝔾),

𝑓𝜀(𝑥) = (𝜑𝜀 ⋆ 𝑓)(𝑥) = ∫
𝔾
𝜑𝜀(𝑦)𝑓(𝑦−1 ⋅ 𝑥) 𝑑𝔾(𝑦) = ∫

𝔾
𝜑𝜀(𝑥 ⋅ 𝑦−1)𝑓(𝑦) 𝑑𝔾(𝑦).

Given a function 𝜑 in the previous conditions, we define, for every set𝐴 ⊂ 𝔾 and 𝜀 > 0,
the set 𝐴𝜀 as ℎ1/𝜀(supp(𝜑)) ⋅ 𝐴, where supp is the standard support of a function and, for
any pair of subsets𝐵, 𝐶 ⊆ 𝔾, itsMinkowski product𝐵⋅𝐶 is defined as {𝑏⋅𝑐 ∶ 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶},
where 𝑏 ⋅ 𝑐 is the product in 𝔾. We have the following properties

Proposition 2.1. LetΩ ⊆ 𝔾 be an open set.
1. supp(𝑓𝜀) ⊂ supp(𝑓)𝜀.
2. If 𝑓 ∈ 𝐿1𝑙𝑜𝑐(Ω) then 𝑓𝜀 ∈ 𝐶∞(Ω𝜀).
3. If 𝑓 ∈ 𝐶0(Ω) then 𝑓𝜀 converges to 𝑓 uniformly on compact subsets of Ω.
4. If 𝑓 ∈ 𝐿𝑝𝑙𝑜𝑐(Ω) for 1 ⩽ 𝑝 < ∞ then 𝑓𝜀 → 𝑓 in 𝐿𝑝𝑙𝑜𝑐(Ω).
5. For every 𝑓 ∈ 𝐿1(Ω) and 𝑔 ∈ 𝐿∞(Ω) we have

∫
𝔾
𝑓𝜀𝑔 𝑑𝔾 = ∫

𝔾
𝑓𝑔𝜀 𝑑𝔾.

6. 𝑋𝑓𝜀 = (𝑋𝑓)𝜀 for any 𝑓 ∈ 𝐶1(Ω) and each left-invariant vector field 𝑋 ∈ 𝒢.
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7. If 𝑓 ∈ Lip𝑙𝑜𝑐(Ω, || ⋅ ||𝐷) then 𝑋𝑓
𝜀 = (𝑋𝑓)𝜀 for almost everywhere 𝑥 ∈ Ω𝜀 and

∫
Ω′
|| − ∇ℎ𝑓𝜀||𝐾,∗ 𝑑𝔾 → ∫

Ω′
|| − ∇ℎ𝑓||𝐾,∗ 𝑑𝔾

on any bounded open setΩ′ ⊆ Ω.

Proof. The proof follows, for the most part, the classical Euclidean one which can be
found, for instance, in Theorem 1, page 123, of Evans-Gariepy [10].
Let us check the proof of 6, where the geometry of the Carnot group intervenes. Take

𝑧 ∈ 𝔾. We denote, as customary in the theory of smooth manifolds, the derivative of the
smooth function 𝑔 in the direction of 𝑋 at the point 𝑧 by 𝑋𝑧𝑔 or (𝑋𝑔)(𝑧). Then

𝑋𝑧𝑓𝜀 = ∫
𝔾
𝜑𝜀(𝑦) 𝑋𝑧ℎ𝑦 𝑑𝔾(𝑦),

where ℎ𝑦(𝑥) = 𝑓(𝑦−1 ⋅ 𝑥) = (𝑓 ∘ ℓ𝑦−1)(𝑥). As 𝑋 is a left-invariant vector field, we have
𝑋𝑧ℎ𝑦 = 𝑋𝑧(𝑓 ∘ ℓ𝑦−1) = [(𝑑ℓ𝑦−1)𝑧𝑋𝑧]𝑓 = 𝑋𝑦−1⋅𝑧𝑓, and so the last integral is equal to

∫
𝔾
𝜑𝜀(𝑦)(𝑋𝑓)(𝑦−1 ⋅ 𝑧) 𝑑𝔾(𝑦) = (𝑋𝑓)𝜀(𝑧),

as stated.
To check 7, we take a 𝐷-orthonormal basis 𝑋1,… , 𝑋𝑑 of the first layer. Then 𝑋𝑖𝑓 exists

almost everywhere for all 1 ⩽ 𝑖 ⩽ 𝑑 by Pansu-Rademacher Theorem [29]. By the same
argument as in item 6, we have 𝑋𝑓𝜀 = (𝑋𝑓)𝜀 almost everywhere for any 𝜀 > 0, and so

∫
Ω′
|||| − ∇ℎ𝑓𝜀||𝐾,∗ − || − ∇ℎ𝑓||𝐾,∗|| 𝑑𝔾 ⩽ 𝐶∫

Ω′
||∇ℎ𝑓𝜀 − ∇ℎ𝑓||𝐷 𝑑𝔾

⩽ 𝐶𝑚1/2 max
1⩽𝑖⩽𝑚

{∫
Ω′
||𝑋𝑖𝑓𝜀 − 𝑋𝑖𝑓|| 𝑑𝔾},

where 𝐶 is the constant in the inequality || ⋅ ||𝐾,∗ ⩽ 𝐶 || ⋅ ||𝐷. By 4, 𝑋𝑖𝑓𝜀 converges to 𝑋𝑖𝑓
in 𝐿1𝑙𝑜𝑐(Ω′) for all 1 ⩽ 1 ⩽ 𝑑. �

2.4. The sub-Finsler perimeter in a Carnot group. Let 𝐸 ⊆ 𝔾 be a measurable set,
|| ⋅ ||𝐾 the left-invariant norm associated to a convex body 𝐾 ⊂ 𝑉1 so that 0 ∈ int(𝐾), and
Ω ⊆ 𝔾 an open subset. Let us fix on 𝔾 a left-invariant Riemannian metric and let div
and 𝑑𝔾 be the divergence and the left-invariant Riemannian volume with respect to this
Riemannian metric. We say that 𝐸 has locally finite 𝐾-perimeter inΩ if for any relatively
compact open set Ω′ ⊆ Ω, the quantity

(2.11) 𝑃𝐾(𝐸,Ω′) = sup {∫
𝐸
div(𝑈) 𝑑𝔾 ∶ 𝑈 ∈ 𝔛10,𝐻(Ω′), ||𝑈||𝐾,∞ ⩽ 1}.

called the 𝐾-perimeter of 𝐸 in Ω′, is finite. The quantity 𝑃𝐾(𝐸,Ω′) is called the (relative)
perimeter of 𝐸 in Ω′. In this expression, 𝔛10,𝐻(Ω′) is the space of horizontal vector fields
of class 𝐶1 with compact support in Ω′, and ||𝑈||𝐾,∞ = sup𝑝∈Ω′ ||𝑈𝑝||𝐾. The set 𝐸 has
finite 𝐾-perimeter in an arbitrary open set Ω′ if (2.11) is finite.
The definition of perimeter is a particular case of the notion of function of bounded

variation. Given an open subsetΩ ⊆ 𝔾, we say that a function 𝑓 ∈ 𝐿1𝑙𝑜𝑐(Ω) is of bounded
local variation in Ω if for all relatively compact open subsets Ω′ ⊆ Ω the quantity

(2.12) var𝐾(𝑓,Ω′) = sup {∫
Ω
𝑓 div(𝑈) 𝑑𝔾 ∶ 𝑈 ∈ 𝔛10,𝐻(Ω′), ||𝑈||𝐾,∞ ⩽ 1},
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called the total variation of 𝑓 inΩ′, is finite. If 𝐸 ⊆ 𝔾 ismeasurable then the characteristic
function 𝜒𝐸 belongs to 𝐿1𝑙𝑜𝑐(𝔾) and we have

𝑃𝐾(𝐸,Ω′) = var𝐾(𝜒𝐸, Ω′),

for any bounded open set Ω′. The function 𝑓 ∈ 𝐿1(Ω′) has 𝐾-bounded variation in Ω′ if
(2.12) is finite.
For any convex body 𝐾 and 𝜙 ∈ 𝐶∞(Ω), we consider a left-invariant scalar product

⟨⋅, ⋅⟩ onℋ. From the definition of the dual norm || ⋅ ||𝐾,∗, for any relatively compact open
set Ω′ ⊆ Ω and 𝑈 ∈ ℋ1

0(Ω′) with ||𝑈||𝐾,∞ ⩽ 1, we obtain ⟨−∇ℎ𝜙,𝑈⟩ ⩽ || − ∇ℎ𝜙||𝐾,∗,
and so

(2.13) var𝐾(𝜙,Ω′) ⩽ ∫
Ω′
𝜙 div(𝑈) 𝑑𝔾 = ∫

Ω′
⟨−∇ℎ𝜙,𝑈⟩ 𝑑𝔾 ⩽ ∫

Ω′
|| − ∇ℎ𝜙||𝐾,∗ 𝑑𝔾.

If 𝐾 is of class 𝐶2
+ we can work with the 𝐶1 vector field 𝑈 = 𝜋𝐾(−∇ℎ𝜙) as in the

classical Euclidean case, approximating the vector field by smooth vector fields when
𝜋𝐾(−∇ℎ𝜙) ≠ 0, to conclude

(2.14) var𝐾(𝜙,Ω′) = ∫
Ω′
|| − ∇ℎ𝜙||𝐾,∗ 𝑑𝔾.

In the general case, when 𝐾 is an arbitrary convex set, we approximate it in Hausdorff
distance by a sequence of convex sets {𝐾𝑖}𝑖∈ℕ of class 𝐶2

+ (e.g., Theorem 2.7.1 in [33]).
For any vector field 𝑈 ≠ 0 with compact support we have

∫
Ω′
|| − ∇ℎ𝜙||𝐾,∗ 𝑑𝔾 = lim

𝑖→∞
∫
Ω′
|| − ∇ℎ𝜙||𝐾𝑖,∗ 𝑑𝔾

= lim
𝑖→∞

var𝐾𝑖(𝜙,Ω
′)

⩽ lim
𝑖→∞

∫
Ω′
𝜙 div ( 𝑈

||𝑈||𝐾𝑖,∞
) 𝑑𝔾

⩽ var𝐾(𝜙,Ω′).

This inequality, together with (2.13), implies the validity of the formula (2.14) for any
smooth function 𝜙 ∈ 𝐶∞(Ω), a relatively compact open subset Ω′ ⊆ Ω, and an arbitrary
convex body 𝐾 with 0 ∈ int(𝐾). So we have proven

Proposition 2.2. Let (𝔾, || ⋅ ||𝐾) be a Carnot group with a sub-Finsler norm, andΩ ⊆ 𝔾
an open set. Then the total variation of a function 𝜙 ∈ 𝐶∞(Ω) is any relatively compact
open setΩ′ ⊆ Ω is given by

(2.15) var𝐾(𝜙,Ω′) = ∫
Ω′
|| − ∇ℎ𝜙||𝐾,∗ 𝑑𝔾.

Remark 2.3. If ⟨⋅, ⋅⟩ is a scalar product in ℋ with unit ball 𝐷 then we have a sub-
Riemannian structure on 𝔾. Assuming that 𝜙 is a 𝐷-Lipschitz function, then ∇ℎ𝜙
exists almost everywhere in 𝔾 by Pansu-Rademacher’s Theorem [29] and formula (2.15)
still holds for 𝜙.

It is not difficult to prove that 𝐵𝐾(𝑥, 𝑟) has finite 𝐾-perimeter and to estimate it from
above. Let 𝑈 be a 𝐶1 horizontal vector field in 𝔾 with compact support satisfying
||𝑈||𝐾,∞ ⩽ 1, and {𝜑𝑡}𝑡∈ℝ the associated one-parameter group of diffeomorphisms.
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For fixed 𝑧 ∈ 𝔾, let 𝛾𝑧(𝑡) = 𝜑𝑡(𝑧), 𝑡 ∈ ℝ, be the integral curve of 𝑈 with initial condition
𝛾𝑧(0) = 𝑧. If 𝑧 ∈ 𝐵𝐾(𝑥, 𝑟) then

𝑑𝐾(𝑧, 𝜑𝑡(𝑧)) ⩽ ∫
𝑡

0
||𝛾′𝑧(𝑡)||𝐾 𝑑𝑡 = ∫

𝑡

0
||𝑈𝛾𝑧(𝑡)||𝐾 𝑑𝑡 ⩽ 𝑡,

and so
𝑑𝐾(𝑥, 𝜑𝑡(𝑧)) ⩽ 𝑑𝐾(𝑥, 𝑧) + 𝑑𝐾(𝑧, 𝜑𝑡(𝑧)) ⩽ 𝑟 + 𝑡.

This implies 𝜑𝑡(𝐵𝐾(𝑥, 𝑟)) ⊆ 𝐵𝐾(𝑥, 𝑟 + 𝑡) for all 𝑡 ∈ ℝ. Hence, letting

𝜔𝐾 = |𝐵𝐾(0, 1)|,

we have, by the first variation of volume, Theorem 1.11 in [31],

∫
𝐵𝐾(𝑥,𝑟)

div(𝑈) 𝑑𝔾 = 𝑑
𝑑𝑡
|||𝑡=0

|𝜑𝑡(𝐵𝐾(𝑥, 𝑟 + 𝑡))|

= lim
𝑡→0

|𝜑𝑡(𝐵𝐾(𝑥, 𝑡))| − |𝐵𝐾(𝑥, 𝑟)|
𝑡

⩽ lim
𝑡→0

|𝐵𝐾(𝑥, 𝑟 + 𝑡)| − |𝐵𝐾(𝑥, 𝑟)|
𝑡

= 𝜔𝐾 lim𝑡→0

(𝑟 + 𝑡)𝑄 − 𝑟𝑄
𝑡 = 𝑄𝜔𝐾 𝑟𝑄−1.

Taking the supremumover all vector fields𝑈with compact support in𝔾 and ||𝑈||𝐾,∞ ⩽ 1
we have

(2.16) 𝑃𝐾(𝐵𝐾(𝑥, 𝑟)) ⩽ 𝑄𝜔𝐾 𝑟𝑄−1

for all 𝑥 ∈ 𝔾 and 𝑟 > 0.

The following properties of the perimeter are quite standard. We assume Ω to be a
bounded open set, and 𝐸, 𝐹measurable sets.

1. 𝑃𝐾(𝐸,Ω) = 𝑃𝐾(𝐹,Ω) whenever 𝐸Δ𝐹 = (𝐸 ∪ 𝐹) ∖ (𝐸 ∩ 𝐹) has measure 0.
2. 𝑃𝐾(𝐸 ∪ 𝐹,Ω) + 𝑃𝐾(𝐸 ∩ 𝐹,Ω) ⩽ 𝑃𝐾(𝐸,Ω) + 𝑃𝐾(𝐹,Ω),
3. The function 𝐸 ↦ 𝑃𝐾(𝐸,Ω) is lower semicontinuous with respect to the 𝐿1𝑙𝑜𝑐(Ω)
topology.

4. The set function Ω → 𝑃𝐾(𝐸,Ω) is the restriction to the open subsets of a finite
Borel measure 𝑃𝐾(𝐸, ⋅) defined by

𝑃𝐾(𝐸, 𝐴) = inf {𝑃𝐾(𝐸,Ω) ∶ 𝐴 ⊂ Ω,Ω open}.

5. If 𝐷 is the unit ball of a sub-Riemannian structure on 𝔾, 𝑥 ∈ 𝔾 and 𝜌 > 0, then
𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑥, 𝜌)) ⩽ 𝑃𝐾(𝐸, 𝐵𝐷(𝑥, 𝜌)) + 𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑥, 𝜌), 𝜕𝐵𝐷(𝑥, 𝜌)),

𝑃𝐾(𝐸 ∖ 𝐵𝐷(𝑥, 𝜌)) ⩽ 𝑃𝐾(𝐸, 𝔾 ∖ 𝐵𝐷(𝑥, 𝜌)) + 𝑃𝐾(𝐸 ∖ 𝐵𝐷(𝑥, 𝜌), 𝜕𝐵𝐷(𝑥, 𝜌)).
(2.17)

Remark 2.4. We observe that the classical property 𝑃𝐾(𝐸,Ω) = 𝑃𝐾(𝔾∖𝐸,Ω) does not hold
here since the norm || ⋅ ||𝐾 is not symmetric. If the boundary of 𝐸 is a 𝐶1 hypersurface,
then there holds

𝑃𝐾(𝐸,Ω) = ∫
𝜕𝐸∩Ω

||𝑁ℎ||𝐾,∗ 𝑑𝑆,

where 𝑁ℎ is the orthogonal projection toℋ of inner unit normal 𝑁 to 𝜕𝐸 and 𝑑𝑆 is the
Riemannian area element in 𝜕𝐸, both with respect to a fixed left-invariant Riemannian
metric on 𝔾. This formula is proven in two steps, first considering the case when 𝐾
is of class 𝐶2

+ extending the vector field 𝜋𝐾(𝑁ℎ), and then approximating a general
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convex set by sets of class 𝐶2
+. If || ⋅ ||𝐾 is asymmetric then so it is || ⋅ ||𝐾,∗ and hence

𝑃𝐾(𝐸,Ω) ≠ 𝑃𝐾(𝔾 ∖ 𝐸,Ω) in general.

Theorem 2.5 (Approximations by smooth functions). LetΩ ⊂ 𝔾 an open set. Then for
any function 𝑢 ∈ 𝐵𝑉𝐾(Ω) of bounded variation in Ω, there exists a sequence {𝑢𝑖}𝑖∈ℕ in
𝐶∞(Ω) such that

1. lim𝑖→∞ ||𝑢𝑖 − 𝑢||𝐿1(Ω) = 0,
2. lim𝑖→∞ var𝐾(𝑢𝑖, Ω) = var𝐾(𝑢,Ω).

Proof. As in Theorem 1.14 in [16]. One can also use the classical proof from Theorem 3.9
in [2] together with the group convolution. �

Remark 2.6. Should we consider a different left-invariant Riemannian metric on 𝔾 we
would obtain the same value for the perimeter up to some constant independent of the
sets. We simply observe that 𝑑𝔾 is, up to a constant, the Haar measure of 𝔾, and that the
integral

∫
𝐸
div(𝑈) 𝑑𝔾

is the derivative at 𝑠 = 0 of theHaarmeasure of 𝜑𝑠(𝐸), where {𝜑𝑠}𝑠∈ℝ is the one-parameter
group of diffeomorphisms associated to the vector field 𝑈 (e.g., Theorem 1.11 in [31]).

Remark 2.7. Let us take a sub-Riemannian metric on 𝑉1. We compute div(𝑈) explic-
itly. Choose an orthonormal basis 𝑋1,… , 𝑋𝑑 in 𝑉1 and extend it to an orthonormal
basis 𝑋1,… , 𝑋𝑛 in 𝒢 adapted to the layers. Let ∇ be the Levi-Civita connection of the
Riemannian metric. A 𝐶1 horizontal vector field 𝑈 can be expressed as

𝑈 =
𝑑
∑
𝑖=1

𝑓𝑖 𝑋𝑖,

for some 𝐶1 functions 𝑓𝑖, and so

div(𝑈) = div (
𝑑
∑
𝑖=1

𝑓𝑖 𝑋𝑖) =
𝑑
∑
𝑖=1

𝑋𝑖𝑓𝑖 + 𝑓𝑖 div(𝑋𝑖).

For 𝑖 = 1,… , 𝑛 we have

div(𝑋𝑖) =
𝑛
∑
𝑗=1

⟨∇𝑋𝑗𝑋𝑖, 𝑋𝑗⟩ =
𝑛
∑
𝑗=1

⟨∇𝑋𝑖𝑋𝑗, 𝑋𝑗⟩ +
𝑛
∑
𝑗=1

⟨[𝑋𝑗, 𝑋𝑖], 𝑋𝑗⟩ = 0,

since ⟨∇𝑋𝑖𝑋𝑗, 𝑋𝑗⟩ = 0 and, in case 𝑋𝑖 ∈ 𝑉𝑠, 𝑋𝑗 ∈ 𝑉𝑟, the vector fields 𝑋𝑗 and [𝑋𝑗, 𝑋𝑖] lie in
the different strata 𝑉𝑟, 𝑉𝑠+𝑟 and they are orthogonal. So we have

∫
𝐸
div(𝑈) 𝑑𝔾 = ∫

𝐸
(

𝑑
∑
𝑖=1

𝑋𝑖𝑓𝑖) 𝑑𝔾.

This expression implies that our definition of perimeter 𝑃𝐷, with𝐷 the closed unit ball in
ℋ associated to the sub-Riemannianmetric, coincides with the classical sub-Riemannian
perimeter in the Heisenberg group considered in [13].

If 𝐸 ⊂ 𝔾 is a set of locally finite 𝐾-perimeter in Ω then, for any relatively compact
subset Ω′ ⊆ Ω and any vector field 𝑈 ∈ 𝔛10,𝐻(ℎ𝜆(Ω′)) we have

∫
ℎ𝜆(Ω′)

div(𝑈) 𝑑𝔾 = 𝜆𝑄∫
Ω′
(div(𝑈) ∘ ℎ𝜆) 𝑑𝔾.



ISOPERIMETRIC SETS IN CARNOT GROUPS WITH A SUB-FINSLER STRUCTURE 11

If 𝑈 = ∑𝑑
𝑖=1 𝑓𝑖𝑋𝑖, with 𝑋1,… , 𝑋𝑑 orthonormal for some scalar product onℋ then

div(𝑈) =
𝑑
∑
𝑖=1

𝑋𝑖𝑓𝑖.

So we have

div(𝑈) ∘ ℎ𝜆 = 𝜆−1 div (
𝑑
∑
𝑖=1
(𝑓𝑖 ∘ ℎ𝜆) 𝑋𝑖).

Letting 𝑈𝜆 = ∑𝑑
𝑖=1(𝑓𝑖 ∘ ℎ𝜆) 𝑋𝑖 we get

∫
ℎ𝜆(Ω′)

div(𝑈) 𝑑𝔾 = 𝜆𝑄−1∫
Ω′
div(𝑈𝜆) 𝑑𝔾.

Since ||𝑈||𝐾,∞ = ||𝑈𝜆||𝐾,∞ we finally obtain

(2.18) 𝑃𝐾(ℎ𝜆(𝐸), ℎ𝜆(Ω′)) = 𝜆𝑄−1𝑃𝐾(𝐸,Ω′).

Remark 2.8. When 𝐾 is a centrally symmetric convex body (e.g., 𝐾 = −𝐾) containing 0
in its interior, || ⋅ ||𝐾 induces a truly distance with the symmetry property. In such case,
the arguments in §5.3 of Miranda [24] imply that the perimeter in the associated metric
space coincides with the 𝐾-perimeter defined here.

Remark 2.9. The sub-Riemannian perimeter for systems of vector fields satisfying the
Hörmander condition was introduced by Garofalo and Nhieu in their remarkable paper
[16]. Let us recall their definition. One considers in ℝ𝑛 a system 𝑋 = {𝑋1,… , 𝑋𝑑} of
vector fields

𝑋𝑗 =
𝑛
∑
𝑖=1

𝑏𝑗𝑖
𝜕
𝜕𝑥𝑖

, 𝑗 = 1,… , 𝑑,

with locally Lipschitz continuous coefficients 𝑏𝑗𝑖 satisfying Hörmander condition (e.g.,
Lie brackets of 𝑋1,… , 𝑋𝑑 generate the tangent space to ℝ𝑛). Let

𝑋∗
𝑗 = −

𝑛
∑
𝑖=1

𝜕
𝜕𝑥𝑖

(𝑏𝑗𝑖 ⋅), 𝑗 = 1,… , 𝑑,

denote the formal adjoint of 𝑋𝑗. Then the 𝑋-perimeter of a measurable set 𝐸 ⊂ ℝ𝑚 inside
an open set Ω ⊆ ℝ𝑛 is defined as

𝑃𝑋(𝐸,Ω) = sup {∫
𝐸
(

𝑑
∑
𝑗=1

𝑋∗
𝑗 𝜙𝑗) 𝑑ℒ𝑚 ∶ 𝜙 ∈ ℱ(Ω)},

whereℱ(Ω) = {𝜙 = (𝜙1,… , 𝜙𝑑) ∈ 𝐶1
0(Ω,ℝ𝑑) ∶ ||𝜙||∞ = sup𝑥∈Ω∑

𝑑
𝑗=1 𝜙

2
𝑗 ⩽ 1}.

Let us consider now a Carnot group𝔾with a Riemannianmetric in the 𝑑-dimensional
horizontal distributionℋ, which we extend to a Riemannian metric in 𝔾 so that the
layers are orthogonal. We take an orthonormal basis 𝑋1,… , 𝑋𝑛 of 𝒢 adapted to the layers.
We can express the vector fields 𝑋1,… , 𝑋𝑑 in canonical coordinates of the first kind using
formula (2.6), which immediately implies

𝑋∗
𝑗 = −𝑋𝑗, 𝑗 = 1,… , 𝑑.

Hence the 𝑋-perimeter 𝑃𝑋 and the sub-Riemannian perimeter 𝑃𝐷, associated to the
closed unit ball 𝐷 ⊂ ℋ, coincide.
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Let𝐾, 𝐾′ bounded convex bodies containing 0 in its interior. Let𝐸 ⊂ 𝔾 be ameasurable
set, Ω ⊂ 𝔾 an open set. Take 𝑈 ∈ 𝔛10,𝐻(Ω) a horizontal vector field with ||𝑈||𝐾,∞ ⩽ 1.
Hence ||𝛼𝑈||𝐾′,∞ ⩽ ||𝑈||𝐾,∞ ⩽ 1 by (2.10) and

∫
𝐸
div(𝑈) 𝑑𝔾 = 𝛼−1∫

𝐸
div(𝛼𝑈) 𝑑𝔾 ⩽ 𝛼−1𝑃𝐾′(𝐸,Ω),

Taking supremum over the set 𝔛10,𝐻(Ω) of 𝐶1 horizontal vector fields with compact
support in Ω and || ⋅ ||𝐾 ⩽ 1, we get 𝑃𝐾(𝐸,Ω) ⩽ 𝛼−1𝑃𝐾′(𝐸,Ω). In a similar way we get
the inequality 𝛽−1𝑃𝐾′(𝐸,Ω) ⩽ 𝑃𝐾(𝐸,Ω), so that we have

(2.19) 𝛽−1𝑃𝐾′(𝐸,Ω) ⩽ 𝑃𝐾(𝐸,Ω) ⩽ 𝛼−1𝑃𝐾′(𝐸,Ω).

As a consequence, 𝐸 has locally finite 𝐾-perimeter if and only if it has locally finite
𝐾′-perimeter.
Hence, fixing a sub-Riemannian metric on ℋ with unit ball 𝐷, there follows the

existence of a constant 𝐶𝐾 > 0 such that

(2.20) 𝐶−1
𝐾 𝑃𝐷 ⩽ 𝑃𝐾 ⩽ 𝐶𝐾𝑃𝐷.

As a consequence of the previous discussions, we now prove three important results, a
compactness theorem for sets of finite 𝐾-perimeter, a version of Ambrosio’s localization
lemma, and a version of the local isoperimetric inequality.

Theorem 2.10 (Compactness). LetΩ ⊆ 𝔾 be an open set in a Carnot group 𝔾 equipped
with a sub-Finsler norm || ⋅ ||𝐾, and {𝐸𝑖}𝑖∈ℕ a sequence of sets of uniformly bounded
volume and uniformly bounded 𝐾-perimeter 𝑃𝐾(𝐸𝑖, Ω′) in any relatively compact subset
Ω′
𝑖 ⊆ Ω. Then there is a set of locally finite𝐾-perimeter 𝐸 ⊂ 𝔾 and a subsequence of {𝐸𝑖}𝑖∈ℕ

converging in 𝐿1𝑙𝑜𝑐(Ω) to 𝐸.

Proof. We consider a sub-Riemannian metric inℋ with unit ball 𝐷. Since 𝑃𝐷 ⩽ 𝐶𝐾𝑃𝐾
from (2.20), the perimeters 𝑃𝐷(𝐸𝑖, Ω′) are uniformly bounded on every relatively compact
set Ω′ ⊆ Ω. Hence the result follows from Remark 2.8 and Theorem 3.7 in Miranda [24]
and the fact that 𝑃𝐾 ⩽ 𝐶𝐾𝑃𝐷. �

In the statement of the next two theorems, recall that 𝐷 is the unit ball associated
to an scalar product inℋ. Hence || ⋅ ||𝐷 induces a distance with associated open balls
𝐵𝐷(𝑥, 𝑟) centered at 𝑥 ∈ 𝔾 of radius 𝑟 > 0.

Theorem 2.11 (Localization Lemma). Let 𝐸 ⊂ 𝔾 be a set of finite 𝐾-perimeter in 𝔾 and
𝑥 ∈ 𝔾, and let 𝐷 be the unit ball for a fixed sub-Riemannian metric onℋ. Then, for almost
every 𝜌 > 0, the sets 𝐸 ∩ 𝐵𝐷(𝑥, 𝜌) and 𝐸 ∖ 𝐵𝐷(𝑥, 𝜌) have finite perimeter in 𝔾 and we have

(2.21) 𝑃𝐾(𝐸 ∖ 𝐵𝐷(𝑥, 𝜌), 𝜕𝐵𝐷(𝑥, 𝜌) ⩽ 𝐶𝐾
𝑑
𝑑𝑟
|||𝑟=𝜌

𝑚𝐸(𝑥, 𝑟),

where𝑚𝐸(𝑥, 𝑟) = |𝐸 ∩ 𝐵𝐷(𝑥, 𝑟)| and 𝐶𝐾 is the constant in (2.20).

Proof. By Remark 2.8 and Ambrosio’s Localization Lemma, Lemma 3.5 in [1], we have

𝑃𝐷(𝐸 ∖ 𝐵𝐷(𝑥, 𝜌), 𝜕𝐵𝐷(𝑥, 𝜌)) ⩽
𝑑
𝑑𝑟
|||𝑟=𝜌

𝑚𝐸(𝑥, 𝑟).

for almost every 𝜌 > 0. Inequality (2.21) then follows from (2.20). �
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Theorem 2.12 (Local isoperimetric inequality). Let 𝐸 ⊂ 𝔾 be a set of finite 𝐾-perimeter,
and 𝐷 the unit disk for a sub-Riemannian metric onℋ. Then, for any 𝑥 ∈ 𝔾 and 𝑟 > 0,
we have

(2.22) 𝑃𝐾(𝐸, 𝐵𝐷(𝑥, 𝑟)) ⩾ 𝐶𝑃min {|𝐸 ∩ 𝐵𝐷(𝑥, 𝑟)|, |𝐵𝐷(𝑥, 𝑟) ∖ 𝐸|}
(𝑄−1)/𝑄,

where the positive constant 𝐶𝑃 only depends on 𝐷 and 𝐾.

Proof. We choose a 𝐷-orthonormal frame 𝑋1,… , 𝑋𝑑 of ℋ and consider the associated
Carnot-Carathéodory distance 𝑑𝐷. Let 𝐶𝐾 > 0 be the constant in (2.20). By Remark 2.9,
Theorem 1.18 in [16] and inequality 𝑃𝐾(𝐸, ⋅) ⩾ 𝐶−1

𝐾 𝑃𝐷(𝐸, ⋅) we have

𝑃𝐾(𝐸, 𝐵𝐷(𝑥, 𝑟)) ⩾ 𝐶−1
𝐾 𝑃𝐷(𝐸, 𝐵𝐷(𝑥, 𝑟)) ⩾ 𝐶−1

𝐾 𝐶′ {|𝐸 ∩ 𝐵𝐷(𝑥, 𝑟)|, |𝐵𝐷(𝑥, 𝑟) ∖ 𝐸|}
(𝑄−1)/𝑄,

where 𝐶′ > 0 only depends on 𝐾 and 𝐷. Hence 𝐶𝑃 = 𝐶−1
𝐾 𝐶′ only depends on 𝐾 and

𝐷. �

2.5. The isoperimetric profile.

Definition 2.13. Let 𝔾 be a Carnot group endowed with a sub-Finsler norm || ⋅ ||𝐾. The
isoperimetric profile 𝐼𝐾 of (𝔾, || ⋅ ||𝐾) is the function 𝐼𝐾 ∶ (0,∞) → ℝ+ defined by

𝐼𝐾(𝑣) = inf {𝑃𝐾(𝐸) ∶ 𝐸 ⊂ 𝔾, |𝐸| = 𝑣}.

Definition 2.14. Ameasurable set 𝐸 ⊂ 𝔾 is 𝐾-isoperimetric if 𝑃𝐾(𝐸) = 𝐼𝐾(|𝐸|).

If a set 𝐸 is 𝐾-isoperimetric then we have

𝑃𝐾(𝐸) ⩾ 𝑃𝐾(𝐹)

for any other measurable set 𝐹 ⊂ 𝔾 such that |𝐸| = |𝐹|.

Definition 2.15. A set of finite 𝐾-perimeter 𝐸 in 𝔾 is decomposable if there exists two
disjoint sets 𝐹1, 𝐹2 ⊂ 𝔾 with positive volume and finite 𝐾-perimeter such that 𝐸 = 𝐹1 ∪ 𝐹2
and 𝑃𝐾(𝐸) = 𝑃𝐾(𝐹1) + 𝑃𝐾(𝐹1). We say that 𝐸 is indecomposable if it is not decomposable.

One of our main results in these notes is

Theorem 2.16. Let 𝔾 be a Carnot group endowed with a sub-Finsler norm || ⋅ ||𝐾. Then
𝐾-isoperimetric sets exist on 𝔾 for any positive volume. Moreover, the isoperimetric profile
𝐼𝐾 is strictly concave and any isoperimetric set is essentially bounded and undecomposable.

The behaviour of the perimeter and volume with respect to the intrinsic dilations of
𝔾 immediately implies that the 𝐾-isoperimetric profile of a Carnot group satisfies

(2.23) 𝐼𝐾(𝑣) = 𝐶 𝑣(𝑄−1)/𝑄,

where 𝐶 ⩾ 0 is a constant and 𝑄 is the homogeneous dimension of 𝔾. The fact that
the constant 𝐶 is indeed strictly positive will be obtained in the proof of Theorem 2.16,
where we ensure the existence of isoperimetric sets.

3. Auxiliary results

In the proof of the main existence result, Theorem 2.16, we shall need some prelimi-
nary results and definitions. In this section (𝔾, ||⋅||𝐾) is a Carnot groupwith a sub-Finsler
structure and 𝐷 is the closed unit disk associated to a fixed sub-Riemannian metric on
ℋ.
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3.1. Concentration of area. Two important consequences of the local isoperimetric
inequality (2.22) are the following

Corollary 3.1. Let 𝐸 ⊂ 𝔾 be a set with positive finite 𝐾-perimeter and positive volume. Let
𝑚 ∈ (0, |𝐵𝐷(0, 1)|/2) such that |𝐸 ∩ 𝐵𝐷(𝑝, 1)| < 𝑚 for all 𝑝 ∈ 𝔾. Then there is a constant
𝐶 > 0, depending only on 𝐾, 𝐷 and 𝑄, such that

(3.1) 𝑃𝐾(𝐸) ⩾ ( 𝐶𝑚)
1/𝑄

|𝐸|.

Proof. We consider a maximal family 𝒜 of points in 𝔾 such that 𝑑𝐷(𝑝, 𝑝′) ⩾ 1/2 for all
𝑝 ≠ 𝑝′ in 𝒜, and |𝐸 ∩ 𝐵𝐷(𝑝, 1/2)| > 0 for all 𝑝 ∈ 𝒜 (e.g, Lemma B.7.1 in [20]). Then

|𝐸 ∖ ⋃
𝑝∈𝒜

𝐵𝐷(𝑝, 1)| = 0.

Otherwise we could find a point 𝑞 of density 1 in 𝐸∖⋃𝑝∈𝒜 𝐵𝐷(𝑝, 1) and the family𝒜∪{𝑞}
would deny the maximality of 𝒜. So we have

|𝐸| = |𝐸 ∩ ( ⋃
𝑝∈𝒜

𝐵𝐷(𝑝, 1))|

⩽ ∑
𝑝∈𝒜

|𝐸 ∩ 𝐵𝐷(𝑝, 1)|

= ∑
𝑝∈𝒜

|𝐸 ∩ 𝐵𝐷(𝑝, 1)|(𝑄−1)/𝑄|𝐸 ∩ 𝐵𝐷(𝑝, 1)|1/𝑄

⩽ 𝐶−1
𝑃 𝑚1/𝑄 ∑

𝑝∈𝒜
𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑝, 1)),

where the last inequality follows since |𝐸∩𝐵𝐷(𝑝, 1)| < 𝑚 ⩽ |𝐵𝐷(0, 1)|/2 for all 𝑝 ∈ 𝔾 and
the local isoperimetric inequality (2.22) in 𝔾. The constant 𝐶𝑃 > 0 is the one appearing
in (2.22), which only depends on 𝐾 and 𝐷.
To complete the proof we only need to control the overlap of the balls 𝐵𝐷(𝑝, 1) when

𝑝 ∈ 𝒜. Let 𝑧 ∈ ⋃𝑝∈𝒜 𝐵𝐷(𝑝, 1) and let

𝒜(𝑧) = {𝑝 ∈ 𝒜 ∶ 𝑑𝐷(𝑧, 𝑝) < 1}.

The balls 𝐵𝐷(𝑝, 1/4), 𝑝 ∈ 𝒜, are disjoint because of condition 𝑑𝐷(𝑝, 𝑝′) ⩾ 1/2 for all
distinct 𝑝, 𝑝′ ∈ 𝒜. Since 𝐵𝐷(𝑝, 1/2) ⊂ 𝐵𝐷(𝑧, 1 + 1/2) for all 𝑝 ∈ 𝒜(𝑧) we get

#𝒜(𝑧) 𝜔𝐷 (
1
2)

𝑄 ⩽ 𝜔𝐷 (
3
2)

𝑄,

and so #𝒜(𝑧) ⩽ 3𝑄. Hence

|𝐸| ⩽ 3𝑄 𝐶−1
𝑃 𝑚1/𝑄 𝑃𝐾(𝐸),

as claimed. �

Corollary 3.2 (Isoperimetric inequality for small volumes). There exists 𝑣0 > 0 and a
positive 𝐶𝐼 > 0, only depending on 𝐾, 𝐷 and 𝑄, such that

𝑃𝐾(𝐸) ⩾ 𝐶𝐼 |𝐸|(𝑄−1)/𝑄

for any measurable set of volume 0 < |𝐸| < 𝑣0.
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Proof. Let 𝑣0 = |𝐵𝐷(0, 1)|/2 and let 𝐸 ⊂ 𝔾 a measurable set of volume |𝐸| < 𝑣0. Consider
again a maximal family 𝒜 of points in 𝔾 such that 𝑑𝐷(𝑝, 𝑝′) ⩾ 1/2 for all distinct
𝑝, 𝑝′ ∈ 𝒜 and |𝐸 ∩ 𝐵𝐷(𝑝, 1)| > 0 for all 𝑝 ∈ 𝒜.
As in the proof of Corollary 3.1, we can bound the overlapping of the balls 𝐵𝐷(𝑝, 1)

from above by 3𝑄, so that, by the local isoperimetric inequality (2.22) we get

3𝑄𝑃𝐾(𝐸) ⩾ ∑
𝑝∈𝒜

𝑃𝐾(𝐸, 𝐵𝐷(𝑝, 1)) ⩾ 𝐶𝑃 ∑
𝑝∈𝒜

|𝐸 ∩ 𝐵𝐷(𝑝, 1)|(𝑄−1)/𝑄 ⩾ 𝐶𝑃 |𝐸|(𝑄−1)/𝑄.

The last inequality follows, as in the proof of Corollary 3.1, since the measure of the set
𝐸 ∖⋃𝑝∈𝒜 𝐵𝐷(𝑝, 1) is equal to 0. To complete the proof we simply take 𝐶𝐼 = 𝐶𝑃/3𝑄. �

3.2. Boundedness of isoperimetric sets. We start this section with a classical result.
See §4.4.2 in [31] and the references therein.

Theorem 3.3. Let 𝐸 ⊂ 𝔾 be a 𝐾-isoperimetric set. Then 𝐸 is essentially bounded.

Proof. Let 𝑣 = |𝐸|. Assume that 𝐸 is not bounded. This means that the decreasing
function𝑚(𝑟) = |𝐸 ∖ 𝐵𝐷(0, 𝑟)| is positive for all 𝑟 > 0. For every 𝑟 > 0 we consider the set

𝐸(𝑟) = 𝐸 ∩ 𝐵𝐷(0, 𝑟),

whichhas finite𝐾-perimeter in𝔾, and the intrinsic dilation of ratio𝜆(𝑟) so that |𝜆(𝑟)𝐸(𝑟)| =
|𝐸|. This implies

𝜆(𝑟)𝑄 =
|𝐸|
|𝐸(𝑟)|

= 𝑣
𝑣 − 𝑚(𝑟)

.

Since 𝐸 is isoperimetric we have

(3.2) 𝑃𝐾(𝐸) ⩽ 𝑃𝐾(𝜆(𝑟)𝐸(𝑟)).

As 𝐸 has finite volume, we have 𝑚(𝑟) → 0 when 𝑟 → ∞. By standard properties of
sets of finite perimeter, (2.17) and (2.21), we get

𝜆(𝑟)−(𝑄−1)𝑃𝐾(𝜆(𝑟)𝐸(𝑟)) ⩽ 𝑃𝐾(𝐸) − 𝑃𝐾(𝐸 ∖ 𝐵𝐷(0, 𝑟)) − 2𝐶𝐾𝑚′(𝑟)

for almost everywhere 𝑟 > 0. From this inequality, the isoperimetric inequality for small
volumes applied to 𝐸(𝑟) and (3.2) we get

−2𝐶𝐾𝑚′(𝑟) ⩾ 𝐶𝐼𝑚(𝑟)(𝑄−1)/𝑄 − 𝑃𝐾(𝐸)(1 − (𝑣 − 𝑚(𝑟)
𝑣 )

(𝑄−1)/𝑄
).

When𝑚(𝑟) is small enough, there is a positive constant𝐶 > 0 such that the last summand
is bigger than or equal to −𝐶𝑚(𝑟). Hence we get

−2𝐶𝐾𝑚′(𝑟) ⩾ 𝐶𝐼𝑚(𝑟)(𝑄−1)/𝑄 − 𝐶𝑚(𝑟) = 𝐶𝐼𝑚(𝑟)(𝑄−1)/𝑄(1 −
𝐶
𝐶𝐼

𝑚(𝑟)1/𝑄)

⩾ 𝐶𝐼
2 𝑚(𝑟)(𝑄−1)/𝑄,

for 𝑟 > 0 large enough. Hence, as𝑚(𝑟) > 0 for all 𝑟 > 0 we have, for almost everywhere
𝑟 > 0,

−(𝑚(𝑟)1/𝑄)′ = 𝑄−1𝑚(𝑟)(1−𝑄)/𝑄𝑚′(𝑟) ⩾ 𝑄−1 𝐶𝐼
2𝐶𝐾

= 𝐶 > 0

and, as𝑚(𝑟)1/𝑄 is a decreasing function, we have, for 𝑎 < 𝑏 large enough

−(𝑚(𝑏)1/𝑄 −𝑚(𝑎)1/𝑄) ⩾ −∫
𝑏

𝑎
(𝑚(𝑟)1/𝑄)′𝑑𝑟 ⩾ 𝐶(𝑏 − 𝑎).
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This forces𝑚(𝑏) to be negative for 𝑏 large enough, which provides a contradiction. �

3.3. Behaviour of minimizing sequences. In this section we define minimizing
sequences for given volume and prove some of their main properties. When working
with an isoperimetric set 𝐸, we often make some geometric construction removing
or adding some small volume from 𝐸 to obtain a new set 𝐹. In order to compare the
perimeters of 𝐸 and 𝐹 using the isoperimetric property it is necessary to apply a new
transformation to 𝐹 to obtain a new set 𝐺 satisfying |𝐸| = |𝐺|. In these notes the second
deformation will be obtained from the intrinsic dilations of the group. In some other
cases, deformations by vector fields [31], or by employing Cheeger sets [30], have been
used.

Definition 3.4. Given 𝑣 > 0, a sequence {𝐸𝑖}𝑖∈ℕ of measurable sets with finite 𝐾-
perimeter is aminimizing sequence of volume 𝑣 if

1. |𝐸𝑖| = 𝑣 for all 𝑖 ∈ ℕ, and
2. lim𝑖→∞ 𝑃𝐾(𝐸𝑖) = 𝐼𝐾(𝑣).

In non-compact spaces, isoperimetric sets for some given volume do not necessarily
exist. For instance, in a Riemannian plane of revolution with increasing Gauss curvature,
there are no isoperimetric sets for any value of the area, see Theorem 2.27 in [31]. The
reader can also consult [5], a recent result onnon existence of isoperimetric sets. However,
in general, in Riemannian homogeneous spaces, isoperimetric sets do exist indeed, see
§4.4 in [31] or [15]. Thus the convergence behavior of minimizing sequences must be
analyzed carefully.
A first refinement we shall use later is that we can always find a minimizing sequence

composed of bounded sets.

Lemma 3.5. Let (𝔾, || ⋅ ||𝐾) be a sub-Finsler Carnot group, and let 𝑣 > 0. Then there exists
a minimizing sequence of volume 𝑣 composed of bounded sets. In particular, for any 𝛿 > 0
we can find a set of volume 𝑣 and finite 𝐾-perimeter such that 𝑃𝐾(𝐹) ⩽ 𝐼𝐾(𝑣) + 𝛿.

Proof. Let 𝐷 the closed unit disk associated to a fixed sub-Riemannian metric inℋ. We
take a minimizing {𝐸𝑖}𝑖∈ℕ sequence of volume 𝑣. Since each set 𝐸𝑖 has finite volume, we
choose a family of increasing radii {𝑟𝑖}𝑖∈ℕ such that 𝑟𝑖+1 − 𝑟𝑖 ⩾ 𝑖 and |𝐸𝑖 ∖ 𝐵𝐷(𝑟𝑖)| ⩽ 1/𝑖 for
all 𝑖 ∈ ℕ. Here 𝐵𝐷(𝑡) = 𝐵𝐷(0, 𝑡). Let𝑚𝑖(𝑡) = |𝐸𝑖 ∩ 𝐵𝐷(𝑡)|. Since𝑚𝑖 is increasing we have

∫
𝑟𝑖+1

𝑟𝑖

𝑚′
𝑖(𝑡)𝑑𝑡 ⩽ 𝑣.

and so the set of points 𝑡 ∈ [𝑟𝑖, 𝑟𝑖+1] where 𝑚′
𝑖(𝑡) exists and satisfies 𝑚′

𝑖(𝑡) ⩽ 2𝑣/𝑖 has
positive measure. Hence, for each 𝑖 ∈ ℕ we can find 𝑠𝑖 ∈ (𝑟𝑖+1, 𝑟𝑖) such that𝑚′

𝑖(𝑠𝑖) exists
and satisfies

𝑚′
𝑖(𝑠𝑖) ⩽

2𝑣
𝑖 .

Now we take 𝐹𝑖 = 𝜆𝑖(𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖)), where 𝜆𝑖 is computed so that |𝐹𝑖| = 𝑣. As

𝑣 − |𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖)| = |𝐸𝑖| − |𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖)| = |𝐸𝑖 ∖ 𝐵𝑘(𝑠𝑖)| ⩽ |𝐸𝑖 ∖ 𝐵𝐷(𝑟𝑖)| ⩽
1
𝑖

and |𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖)| ⩽ 𝑣, we get lim𝑖→∞ |𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖)| = 𝑣 and so lim𝑖→∞ 𝜆𝑖 = 1.
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Then we have, by (2.17) and Theorem 2.11,

𝑃𝐾(𝐹𝑖) = 𝜆𝑄−1𝑖 𝑃𝐾(𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖)) ⩽ 𝜆𝑄−1𝑖 (𝑃𝐾(𝐸𝑖, 𝐵𝐷(𝑠𝑖)) + 𝐶𝐾𝑚′
𝑖(𝑠𝑖))

⩽ 𝜆𝑄−1𝑖 (𝑃𝐾(𝐸𝑖) + 𝐶𝐾𝑚′
𝑖(𝑠𝑖)).

Taking lim sup we obtain

lim sup
𝑖→∞

𝑃𝐾(𝐹𝑖) ⩽ lim sup
𝑖→∞

𝑃𝐾(𝐸𝑖) = 𝐼𝐾(𝑣).

On the other hand 𝑃𝐾(𝐹𝑖) ⩾ 𝐼𝐾(𝑣) and so lim𝑖→∞ 𝑃𝐾(𝐹𝑖) = 𝐼𝐾(𝑣). We conclude that
{𝐹𝑖}𝑖∈ℕ is a minimizing sequence of volume 𝑣 and it is composed of bounded sets. The
last assertion in the statement of the Lemma follows immediately. �

Theorem 3.6. Let (𝔾, || ⋅ ||𝐾) be a sub-Finsler Carnot group, and let 𝑣 > 0. Consider a
minimizing sequence {𝐸𝑖}𝑖∈ℕ of volume 𝑣 > 0. Then we can find sequences {𝐸𝑐𝑖 }𝑖∈ℕ, {𝐸

𝑑
𝑖 }𝑖∈ℕ

such that
1. A non-relabeled subsequence of {𝐸𝑖}𝑖∈ℕ converges in 𝐿1𝑙𝑜𝑐(𝔾) to a set 𝐸 ⊂ 𝔾 with
finite volume |𝐸| ⩽ 𝑣 and finite 𝐾-perimeter.

2. The sequence {𝐸𝑐𝑖 }𝑖∈ℕ converges in 𝐿1𝑙𝑜𝑐(𝔾) to 𝐸 and lim𝑖→∞ |𝐸𝑐𝑖 | = |𝐸|.
3. lim𝑖→∞ (|𝐸𝑐𝑖 | + |𝐸𝑑𝑖 |) = 𝑣.
4. If |𝐸| > 0 then the set 𝐸 is isoperimetric for its volume.
5. lim inf𝑖→∞ 𝑃𝐾(𝐸𝑐𝑖 ) = 𝑃𝐾(𝐸) = 𝐼𝐾(|𝐸|).
6. lim inf𝑖→∞ 𝑃𝐾(𝐸𝑑𝑖 ) = 𝐼𝐾(𝑣 − |𝐸|).
7. 𝐼𝐾(𝑣) = 𝐼𝐾(|𝐸|) + 𝐼𝐾(|𝐸| − 𝑣).

Proof. We take a sub-Riemannian metric inℋ and we consider the associated closed
unit disk 𝐷. For any 𝑟 > 0, we denote 𝐵𝐷(𝑟) = 𝐵𝐷(0, 𝑟).
1. By the Compactness Theorem 2.10, for every 𝑟 > 0 we can extract a subsequence

of {𝐸𝑖}𝑖∈ℕ converging in 𝐿1(𝐵𝐷(𝑟)) to a set of finite perimeter. Choosing a diverging
increasing sequence of radii and applying a diagonal argument, we may assume that
a non-relabeled subsequence of {𝐸𝑖}𝑖∈ℕ converges in 𝐿1𝑙𝑜𝑐(𝔾) to a set of finite perimeter
𝐸 ⊂ 𝔾, which might be empty. By Fatou’s Lemma,

|𝐸| ⩽ lim inf
𝑖→∞

|𝐸𝑖| ⩽ 𝑣.

By the lower semicontinuity of the 𝐾-perimeter, the set 𝐸 has finite 𝐾- perimeter.
We choose a sequence {𝑟𝑖}𝑖∈ℕ of increasing radii such that 𝑟𝑖+1 − 𝑟𝑖 ⩾ 𝑖 for all 𝑖 ∈ ℕ

with 𝑟0 = 0. Passing again to a subsequence, we may assume

∫
𝐵𝐷(𝑟𝑖+1)

|𝜒𝐸𝑖 − 𝜒𝐸| 𝑑𝔾 < 1
𝑖 ,

Reasoning as in the proof of Lemma 3.5 we get 𝑠𝑖 ∈ (𝑟𝑖, 𝑟𝑖+1) such that𝑚′
𝑖(𝑠𝑖) ⩽ 2𝑣/𝑖 for

all 𝑖 ∈ ℕ, where𝑚𝑖(𝑡) = |𝐸𝑖 ∩ 𝐵𝐷(𝑡𝑖)|.
We define

𝐸𝑐𝑖 = 𝐸𝑖 ∩ 𝐵𝐷(𝑠𝑖),

𝐸𝑑𝑖 = 𝐸𝑖+1 ∖ 𝐵𝐷(𝑠𝑖+1).

The set 𝐸𝑐𝑖 is bounded for all 𝑖 ∈ ℕ and the sequence {𝐸𝑑𝑖 }𝑖∈ℕ is divergent.
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2. Given 𝑟 > 0 we have

∫
𝐵𝐷(𝑠𝑖)

|𝜒𝐸𝑐
𝑖
− 𝜒𝐸| 𝑑𝔾 ⩽ ∫

𝐵𝐷(𝑟𝑖+1)
|𝜒𝐸𝑖 − 𝜒𝐸| 𝑑𝔾 < 1

𝑖

This implies lim𝑖→∞ |𝐸𝑐𝑖 | = |𝐸|.
3. It follows from the equality |𝐸𝑐𝑖+1| + |𝐸𝑑𝑖 | = 𝑣 and 2.
4. Assume that the set 𝐸 is not isoperimetric for its volume. Then 𝐼𝐾(|𝐸|) < 𝑃𝐾(𝐸).

By Lemma 3.5 there exists a bounded set 𝐹 ⊂ 𝔾 of volume |𝐸| such that 𝐼𝐾(|𝐸|) <
𝑃𝐾(𝐹) < 𝑃𝐾(𝐸) − 𝜌 for some 𝜌 > 0. For 𝑖 large enough the sets 𝐹 and 𝐸𝑑𝑖 are disjoint
and |𝐹 ∪ 𝐸𝑑𝑖 | = |𝐹| + |𝐸𝑑𝑖 | → |𝐸| + (𝑣 − |𝐸|) = 𝑣 by 2 and 3. Then there is a sequence 𝜆𝑖
converging to 1 such that |𝜆𝑖(𝐹 ∪ 𝐸𝑑𝑖 )| = 𝑣 and

𝑃𝐾(𝜆𝑖(𝐹 ∪ 𝐸𝑑𝑖 )) = 𝜆𝑄−1𝑖 (𝑃𝐾(𝐹) + 𝑃𝐾(𝐸𝑑𝑖 )) < 𝜆𝑄−1𝑖 (𝑃𝐾(𝐸) − 𝜌 + 𝑃𝐾(𝐸𝑑𝑖 ))

⩽ 𝜆𝑄−1𝑖 ( lim inf
𝑖→∞

𝑃𝐾(𝐸𝑐𝑖 ) − 𝜌 + 𝑃𝐾(𝐸𝑑𝑖 )).

Hence the 𝐾-perimeters of a subsequence of {𝜆𝑖(𝐹 ∪ 𝐸𝑑𝑖 )}𝑖∈ℕ converge to 𝐼𝐾(𝑣) − 𝜌, thus
providing a contradiction to the fact that {𝐸𝑖}𝑖∈ℕ is a minimizing sequence for volume 𝑣.
5. By the lower semicontinuity of perimeter we have 𝑃𝐾(𝐸) ⩽ lim inf𝑖→∞ 𝑃𝐾(𝐸𝑐𝑖 ). If

the strict equality holds then there is 𝜌 > 0 such that 𝑃𝐾(𝐸) ⩽ lim inf𝑖→∞ 𝑃𝐾(𝐸𝑐𝑖 ) − 𝜌. As
𝐸 is isoperimetric, it is bounded, so that 𝐸 and 𝐸𝑑𝑖 are disjoint for large 𝑖 and |𝐸 ∪𝐸

𝑑
𝑖 | → 𝑣.

We take 𝜆𝑖 converging to 1 so that |𝜆𝑖(𝐸∪𝐸𝑑𝑖 )| = 𝑣. We reason as in 4 so that a subsequence
of 𝜆𝑖(𝐸 ∪ 𝐸𝑑𝑖 ) has limit 𝐾-perimeter strictly smaller than 𝐼𝐾(𝑣). This contradiction proves
lim inf𝑖→∞ 𝑃𝐾(𝐸𝑐𝑖 ) = 𝑃𝐾(𝐸) = 𝐼𝐾(𝑣).
6. Since |𝐸𝑑𝑖 | → 𝑣−|𝐸|, there is a sequence 𝜆𝑖 converging to 1 such that |𝜆𝑖𝐸𝑑𝑖 | = 𝑣−|𝐸|.

Hence 𝐼𝐾(𝑣 − |𝐸|) ⩽ 𝑃𝐾(𝜆𝑖𝐸𝑑𝑖 ) = 𝜆𝑄−1𝑖 𝑃𝐾(𝐸𝑑𝑖 ) and so

𝐼𝐾(𝑣 − |𝐸|) ⩽ lim inf
𝑖→∞

𝑃𝐾(𝐸𝑑𝑖 ).

If we had strict inequality then there would exist a bounded set 𝐹 of volume 𝑣 − |𝐸| such
that

𝐼𝐾(𝑣 − |𝐸|) < 𝑃𝐾(𝐹) ⩽ lim inf
𝑖→∞

𝑃𝐾(𝐸𝑑𝑖 ) − 𝜌,

for some 𝜌 > 0. Since the sets 𝐸𝑐𝑖 and 𝐹 are bounded we can find left-tranlations ℓ𝑖 such
that 𝐸𝑐𝑖 and ℓ𝑖(𝐹) are disjoint. As |𝐸

𝑐
𝑖 ∪ ℓ𝑖(𝐹)| = |𝐸𝑐𝑖 | + |𝐹| → 𝑣, we can find a sequence

𝜆𝑖 converging to 1 so that |𝜆𝑖(𝐸𝑐𝑖 ∪ ℓ𝑖(𝐹))| = 𝑣 − |𝐸|. So we have

𝑃𝐾(𝜆𝑖(𝐸𝑐𝑖 ∪ ℓ𝑖(𝐹))) = 𝜆𝑄−1𝑖 (𝑃𝐾(𝐸𝑐𝑖 ) + 𝑃𝐾(𝐹)) ⩽ 𝜆𝑄−1𝑖 (𝑃𝐾(𝐸𝑐𝑖 ) + lim inf
𝑖→∞

𝑃𝐾(𝐸𝑑𝑖 ) − 𝜌).

As in previous cases, the 𝐾-perimeters of a subsequence of {𝜆𝑖(𝐸𝑐𝑖 ∪ ℓ𝑖(𝐹))}𝑖∈ℕ converge
to a limit no larger than 𝐼𝐾(𝑣)−𝜌. This provides a contradiction that shows 𝐼𝐾(𝑣− |𝐸|) =
lim inf𝑖→∞ 𝑃𝐾(𝐸𝑑𝑖 ).
7. It follows from properties 5 and 6. �

4. Proof of Theorem 2.16

Proof of Theorem 2.16. Let {𝐸𝑖}𝑖∈ℕ be a minimizing sequence for volume 𝑣 > 0. Let us
choose𝑚 > 0 so that

𝑚 < min {1𝑣
|𝐵𝐷(0, 1)|

2 , 𝐶𝑣𝑄−1

(𝐼𝐾(𝑣) + 1)𝑄
},



ISOPERIMETRIC SETS IN CARNOT GROUPS WITH A SUB-FINSLER STRUCTURE 19

where 𝐶 > 0 is the constant that appears in inequality (3.1). In particular

𝑚𝑣 <
|𝐵𝐷(0, 1)|

2 .

If |𝐸𝑖∩𝐵𝐷(𝑝, 1)| < 𝑚𝑣 = 𝑚|𝐸𝑖| for all 𝑖 ∈ ℕ and 𝑝 ∈ 𝔾, then Corollary 3.1 and the choice
of 𝑚 imply

𝑃𝐾(𝐸𝑖) ⩾ ( 𝐶
𝑚𝑣)

1/𝑄
|𝐸𝑖| = ( 𝐶𝑚)

1/𝑄
𝑣(𝑄−1)/𝑄 ⩾ 𝐼𝐼𝐾(𝑣) + 1.

This leads to a contradiction since {𝐸𝑖}𝑖∈ℕ is a minimizing sequence. Hence there follows
the existence of a non-relabeled subsequence of {𝐸𝑖}𝑖∈ℕ and points 𝑝𝑖 ∈ 𝔾 such that

|𝐸𝑖 ∩ 𝐵𝐷(𝑝𝑖, 1)| ⩾ 𝑚|𝐸𝑖|

for all 𝑖 ∈ ℕ.
Using left-translations, which preserve the volume and the𝐾-perimeter, we can assume

that 𝑝𝑖 = 0 for all 𝑖 ∈ ℕ. Hence there is a non-relabeled subsequence converging in
𝐿1𝑙𝑜𝑐(𝔾) to a measurable set 𝐸 with finite perimeter and volume

|𝐸| ⩾ |𝐸 ∩ 𝐵𝐷(0, 1)| ⩾ 𝑚|𝐸| = 𝑚𝑣 > 0.

In particular, this implies that the isoperimetric profile function 𝐼𝐾 is strictly concave
since 𝑃𝐾(𝐸) > 0 and, by the local isoperimetric inequality (2.22) applied at some point
of the measure theoretic boundary, the non-negative constant in the expression (2.23) of
the isoperimetric profile is strictly positive.
Assume |𝐸| < 𝑣. Then we have

𝐼𝐾(𝑣) < 𝐼𝐾(|𝐸|) + 𝐼𝐾(𝑣 − |𝐸|)

since the strict concavity of 𝐼𝐾 and the fact that 𝐼𝐾(0) = 0 imply

𝐼𝐾(|𝐸|) − 𝐼𝐾(0)
|𝐸| − 0 >

𝐼𝐾(𝑣) − 𝐼𝐾(𝑣 − |𝐸|)
𝑣 − (𝑣 − |𝐸|)

.

But we know from Theorem 3.6 that 𝐼𝐾(𝑣) = 𝐼𝐾(|𝐸|) + 𝐼𝐾(𝑣 − |𝐸|). This provides a
contradiction that shows |𝐸| = 𝑣. Hence 𝐸 is an isoperimetric set of volume 𝑣.
The essential boundedness of any isoperimetric set now follows from Theorem 3.3.
To prove the indecomposability of an isoperimetric set 𝐸 ⊂ 𝔾, we assume that it is

decomposable and so we can find two disjoint sets 𝐹1, 𝐹2 of positive volume and finite
𝐾-perimeter such that 𝐸 = 𝐹1 ∪ 𝐹2 and 𝑃𝐾 = 𝑃𝐾(𝐹1) + 𝑃𝐾(𝐹2). Letting 𝑣𝑖 = |𝐹𝑖| for 𝑖 = 1, 2,
we have

𝐼𝐾(𝑣1 + 𝑣2) = 𝑃𝐾(𝐸) = 𝑃𝐾(𝐹1) + 𝑃𝐾(𝐹2) ⩾ 𝐼𝐾(𝑣1) + 𝐼𝐾(𝑣2).

But this inequality cannot hold since the strict concavity of 𝐼𝐾 together with 𝐼𝐾(0) = 0
imply as above

𝐼𝐾(𝑣1) − 𝐼𝐾(0)
𝑣1 − 0 > 𝐼𝐾(𝑣1 + 𝑣2) − 𝐼𝐾(𝑣2)

(𝑣1 + 𝑣2) − 𝑣1
and so

𝐼𝐾(𝑣1 + 𝑣2) < 𝐼𝐾(𝑣1) + 𝐼𝐾(𝑣2).

This contradiction implies that 𝐸 is indecomposable. �
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5. Density estimates for isoperimetric sets

In this section we prove that an isoperimetric set coincides essentially with the set of
its density 1 points. The discussion follows the one in §5 in Leonardi and Rigot [21].
We consider the function ℎ defined on 𝔾 × (0,∞) by

ℎ(𝑥, 𝑟) = 𝑟−𝑄min {|𝐵𝐷(𝑥, 𝑟) ∖ 𝐸|, |𝐵𝐷(𝑥, 𝑟) ∩ 𝐸|}.

Lemma 5.1. Let (𝔾, || ⋅ ||𝐾) be a Carnot group endowed with a sub-Finsler structure,
and 𝐷 the closed unit disk associated to a sub-Riemannian metric onℋ. Let 𝐸 ⊂ 𝔾 be a
𝐾-isoperimetric set of volume 𝑣 > 0. Take any 𝜀 > 0 satisfying

(5.1) 𝜀 < min {𝑣, (
𝐶𝐼

4𝑄𝐶𝐾
)
𝑄
, (𝑣

𝐶𝐼
2 )

𝑄
}.

Then, if ℎ(𝑥, 𝑟) ⩽ 𝜀 and 0 < 𝑟 ⩽ 1, then

|𝐵𝐷(𝑥, 𝑟/2) ∖ 𝐸| = 0 or |𝐵𝐷(𝑥, 𝑟) ∩ 𝐸| = 0.

Proof. We consider two cases.

Assume first that ℎ(𝑥, 𝑟) = 𝑟−𝑄|𝐵𝐷(𝑥, 𝑟) ∖𝐸|. By hypothesis |𝐵𝐷(𝑥, 𝑟) ∖𝐸| ⩽ 𝜀𝑟𝑄 is very
small. We define the set 𝐸𝑡 = 𝐸 ∪ 𝐵𝐷(𝑥, 𝑡) and the increasing volume function

𝑚(𝑡) = |𝐵𝐷(𝑥, 𝑡) ∖ 𝐸|.

For every 𝑡 > 0 consider 𝜆(𝑡) > 0 so that 𝜆(𝑡)𝐸𝑡 has volume 𝑣. This implies

𝜆(𝑡) = ( 𝑣
𝑣 + 𝑚(𝑡))

1/𝑄
< 1.

Since 𝐸 and 𝜆(𝑡)𝐸𝑡 have volume 𝑣 and 𝐸 is isoperimetric, from standard properties of the
𝐾-perimeter there follows, for almost everywhere 𝑡 > 0,

𝑃𝐾(𝐸) ⩽ 𝑃𝐾(𝜆(𝑡)𝐸𝑡) = 𝜆(𝑡)𝑄−1𝑃𝐾(𝐸𝑡)

⩽ 𝜆(𝑡)𝑄−1(𝑃𝐾(𝐸) − 𝑃𝐾(𝐵𝐷(𝑥, 𝑡) ∖ 𝐸) + 2𝐶𝐾𝑚′(𝑡)).

As |𝐵𝐷(𝑥, 𝑡) ∖𝐸| ⩽ 𝜀𝑟𝑄 ⩽ 𝜀 < 𝑣0 and 𝜆(𝑡) < 1we obtain from the isoperimetric inequality
for volumes no larger than 𝑣0,

2𝐶𝐾𝑚′(𝑡) ⩾ 𝐶𝐼𝑚(𝑡)(𝑄−1)/𝑄 + (𝜆(𝑡)−(𝑄−1) − 1) 𝑃𝐾(𝐸) ⩾ 𝐶𝐼𝑚(𝑡)(𝑄−1)/𝑄.

If 𝑚(𝑟/2) > 0 then 𝑚(𝑡) > 0 for all 𝑡 ∈ [𝑟/2, 𝑟]. In this interval the function 𝑚(𝑡)1/𝑄 is
increasing and, since it does not vanish ay any point, we have for almost everywhere 𝑡

(𝑚1/𝑄)′(𝑡) = 1
𝑄 𝑚′(𝑡)𝑚(𝑡)(1−𝑄)/𝑄 ⩾ 𝐶𝐼

2𝑄𝐶𝐾
.

So we have
𝐶𝐼𝑟
2𝑄𝐶𝐾

⩽ ∫
𝑟

𝑟/2
(𝑚1/𝑄)′(𝑡)𝑑𝑡 ⩽ 𝑚1/𝑄(𝑟) − 𝑚1/𝑄(𝑟/2) < 𝑚1/𝑄(𝑟) ⩽ 𝜀1/𝑄𝑟,

which contradicts the choice of 𝜀. Hence𝑚(𝑟/2) = 0.

Assume now that ℎ(𝑥, 𝑟) = 𝑟−𝑄|𝐵𝐷(𝑥, 𝑟) ∩ 𝐸|. In this case the volume of 𝐸 inside the
ball 𝐵𝐷(𝑥, 𝑡) is very small compared to the total volume of 𝐵𝐷(𝑥, 𝑡). Let

𝑚(𝑡) = |𝐸 ∩ 𝐵𝐷(𝑥, 𝑡)|,
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and take the set 𝐸𝑡 = 𝜆(𝑡)(𝐸 ∖ 𝐵𝐷(𝑥, 𝑡)), where

𝜆(𝑡) = ( 𝑣
𝑣 − 𝑚(𝑡))

1/𝑄
> 1

is computed so that |𝐸𝑡| = |𝐸| = 𝑣. So we have, for almost everywhere 𝑡 > 0,

𝑃𝐾(𝐸) ⩽ 𝑃𝐾(𝐸𝑡) = 𝜆(𝑡)𝑄−1𝑃𝐾(𝐸𝑡)

⩽ 𝜆(𝑡)𝑄−1(𝑃𝐾(𝐸) − 𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑥, 𝑡)) + 2𝐶𝐾𝑚′(𝑡)).

As |𝐸 ∩ 𝐵𝐷(𝑥, 𝑡)| ⩽ 𝜀𝑟𝑄 < 𝑣0 we get, from the isoperimetric inequality for small volumes,

2𝐶𝐾𝑚′(𝑡) ⩾ 𝐶𝐼𝑚(𝑡)(𝑄−1)/𝑄 + (𝜆(𝑡)1−𝑄 − 1) 𝑃𝐾(𝐸).

Note that

𝜆(𝑡)1−𝑄 − 1 = (𝑣 − 𝑚(𝑡)
𝑣 )

(𝑄−1)/𝑄
− 1 < 0.

The function 𝑓 ∶ [0, 𝑣] → ℝ defined by

𝑓(𝑥) = (𝑣 − 𝑥
𝑣 )

(𝑄−1)/𝑄
− 1

satisfies 𝑓″(𝑥) < 0 in (0, 𝑣), and so 𝑓(𝑥) ⩾ −(1/𝑣)𝑥 in the interval [0, 𝑣]. So we get

2𝐶𝐾𝑚′(𝑡) ⩾ 𝑚(𝑡)(𝑄−1)/𝑄(𝐶𝐼 −
1
𝑣𝑚(𝑡)

1/𝑄) ⩾
𝐶𝐼
2 𝑚(𝑡)

(𝑄−1)/𝑄

whenever

𝑚(𝑡)1/𝑄 ⩽ 𝑣𝐶𝐼2 ,

and this last inequality holds because of out choice of 𝜀 Finally we reason as in the
previous case: if 𝑚(𝑟/2) > 0 then we get (𝑚1/𝑄)′(𝑡) ⩾ 𝐶𝐼/(4𝑄𝐶𝐾) for almost everywhere
𝑡, and so

𝐶𝐼𝑟
4𝑄𝐶𝐾

⩽ ∫
𝑟

𝑟/2
(𝑚1/𝑄)′(𝑡)𝑑𝑡 ⩽ 𝑚1/𝑄(𝑟) ⩽ 𝜀1/𝑄𝑟,

providing a contradiction because of our choice of 𝜀. �

Given an isoperimetric set 𝐸 ⊂ 𝔾 of volume 𝑣 > 0 we now define the sets

𝐸1 = {𝑥 ∈ 𝔾 ∶ ∃ 𝑟 > 0 with |𝐵𝐷(𝑥, 𝑟) ∖ 𝐸| = 0},

𝐸0 = {𝑥 ∈ 𝔾 ∶ ∃ 𝑟 > 0 with |𝐵𝐷(𝑥, 𝑟) ∩ 𝐸| = 0},

𝑆 = {𝑥 ∈ 𝔾 ∶ ℎ(𝑥, 𝑟) > 𝜀 for all 𝑟 ⩽ 1},

where 𝜀 > 0 is one defined in (5.1). With these definitions we have

Theorem 5.2. Let 𝐸 ⊂ 𝔾 be a 𝐾-isoperimetric set of volume 𝑣 > 0.
1. 𝐸1, 𝐸0, 𝑆 form a partition of 𝔾,
2. 𝐸0 and 𝐸1 are open sets,
3. 𝐸1 coincide with the set of Lebesgue points of 𝐸, and 𝐸0 with the set of points of 𝐸 of
density 0,

4. 𝑆 = 𝜕𝐸0 = 𝜕𝐸1
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5. For any 𝑥 ∈ 𝑆 here is a constant 𝐶 > 0 so that

𝐶−1𝑟𝑄−1 ⩽ 𝑃𝐾(𝐸, 𝐵𝐷(𝑥, 𝑟)) ⩽ 𝐶𝑟𝑄−1

for all 𝑥 ∈ 𝑆 and 0 < 𝑟 < 1. The constant 𝐶 depends on the constant 𝜀 > 0 in (5.1),
the Poincaré constant 𝐶𝑃 in (2.22), the homogeneous dimension 𝑄 and the constant
𝐶𝐾 defined in (2.20).

Proof. The proof of 1-4 follows closely that of Theorem 5.3 in [21] and is straightforward.
As for 5, we have, for any 𝑥 ∈ 𝑆 and 𝑟 ∈ (0, 1), that ℎ(𝑥, 𝑟) > 𝜀. By the local isoperimetric
inequality (2.22) we obtain the lower bound

𝑃𝐾(𝐸, 𝐵𝐷(𝑥, 𝑟)) ⩾ 𝐶𝑃(𝑟𝑄ℎ(𝑥, 𝑟))
(𝑄−1)/𝑄 ⩾ 𝐶𝑃 𝜀(𝑄−1)/𝑄𝑟𝑄−1.

To obtain the upper inequality we use

𝑃𝐾(𝐸 ∪ 𝐵𝐷(𝑥, 𝑟)) + 𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑥, 𝑟)) ⩽ 𝑃𝐾(𝐸) + 𝑃𝐾(𝐵𝐷(𝑥, 𝑟)).

As the isoperimetric profile 𝐼𝐾 is increasing we have

𝑃𝐾(𝐸 ∪ 𝐵𝐷(𝑥, 𝑟)) ⩾ 𝐼𝐾(|𝐸 ∪ 𝐵𝐷(𝑥, 𝑟)|) ⩾ 𝐼𝐾(|𝐸|) = 𝑃𝐾(𝐸).

Hence
𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑥, 𝑟)) ⩽ 𝑃𝐾(𝐵𝐷(𝑥, 𝑟)).

Now the proof is complete since, by (2.16), we obtain

𝑃𝐾(𝐵𝐷(𝑥, 𝑟)) ⩽ 𝐶𝐾𝑃𝐷(𝐵𝐷(𝑥, 𝑟) ⩽ 𝑄𝐶𝐾|𝐵𝐷(0, 1)|𝑟𝑄−1

and 𝑃𝐾(𝐸, 𝐵𝐷(𝑥, 𝑟)) ⩽ 𝑃𝐾(𝐸 ∩ 𝐵𝐷(𝑥, 𝑟)). �
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