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1. Introduction

In these notes we consider critical points of the perimeter associated to an
asymmetric sub-Finsler structure in the first Heisenberg group H'. Such a structure
is defined by means of an asymmetric left-invariant norm || - || on the horizontal
distribution H of H'. If we fix any frame of left-invariant horizontal vector fields,
any left-invariant norm is uniquely determined by a convex body (compact convex
set with non-empty interior) K C R? containing 0 in its interior. We write || - ||x
to indicate the dependence of the norm on K. The case of a symmetric norm
corresponds to a centrally symmetric convex body (i.e, such that K = —K). The
norm associated to the closed unit disc D centered at 0 is the standard Euclidean
norm and is denoted by |- |. Symmetric sub-Finsler structures in H! have received
intense interest recently, specially the study of geodesics [3, 2], see [60] for the
classical sub-Riemannian case, and the associated Minkowski content [79, 80].
General asymmetric sub-Finsler structures have an associated asymmetric distance
and might have different metric properties, see [58, 59] and [18].

On H!' we always consider the standard basis of left-invariant vector fields
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and the left-invariant Riemannian metric g, also denoted by (-, -), making X, Y, T

orthonormal. The associated Riemannian measure is the Haar measure of the group,

and coincides with the Lebesgue measure of the underlying Euclidean space R3. The

measure of a set E is the volume of the set and is denoted by |E|. The volume

element is denoted by dH'. Any C' surface interacts with horizontal distribution

H. The singular part of S is the set Sy C S of points p € S such that T,S = H,,.
On H' there is a one-parameter family of dilations defined by

ha(z,y,t) = (Az, Ay, At),

for any (x,y,t) € H' and A > 0.
Given a left-invariant norm || - ||, a measurable set £ C H' and an open set
Q C H!, we define the sub-Finsler perimeter of E in Q by

(1.1) Py (E,Q) = sup {/ divU dH" : U € H5(Q), [|U]]r,00 < 1},
E

where H(Q) is the set of C'! horizontal vector fields with compact support in 2 and
| - || k,00 is the infinity norm associated to || - ||x. The perimeter associated to the
Euclidean norm | - | is the sub-Riemannian perimeter as it defined in [44, 36, 35].
A set has finite perimeter for a given norm if and only if it has finite perimeter for
the standard sub-Riemannian perimeter. Hence all known structure results in the
standard case apply to the sub-Finsler perimeter, see Franchi et al. [36].

In case the boundary S of E is a C'! or Euclidean lipschitz surface, the perimeter
of F is given by the sub-Finsler area functional

(1.2) Ag(S) = /S [ Nalli.. 4,

where || - ||k« is the dual norm of || - ||k, Ny is the orthogonal projection to the
horizontal distribution of the Riemannian outer unit normal N, and dS is the
Riemannian measure on S.

1.1. The first variation. This section is based on [72].

If we consider a convex set K with boundary of class Ci (i-e., so that 0K is
of class C? and K has positive geodesic curvature everywhere), we may compute
the first variation of the area functional associated to a vector field U with compact
support in the reqular part of S to get

) = | Ax(ou($) = [ u(diven) s
Sls=0 S
In this formula {p,}ser is the parameter group of diffeomorphisms associated to U,
u = (U, N) is the normal component of the variation and divs nx is the divergence
on S of the vector field nxg = 7 (vy), where v, = N, /|Ny| is the horizontal unit
normal and 7wy is the map projecting any vector v # 0 to the intersection of the
supporting line in the direction of v with || - ||[x = 1 (the boundary of K). The
strict convexity of || - ||k implies that this map is well-defined.

The function Hx = divgni appearing in the first variation of perimeter is
called the mean curvature of S. Further calculations imply that Hy is equal to
(Dzni,Z), where Z = —J(v) is the horizontal direction on the regular part
of S. Hence the mean curvature function is localized on the horizontal curves
of S. It is not difficult to check that a horizontal curve in a surface with mean
curvature Hpy must satisfy a differential equation depending on Hy. Hence we
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can reconstruct the regular part of a surface with prescribed mean curvature by
taking solutions of this differential equation. Furthermore, we might be able classify
surfaces with prescribed mean curvature by classifying solutions of this ordinary
differential equation and by looking at the interaction of these curves with the
singular set Sy of S composed of the points where the tangent plane is horizontal,
as was done in [76] for the standard sub-Riemannian perimeter.

Key observations are that horizontal straight lines are solutions of the differ-
ential equation for Hx = 0 and that horizontal liftings of the curve || - ||x = 1
are solutions for Hx = 1. The strict convexity of || - ||[x = 1 together with the
invariance of the equation by left-translations and dilations imply that all solutions
are of this type.

Hence, given a convex body K C R? containing 0 in its interior and its as-
sociated left—invariant norm || - ||k, we consider the set Bx obtained as the ball
enclosed by the horizontal liftings of all translations of the curve 0K containing 0.
It is not difficult to prove that this way we obtain a topological sphere Si with two
poles on the same vertical line, that is the union of two graphs, and whose singular
set consists of the two poles. Moreover the boundary of By is C? outside the poles
(indeed C* if the boundary of K is of class C*, ¢ > 2) and of regularity C? around
the poles. When K = D, these sets were build by P. Pansu [67] and are frequently
referred to as Pansu spheres. They are of class C2? but not C3 near the singular
points, see Proposition 3.15 in [21] and Example 3.3 in [76].

FIGURE 1. The set Bx when K is the unit ball of the r-norm
r m1/r
(@l = (Jz]" +1yl") " r =15

We observe that these objects have constant mean curvature. Hence they are
critical points of the sub-Finsler area functional under a volume constraint. Further
evidence that they have stronger minimization properties is given in Section 3.7,
where it is proven that, under a geometric condition, a set of finite perimeter F
with volume equal to the volume of Bx has perimeter larger than or equal to the
one of the ball Bx. A slightly weaker result for the Euclidean norm was proven in
[74].
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FIGURE 2. The set Bx when K is a smooth approximation of the
triangular norm

We have organized this part into several sections. In section 3.1 we compute
the first variation of perimeter for surfaces of class C? and, assuming that K is
of class Cf_, prove the property that the regular part of the surface is foliated by
horizontal liftings of translations of homothetic expansions of K. In section 3.5
we define the Pansu- Wulff shapes and compute some examples and prove regularity
properties of these objects. In Section 3.6 we study some geometric properties of the
Pansu-Wulff shapes and, finally, in Section 3.7 we obtain a minimization property
of these Pansu-Wulff shapes. This property indicates that these shapes are good
candidates to be solutions of the sub-Finsler isoperimetric problem in H?'.

Some justification on the terminology Pansu- Wulff shape must be given. Con-
sider a norm || - || in Euclidean space and its dual norm || - ||.. For a Lipschitz

surface S, the integral
[ 1as.
s

where N is an a.e. unit normal to S, defines a functional that represents the Gibbs
free energy, proportional to the area of the surface of contact and to the surface
tension, of an anisotropic interface separating two fluids or gases. The contribution
of each element of area depends on the orientation. An equilibrium state is obtained
by minimizing the free energy for a drop of given volume. This is an isoperimetric
problem in mathematical terms.

The solutions of this problem were described by the crystallographer G. Wulff
in 1895: they are translations and dilations of the set {z € R : ||z|| < 1}, usually
referred to as the Wulff shape of the free energy. A first mathematical proof of
this fact was given by Dinghas [25]. Other versions of Wulfl’s results were given
by Busemann [7], Taylor [81], Fonseca [30] and Fonseca and Miiller [31]; see also
Gardner [43], Burago and Zalgaller [6], Van Schaftingen [83], and Figalli, Maggi
and Pratelli [29].

The counterpart of the free energy in the Heisenberg group H' is given in
formula (1.2). When K = D we obtain the classical sub-Riemannian area. In his
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Ph. D. Thesis, Pansu exhibited in [67] an example of an area-stationary candidate,
which coincides with the Pansu-Wulff shape, and conjectured that this set is a
solution of the sub-Riemannian isoperimetric problem in H'. While many partial
results have been obtained in the direction of proving this conjecture, see [75, 76,
74, 63, 32, 62, 61, 55, 21, 33| and the monograph [10], it still remains open.

The Pansu-Wulff shapes were introduced by Pozuelo and Ritoré in [72] and
also considered by Franceschi et al., see [34].

1.2. Regularity of surfaces with prescribed mean curvature. This sec-
tion is based on [47].

The aim of this part is to study the regularity of the characteristic curves of the
boundary of a set with continuous prescribed mean curvature in the first Heisenberg
group H! with a sub-Finsler structure. We assume also in this part that K has C?
boundary with positive geodesic curvature.

Following De Giorgi [24], the authors of [72] defined a notion of sub-Finsler K-
perimeter, see also [34]. Given a measurable set £ C H!' and an open subset
Q) C H', it is said that E has locally finite K-perimeter in € if for any relatively
compact open set V' C 2 we have

Pg(E,)V) = sup{/ div(U)dH : U € HE(V), ||U]| k.00 < 1} < 400,
E

where H{(V) is the space of horizontal vector fields of class C' with compact
support in V', and ||U||k,cc = sup,cv ||Up||x- Both the divergence and the integral
are computed with respect to a fixed left-invariant Riemannian metric g on H!.
When S = 0F NQ is a Euclidean Lipschitz surface the K-perimeter coincides with
the area functional

A(S) = / A
S

where H? is the 2-dimensional Hausdorff measure associated to the left-invariant
Riemannian metric g, N is the outer unit normal to S, defined H?-a.e on S, N} is
the horizontal projection of N to the horizontal distribution in H! and || - ||k . is
the dual norm of || - ||k

We say that a set E with Euclidean Lipschitz boundary has prescribed K-mean
curvature f € C°(Q) if, for any bounded open subset V C Q, E is a critical point
of the functional

AK(SOB)—/ fdH?.
ENB

This notion extends the classical one in Euclidean space and the one introduced in
[42] for the sub-Riemannian area. We refer the reader to the introduction of [42]
for a brief historical account and references.

We say that a set E has constant prescribed K-mean curvature if there exists
A € R such that E has prescribed K-mean curvature A. In Proposition 4.1 we
consider a set E with Euclidean Lipschitz boundary and positive K-perimeter. We
show that if E is a critical point of the K-perimeter for variations preserving the
volume up to first order then E has constant prescribed K-mean curvature on any
open set  avoiding the singular set Sy and where Px (E, ) > 0. This result can be
applied to isoperimetric regions in H! with Euclidean Lipschitz boundary. Critical
points of the area have, by definition, prescribed mean curvature equal to 0.
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The main result of this paper is Theorem 4.5, where we prove that the boundary
S of a set E with prescribed continuous K-mean curvature is foliated by horizontal
characteristic curves of class C? in its regular part. The minimal assumptions we
require for the boundary S of E are to be Euclidean Lipschitz and H-regular. The
result holds in particular when the boundary of E is of class C'. As we point out
in Remark 4.9, C? regularity is optimal since the Pansu-Wulff shapes obtained in
[72] have prescribed constant mean curvature and their boundaries are foliated by
characteristic curves with the same regularity as that of 9K, that may be just C2.
In the proof of the Theorem 4.5 we exploit the first variation formula of the area
following the arguments developed in [40, 42] and make use of the bi-Lipschitz
homeomorphism considered in [65]. One of the main differences in our setting is
that the area functional strongly depends on the inverse mx of the Gauss map of
OK. Therefore the first variation of the area depends on the derivative of the map
that describes the boundary K. In order to use the bootstrap regularity argument
in [40, 42] we need to invert this map on the boundary 0K, that is possible since
the geodesic curvature of K is strictly positive, see Lemma 4.6. Moreover, the
C? regularity of the characteristic curves implies that, on characteristic curves of a
boundary with prescribed continuous K-mean curvature f, the ordinary differential
equation

(1.3) (Dz i (vn), Z) = f,

is satisfied. In this equation v, = N /|Np| is the classical sub-Riemannian horizon-
tal unit normal, Z is the unit characteristic vector field tangent to the characteristic
curves and D the Levi-Civita connection associated to the left-invariant Riemann-
ian metric g on H! . Equation (1.3) was proved to hold for C? surfaces in [72].
For regularity assumptions below H-regular and Euclidean Lipschitz, equation (1.3)
holds in a suitable weak sense, a result proved in [1] for the sub-Riemannian area,
when K coincides with the unit disk centered at 0.
Moreover, in Proposition 4.13 we stress that equation (1.3) is equivalent to

(1.4) Hp = r(mK (vn)) f,

where Hp = (Dzvy, Z) is the classical sub-Riemannian mean curvature introduced
in [1] and & is the strictly positive Euclidean curvature of the boundary 0K. A
key ingredient to obtain equation (1.4) is Lemma 4.14, that exploits the ideas of
Lemma 4.6 in an intrinsic setting.

This part is a natural continuation of the many recent papers concerning sub-
Riemannian area minimizers [44, 19, 14, 12, 10, 22, 4, 1, 51, 52, 53, 76, 54,
32, 8, 17, 55, 62, 16, 45, 11]. The sub-Riemannian perimeter functional is a
particular case of the sub-Finsler functionals considered in these notes where the
convex set is the unit disk D centered at 0. In the pioneering paper [44] N. Garofalo
and D. M. Nhieu showed the existence of sets of minimal perimeter in Carnot-
Carathéodory spaces satisfying the doubling property and a Poincaré inequality. In
[66] Leonardi and Rigot showed the existence of isoperimetric sets in Carnot groups.
However the optimal regularity of the critical points of these variational problems
involving the sub-Riemannian area is not completely understood. Indeed, even in
the sub-Riemannian Heisenberg group H! there are several examples of non-smooth
area minimizers: S. D. Pauls in [69] exhibited a solution of low regularity for the
Plateau problem with smooth boundary datum; on the other hand in [14, 73, 49|
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the authors provided solutions of Bernstein’s problem in H' that are only Euclidean
Lipschitz.

In [66] P. Pansu conjectured that the boundaries of isoperimetric sets in H?
are given by the surfaces now called Pansu’s spheres, union of all sub-Riemannian
geodesics of a fixed curvature joining two point in the same vertical line. This con-
jecture has been solved only assuming a priori some regularity of the minimizers
of the area with constant prescribed mean curvature. In [76] the authors solved
the conjecture assuming that the minimizers of the area are of class C2, using the
description of the singular set, the characterization of area-stationary surfaces, and
the ruling property of constant mean curvature surfaces developed in [12]. Hence
the a priori regularity hypothesis are central to study the sub-Riemannian isoperi-
metric problem. Motivated by this issue, it was shown in [15] that a C! boundary
of a set with continuous prescribed mean curvature is foliated by C? characteristic
curves. Regularity results for Lipschitz viscosity solutions of the minimal surface
equation were obtained in [8]. Furthermore, in [42] the authors generalized the
previous result when the boundary S is immersed in a three-dimensional contact
sub-Riemannian manifold. Finally M. Galli in [40] improved the result in [42] only
assuming that the boundary S is Euclidean Lipschitz and H-regular in the sense of
[36]. The Bernstein problem in H' with Euclidean Lipschitz regularity was treated
by S. Nicolussi and F. Serra-Cassano [65]. Partial solutions of the sub-Riemannian
isoperimetric problem have been obtained assuming Euclidean convexity [63], or
symmetry properties [21, 74, 62, 32]. An analogous sub-Finsler isoperimetric
problem might be considered. Candidate solutions would be the Pansu-Wulff shapes
considered in [72]. See [72, 34| for partial results in the sub-Finsler isoperimetric
problem and [79] for earlier work.

We have organized this part into two sections. Section 4.2 is dedicated to the
proof of the main Theorem 4.5, that ensures that the characteristic curves are C2.
Finally in Section 4.3 we deal with the K-mean curvature equation, see Proposition
4.12 and Proposition 4.13.

1.3. Some examples. This section is based on [46].

The regularity of perimeter-minimizing sets in sub-Finsler geometry is currently
one of the most challenging problems in Calculus of Variations.

The regularity of sub-Riemannian perimeter-minimizing sets has been investiga-
ted by a large number of researchers [12, 76, 20, 4, 23, 53, 38, 77, 39, 73, 15,
14, 65, 8]. The boundaries of the conjectured solutions to the isoperimetric prob-
lem are of class C?2, see [10], although there exist examples of area-minimizing
horizontal graphs which are merely Euclidean Lipschitz, see [14, 64, 73]. The
sub-Riemannian Plateau problem was first considered by Pauls [68]. Afterwards,
under given Dirichlet conditions on p-convex domains, Cheng, Hwang and Yang
[14] proved existence and uniqueness of t-graphs (horizontal graphs of the form
t = u(x,y)) which are Lipschitz continuous weak solutions of the minimal surface
equation in H'. Later, Pinamonti, Serra Cassano, Treu and Vittone [70] obtained
existence and uniqueness of ¢-graphs on domains with boundary data satisfying a
bounded slope condition, thus showing that Lipschitz regularity is optimal at least
in the first Heisenberg group H'. Capogna, Citti and Manfredini [8] established
that the intrinsic graph of a Lipschitz continuous function which is, in addition,
a viscosity solution of the sub-Riemannian minimal surface equation in H', is of
class C™®, with higher regularity in the case of H”, n > 1, see [9]. It was shown
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in [15] that the regular part of a t-graph of class C! with continuous prescribed
sub-Riemannian mean curvature in H' is foliated by C? characteristic curves. Fur-
thermore, in [42] the authors generalized the previous result when the boundary
S is a general C! surface in a three-dimensional contact sub-Riemannian manifold.
Later, Galli in [40] improved the result in [42] only assuming that the boundary S
is Euclidean Lipschitz and H-regular. Recently, in [47] the first and third authors
extended the result in [40] to the sub-Finsler Heisenberg groups. Up to now, de-
termining the optimal regularity of perimeter-minimizing H-regular hypersurfaces
in the Heisenberg group remains an open problem.

Bernstein type problems for surfaces in H' have also received a special atten-
tion. The nature of the sub-Riemannian Bernstein problem in the Heisenberg group
is completely different from the Euclidean one even for graphs. On the one hand
the area functional for t-graphs is convex as in the Euclidean setting. Therefore the
critical points of the area are automatically minimizers for the area functional. How-
ever, since t-graphs admit singular points where the horizontal gradient vanishes
their classification is not an easy task. Thanks to a deep study of the singular set for
C? surfaces in H!', Cheng, Hwang, Malchiodi, and Yang [12] showed that minimal
t-graphs of class C2 are congruent to a family of surfaces including the hyperbolic
paraboloid u(z,y) = zy and the Euclidean planes. Under the hypothesis that the
surface is area-stationary, Ritoré and Rosales proved in [76] that the surface must
be congruent to a hyperbolic paraboloid or to a Euclidean plane. If we consider the
class of Euclidean Lipschitz t-graphs, the previous classification does not hold since
there are several examples of area-minimizing surfaces of low regularity, see [73].
The complete classification for C? surfaces was established by Hurtado, Ritoré and
Rosales in [53], by showing that a complete, orientable, connected, stable area-
stationary surface is congruent either to the hyperbolic paraboloid u(x,y) = zy or
to a Euclidean plane. As in the Euclidean setting the stability condition is crucial
in order to discard some minimal surfaces such as helicoids and catenoids.

On the other hand, the study of the regularity of intrinsic graphs (i. e., Rie-
mannian graphs over vertical planes) is a completely different problem since the
area functional for such graphs is not convex. Indeed, Danielli, Garofalo, Nhieu in
[20] discovered that the family of graphs

axt

vl ) = a0

a >0,

are area-stationary but unstable. In [64], Monti, Serra Cassano and Vittone pro-
vided an example of an area-minimizing intrinsic graph of regularity C'*/2 (R?) that
is an intrinsic cone. Therefore the Fuclidean threshold of dimension n = 8 fails
in the sub-Riemannian setting. In [4], Barone Adesi, Serra Cassano and Vittone
classified complete C? area-stationary intrinsic graphs. Later Danielli, Garofalo,
Nhieu and Pauls in [23] showed that a C? complete stable embedded minimal sur-
face in H! with empty characteristic set must be a plane. In [41] Galli and Ritoré
proved that a complete, oriented and stable area-stationary C' surface without
singular points is a vertical plane. Later, Nicolussi Golo and Serra Cassano [65]
showed that Euclidean Lipschitz stable area-stationary intrinsic graphs are verti-
cal planes. Recently, Giovannardi and Ritoré [48] showed that in the Heisenberg
group H' with a sub-Finsler structure, a complete, stable, Euclidean Lipschitz sur-
face without singular points is a vertical plane and Young [85] proved that a ruled
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area-minimizing entire intrinsic graph in H! is a vertical plane by introducing a
family of deformations of graphical strips based on variations of a vertical curve.

In this note, we provide examples of entire perimeter-minimizing t-graphs for
a fixed but arbitrary left-invariant sub-Finsler structure in the first Heisenberg
group H'. Our examples are inspired by the corresponding sub-Riemannian ones in
[73]. Of particular interest are the conical examples, invariant by the non-isotropic
dilations of H!. In the sub-Riemannian case these examples were investigated in
[49] and [73].

The part is organized the following way. In Theorem 5.1 of Section 5.1 we
obtain a necessary and sufficient condition, inspired by Theorem 3.1 in [72], for a
surface to be a critical point of the sub-Finsler area. We assume that the surface is
piecewise C?, and composed of pieces meeting in a C' way along C' curves. This
condition will allow us to construct area-minimizing examples in Proposition 5.7
of Section 5.2, and examples with low regularity in Proposition 5.8. The same
construction, keeping fixed the angle at one side (and hence at the other one) of
the singular line, provides examples of area-minimizing cones, see Corollary 5.9.
Finally, in Section 5.3 we exhibit some examples of area-minimizing cones in the
spirit of [49]. These examples are obtained in Theorem 5.14 from circular sectors
of the area-minimizing cones with one singular half-line obtained in Corollary 5.9.

2. Preliminaries

2.1. The first Heisenberg group H'. We denote by H' the first Heisenberg
group: the 3-dimensional Euclidean space R with coordinates (x,y,t), endowed
with the product * defined by

(a,b,c) * (x,y,t) = (a+ 2, b+ y,c+t+ (—ay + bx).

For p € H', the left translation by p is the diffeomorphism L,(¢) = px¢. A frame
of left-invariant vector fields is given by

0 0 0 7] 0

Y=utVar YTa e e

The horizontal distribution H in H' is the smooth planar distribution generated
by X and Y. The horizontal projection of a vector U onto H will be denoted by
Up. A vector field U is called horizontal if U = Uy. A horizontal curve is a C*
curve whose tangent vector lies in the horizontal distribution.

We shall consider on H! the left-invariant Riemannian metric g = (-, -), so that
{X,Y,T} is a global orthonormal frame, and let D be the Levi-Civita connection
associated to the Riemannian metric g.

We denote by [U, V] the Lie bracket of two C! vector fields U, V on H!. Note
that [X,T] = [Y,T] = 0, while [X,Y] = —2T. The last equality implies that H is a
bracket generating distribution. Moreover, by Frobenius Theorem we have that H
is non-integrable. The vector fields X and Y generate the kernel of the (contact)
1-form w := —y dx + z dy + dt.

We shall consider on H' the (left-invariant) Riemannian metric g = (-, ) so that
{X,Y,T} is an orthonormal basis at every point, and the associated Levi-Civitd
connection D. The modulus of a vector field U with respect to this Riemannian
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metric will be denoted by |U|. The following derivatives can be easily computed

DxX =0, DyY =0, DT =0,
(2.1) DxY =-T, DxT=Y, DyT=-X,
DyX =T, DrX =Y, D;Y=-X

Setting J(U) = Dy T for any vector field U in H! we get J(X) =Y, J(Y) = -X
and J(T) = 0. Therefore —J? coincides with the identity when restricted to the
horizontal distribution. The Riemannian volume of a set F is, up to a constant, the
Haar measure of the group and is denoted by |E|. Since left-translations are affine
Euclidean maps with Jacobian 1, there follows that the Haar measure coincides
with Lebesque measure in R? since left-translations are affine maps with Jacobian
1. More precisely,

T 1 0 O T a
L(a7b,c) Yy | = 0 1 0 Y|+ b
t b —a 1 t c

The integral of a function f with respect to the Riemannian measure is denoted by

[ f dH.
We refer to [76] for notation and background.

2.2. The pseudo-hermitian connection. The pseudo-hermitian connection
V on H' is the only affine connection satisfying the following properties:
(1) V is a metric connection,
(2) Tor(U,V)=2(J(U),V)T for all vector fields U, V.
The existence of the pseudo-hermitian connection can be easily obtained adapting
the proof of existence of the Levi-Civita connection, see Koszul formula, Theorem
3.6 in [26].
We shall use the following relation between the pseudo-hermitian and the Levi-
Civita connections.

LEMMA 2.1. Let U, V and W be vector fields where V. and W are horizontal.
Then the following equation holds

(2.2) (VuV.W) =(DgV,W) + (J(W),V)T,U).
In particular
(2.3) VoV =DyV —(T,U)J(V).

PrOOF. We use Koszul formula for V, see §3 in [26]. The terms in the first
two lines are equal to (DyV, W). The last three terms can be computed using the
expression for the torsion to get

(J(W),V)(T,U).
This proves (2.2). Equation (2.3) follows since (J(V), W) = —(V, J(W)). O
Using Koszul formula it can be easily seen that VX = VY = 0.

COROLLARY 2.2. Let v : I — S be a curve on H' and let V/ds, D/ds be
the covariant derivatives induced by the pseudo-hermitian connection and the Levi-
Civita connection in vy, respectively. Let V be a vector field along v. Then we
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have

\% D
2.4 —V=—=—V-0#T)YJV).
(2.4) —V =2V~ (5, 7)J(V)
In particular, if v is a horizontal curve, the covariant derivatives coincide.

2.3. Immersed surfaces in H'. Following [1, 36] we provide the following
definition.

DEFINITION 2.3 (H-regular surfaces). A real measurable function f defined
on an open set Q C H' is of class C}(2) if the distributional derivative Vg f =
(X f,Yf) is represented by a continuous function. This means that X f, Y f are
continuous functions.

We say that S C H! is an H-regular surface if for each p € H! there exist a
neighborhood U and a function f € Cf(U) such that Vi f # 0 and SNU = {f = 0}.
Then the continuous horizontal unit normal is given by

_ Vaf
IVif|

Given an oriented Euclidean Lipschitz surface S immersed in H', its unit nor-
mal N is defined H?-a.e. in S, where H? is the 2-dimensional Hausdorff measure
associated to the Riemannian distance induced by g. In case S is the boundary
of a set E C H', we always choose the outer unit normal. We say that a point p
belongs to the singular set Sy of S if p € S is a differentiable point and the tangent
space 1,5 coincides with the horizontal distribution #,. Therefore the horizontal
projection of the normal N}, at singular points vanishes. In S \ Sy the horizontal
unit normal v, is defined H?-a.e. by

Vh

Np,

vy = ——
h |Nh|’

where N}, is the horizontal projection of the normal N. The vector field Z is defined
H2-a.e. on S\ Sy by Z = —J(v), and it is tangent to S and horizontal.

H-regularity plays an important role in the regularity theory of sets of finite
sub-Riemannian perimeter. In [36], B. Franchi, R. Serapioni and F. Serra-Cassano
proved that the boundary of such a set is composed of H-regular surfaces and a
singular set of small measure.

2.4. Sub-Finsler norms. The notion of norm we use in these notes is the
one of asymmetric norm. This is a non-negative function || - || : V' — R defined on
a finite-dimensional real vector space V satisfying

(1) ||lv]] = 0 if and and only if v =0,
(2) [|Av]] = Al[v|], for all A > 0 and v € V, and
(3) [lv+wl| < ||| + ||w]], for all v,w € V.

We stress the fact that we are not assuming the symmetry property || —v|| = ||v]|.

Associated to a given a norm || - || in V' we have the set F = {u € V : ||Ju|| <
1}, which is compact, convex and includes 0 in its interior. Reciprocally, given a
compact convex set K with 0 € int(K), the function ||u||x = inf{\A > 0: v € AK}
defines a norm in V so that F' = {u € V : |Ju||x < 1}. The set F' is referred to as
the closed unit ball (centered at 0) of the norm || - ||
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Given a norm || - || and an scalar product (-,-) in V', we consider its dual norm
[| - |« of || - || with respect to (-,-) defined by

lull = sup (u,v).
lvll<1

The dual norm is the support function h of the unit ball K = {u € V : ||u|| < 1}
with respect to the scalar product (-,-). From this point on, we assume that || - ||
is smooth (i.e., it is C*° in V' \ {0}) and strictly convex:

[[Au+ (1= Mv|| <1, forall A€ (0,1),when u #v,||u|| =||v|]| = 1.

Given u € V, the compactness of the unit ball of || - || and the continuity of || -||
implies the existence of ug € V satisfying equality ||u||. = (u, ug). Moreover, it can
be easily checked that ||ug|| = 1. In general, a point wug satisfying this property is
not unique, but uniqueness follows from the assumption that || - || is strictly convex:
this is proved by contradiction assuming the existence of another point wj, with
[lugl| < 1 satistying ||ul|« = (u,up). Of course uj, must also satisfy ||ug|| = 1. Then
all the points v in the segment [ug, ug] satisfy ||v]| < 1 and ||u||« = (u,v); hence
|lv|| = 1. But this contradicts the strict convexity of || - || unless ug = uf,. We shall
define 7(u) as the only vector satisfying ||7(u)|| = 1 and

h(u) = [Julls = (u, 7(w)).

If A > 0 then it is easily checked that 7(Au) = m(u).

We further assume that K is of class C_‘;_, with ¢ > 2. This means that 0K is of
class C*, ¢ > 2, and that the geodesic curvature of 9K is everywhere positive. Hence
the Gauss map N : 9K — S! to the unit circle is a diffeomorphism of class C*~1.
Since # = N1 we conclude that 7 is of class C*~'. Moreover, by Corollary 1.7.3

in [78] we have
U
Vh(u) = N1 <),
|ul
and so h is of class C*.

Given a norm || - ||g in Ho, we extend it by left-invariance to a norm ||-|| in the
whole horizontal distribution H by means of the formula

(2:5) lollp = [1d6;  (0)llo,  pE€H', v €M,

In particular, for a horizontal vector field fX + gY, its norm at a point p € H'
is given by ||f(p)Xo + g(p)Yo|lo. Identifying the vector aXy + bYy € Hoy with the
Euclidean vector (a,b), we can define a norm in R? by the formula ||(a,b)||. =
HOJXQ + bY()Ho.

We consider the norm (|| - ||o)«, dual to || - ||op in Ho, and we extend it by left-
invariance to a norm || - ||« in #H. It can be easily checked that (|| - ||«)p is the dual
norm to || - ||, since

(loll)p = (lld6; ' (@)lo)s = sup  (de; (v), w)

l|wllo<1,wEHo

— sw ()
[lw’[|,<1,w' €Hyp

= ([[vl[p)«-
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When ||-[|o is C'. with { > 2, all norms || ||, are C’,.. Given a horizontal vector
field U of class C, we define 7(U) as the C! horizontal vector field satisfying

(2.6) |U}x = (U, (U)),

or, equivalently, (||U,||p)« = (Up,n(U),) for all p € H'. We recall that 7(fU) =
m(U) for any positive smooth function f.

2.5. The sub-Finsler perimeter. Let E C H! be a measurable set, || - ||x
the left-invariant norm associated to a convex body K C R? so that 0 € int(K),
and Q C H! an open subset. We say that E has locally finite K-perimeter in ) if
for any relatively compact open set V' C Q we have

Px(E,V) = sup {/ div(U)dH : U € HE(V), ||U]| k.00 < 1} < +o0.
E

In this expression, Hg (V) is the space of horizontal vector fields of class C! with
compact support in V, and [|U|[k,cc = sup,ey ||Upl|[x. The integral is computed
with respect to the Riemannian measure dH' of this left-invariant metric.

Let K, K’ bounded convex bodies containing 0 in its interior. Then there exist
constants «, > 0 such that

allz||k < lz||lx < Bllx||x, forall xz e R2.

Let E C H' be a measurable set, Q C H' an open set and V C ) a relatively open
set. Take U € H§(V) a vector field with ||U||k oo < 1. Hence ||aU||x < ||U]|x <1
and

1 1
/ div(U)dH = —/ div(aU) dH' < —|0E|g/ (V),
E o Jp «
Taking supremum over the set of C'' horizontal vector fields with compact support

inV and || ||[x <1, we get Px(E,V) < 2|0E|g/(V). In a similar way we get the
inequality %\8E|KI(V) < Pi(E,V), so that we have

(2.7) 510E|x:(V) < |0Ek|(V) < $10E|x (V).

As a consequence, E has locally finite K-perimeter if and only if it has locally finite
K’-perimeter.

Let E C H' be a set with locally finite K-perimeter in . Given the standard
basis X,Y of the horizontal distribution, we can define a linear functional L :
C(Q,R?) - R by

L(g) = L((g1.92)) = /E div(g1 X + oY) dHL.

For any relatively compact open set V' C  we have
C(V) == sup{L(g) : g € C(V.R?), [|g]| k00 < 1} < +00,

We fix any compact subset C' C Q2 and take a relatively compact open set V'
such that C C V C Q. For each g € Cy(Q2, R?) with support in K we can find a
sequence of C'! functions (g;);en with support in V such that g; converges uniformly
to g. Hence equality

L(g) = Zlggo L(g:)
allows to extend L to a linear functional L : Cy(£2, R?) — R satisfying
sup{L(g) : g € Co(2,R?),supp(9) C C. [|gl[x,00 <1} < C(V) < +00.



14 MANUEL RITORE

The proof of the Riesz Representation Theorem, see § 1.8 in [27], can be
adapted to obtain the existence of a Radon measure px on €2 and a px-measurable
horizontal vector field v in Q so that vgx = 11 X + 1Y, with (v1,15) : Q@ — R? a
1 -measurable function, satisfying

L(g) = / (1 X + g2Y,vie) dpug -
Q
The measure pg is the total variation measure

i (V) = sup{L(g) : g € Co(%R?),supp(g) C V,||g||x,00 < 1}

that coincides with Py (E, V) because L is a continuous extension of L. Henceforth
we denote pg by |0F|k.
Let us check that

(2.8) |(vK)plli,« =1 for |OFE|k-a.e. p.

Here || - || k,« is the dual norm of || - ||x. To prove (2.8) we take a relatively compact
open set V. C  and g € Cp(Q2, R?) with supp(g) C V and ||g||k,cc < 1. Since
(1 X + g2Y,vi) < |[vie|| i« We have

I(g) < / ol s IO .
%

Taking supremum over such g we have
OEI(V) < [ [viclacedioE k.
v

On the other hand, we can take a sequence of functions (h;) = ((h1)i, (h2):) with
support in V such that ||h;||x < 1 and ((h1);X + (h2);Y, vk) converges to ||[vk||k «
|OF|k-a.e. This is a consequence of Lusin’s Theorem, see § 1.2 in [27], and fol-
lows by approximating the measurable function g (vk) by continuous uniformly
bounded functions. Then we would have

[ orlicadioElic = lim ()X + (b)Y, i) dIOE e < OB (V).
Vv K3 oo

So we would have
OB (V) = / vl s -dIOE | &
\%

and so ||vk ||k« =1 for |OF|k-a.e.

Given two convex sets K, K’ C R2 containing 0 in their interiors, we shall
obtain the following representation formula for the sub-finsler perimeter measure
|OF|k and the vector field vg
Vi

(2.9) 0E|k = |lvk/ ||k +|OE| K/, VK = 7.
17

From (2.7), there exist two positive constants A, A such that

This implies that each of the Radon measures |0F|k, |0F|k is absolutely contin-
uous with respect to the other one. Hence both Radon-Nikodym derivatives exist.
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Take a relatively compact open set V C Q and U € H}(V). Then we have

/V<U,1/K/>d|8E|K/ :/VXEdiv(U)dHl
(2.10)

d|OE|x

= U. d|OF |k = U ———— d|OE| k.

J W) dioml = [ 0. G5 v doEl

By the uniqueness of vk, we have
d|OE |k
=———y
doE[g

On the other hand, inserting U € H§(V) in (2.10) with ||U||x < 1 we get

(2.11) 174°¢4 |8E|K/—a.e.

/<U,1/K>d|8E|K:/<U,1/K/>d|8E|K/ g/ v .o d1OE .
v % v
Taking supremum over U we obtain

d|OFE
/ | h{ﬂaEhc:ﬂﬁEthdéy/IWKMKxﬂaEhw
1% \%

d|OF| i
and, since V is arbitrary, we have
d|OFE |k
2.12 ——— < Nk |OF|k-a.e.
(212) T < Il 10Blcae
Substituting (2.11) into (2.12) we have
d|8E|K d|aE|K
- g ’ = 0= 8E -a.e.
08| S 1l = Gog),,  10Flk-ae
Hence we have equality and so
d|OE |k
2.13 —_— = Nk« |OF|g-a.e.
(213) T = vl 10Blcae

Hence we get from equation (2.9) from (2.13) and (2.11).
In the case of a set F with C! boundary S = dF it is not difficult to check that

NG

where NV}, is the horizontal projection of the unit normal to S and dS is the Rie-
mannian measure on S. Indeed, for the closed unit disk D C R? centered at 0 we

0E|k = |[Nnl|k+dS, vk

know that in the C* case vp = vy, and |Np,| = ||Np||p . Hence we have
v
(214) |8E|K = ||1/h||K,*d\8E\D7 VK = 7HZ/}L|TK .

Here |OF|p is the standard sub-Riemannian measure.

REMARK 2.4. Some other notions of perimeter and area for higher codimen-
sional submanifolds have been considered in [37, 57, 45].

Given two convex sets K, K’ C R? containing 0 in their interiors, we have the
following representation formula for the sub-Finsler perimeter measure |0F|x and
the vector field vg
Vi
0E|k = |lvillk «|0B|kr, vk = .

Vil
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Indeed, for the closed unit disk D C R? centered at 0 we know that in the Euclidean

Lipschitz case vp = vp, and |Np| = ||Np||p,« where N is the outer unit normal.

Hence we have

0E i = |[vnllk,«d|OE|p, vic = —b—.
[vnll 5.+

Here |OF|p is the standard sub-Riemannian measure. Moreover, vy, = N, /| Ny | and

|Nw|~1d|OE|p = dS, where dS is the standard Riemannian measure on S. Hence

we get, for a set ¥ with Euclidean Lipschitz boundary S
(2.15) Pi(E,Q) = / [| V|| K, dS,
SNQ

where dS is the Riemannian measure on S, obtained from the area formula using
a local Lipschitz parameterization of S, see Proposition 2.14 in [36]. It coincides
with the 2-dimensional Hausdorff measure associated to the Riemannian distance
induced by g. We stress that here N is the outer unit normal. This choice is
important because of the lack of symmetry of || - ||k and || - || k-

REMARK 2.5. If E has C! boundary OF, then its perimeter P (FE) is equal to
the sub-Finsler area Ay of its boundary, defined by

(2.16) Ak (OE) = / [|Nk|| k¢ o
OF

where N}, is the projection on the horizontal distribution H of the Riemannian
normal N with respect to the metric g, and do is the Riemannian measure of OF.
For more details see §2.4 in [72].

We will often omit the subscript K to simplify the notation.

3. The first variation of sub-Finsler area

3.1. First variation of sub-Finsler area. In this section we fix a convex
body K C R? containing 0 in its interior with Cf_ boundary and consider its
associated left-invariant norm || - ||x in H!. Since the convex body is fixed, we drop
the subscript along this section.

Let S be an oriented C? surface immersed in H'. Let U be a C? vector field
with compact support on S, normal component v = (U, N) and associated one-
parameter group of diffeomorphisms {¢s}scr. In this subsection we compute the
first variation of the sub-Finsler area A(s) = A(ps(S5)). More precisely

THEOREM 3.1. Let S be an oriented C? surface immersed in H'. Let U be a C?
vector field with compact support on S, normal component u = (U, N) and {©s}ser
the associated one-parameter group of diffeomorphisms. Let n = w(vy,). Then we
have

(3.1)
d% SZOA(%(S)) = /s (udivsn — 2u(N, T)(J(Np),n)) dS — /SdiVs (unT) as

where divg is the Riemannian divergence in S, and the superscript T indicates the
tangent projection to S.

In the proof of Theorem 3.1 we shall make use of the following Lemma and its
consequences.
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LEMMA 3.2. Lety:I — H' be a C' curve, where I C R is an open interval,
and V' a horizontal vector field along v. We have
D
ds

PRrROOF. We fix s¢ € I and let p = y(sg). Assume that 7(V(sg)) = aX, + bY),
for some a, b € R. Take the vector field W (s) := aX,5)+bY,(,) along 7. It coincides
with 7(V (so)) when s = sg, and it is the restriction to 7 of the left-invariant vector
field aX + 0Y. In particular, |[(aX +bY ) (s)|lys) = 1 for all s € I. Hence

[V (s)|[« = (V(s), (aX +bY ), (5) forallsel,

(3-2) %HVH* = (- V,m(V)) + (7, )V, J (= (V).

and, since equality holds in the above inequality when s = sg, we have

d d
— Vs« = — V(s),(aX +bY
Bl WVOl= ] V6 @X 4 0)ac)
=G| V0G0
since
s (aX + bY),Y(S) = av'y’(So)X + bV,Y/(SO)Y =0.
S$=8g
The result follows from the relation between the covariant derivatives given in
Equation (2.4). O
REMARK 3.3. In the proof of Lemma 3.2 we have obtained the equality
d \Y
Bl L= (—V,7(V
SNVl = (L V,n(V))

for a horizontal vector field V' along a curve «y. Since V is a metric connection, we
also have

d \Y \Y
IVl = (- V,m(V) +(V, (V).
Hence we get
(3.3) (v, %w(v» =0

for a horizontal vector field V along v, where V/ds is the covariant derivative
induced by the pseudo-hermitian connection on . Taking into account the relation
between the Levi-Civita and pseudo-hermitian connections we deduce from (3.3)
and (2.4)

Dr(v) — (1 T I (r(V))) = 0.

The following is an easy consequence of Lemma 3.2

(3.4) (V,

COROLLARY 3.4. Let F be a vector field tangent to S and ~y an integral curve

of F. We have

D
(3.5) (g5 vn) = —(ET)n, J ().
In particular, if F is horizontal,

(3. () =0,
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PROOF. We take V' = v, and we get (3.5) from equation (3.4). O

PROOF OF THEOREM 3.1. Standard variational arguments, see the proof of
Lemma 4.3 in [76], yield

20 -7 aes)- [ (4

" ds

where N is a smooth choice of unit normal to ¢,(S) for small s. We fix a point
p € S and consider the curve y(s) = ¢s(p). Lemma 3.2 now implies

Nl + [Nl divs U) as,
s=0

d D
ol NNl = (Nodnsp) + (Ups Tp){((Nw)p, I (1)),
s=0 s=0
By the definition of (NV,); we also have
D D
21 (Now =2 (N, — (N, T)T),
ds 5:0( o) ds 3:0( s~ (N5, T) )

where N is the Riemannian unit normal to ¢4(S5). A well-known lemma in Rie-
mannian geometry implies

D

ds

Ns = —(VSU)(}?) - AS(U;—)7
s=0

where Ag is the Weingarten endomorphism of S. Since %L:OT = J(U,) and 1 is
horizontal, calling

B(U) = =(N, T){J(U),m) + (U, T){Nn, J (1)),
we get
oo [Nl = ((=Vsu—As(U"),m)), + B(Uy)
= —(Vsu,n)p + BU;) + (= (As(US),n), + B(U,))
= (= (Vsu,m) = 2u(N, T){J(Ny),n)),, + U, (|INa[.)-
Observe that
—(Vsu,n) =udivg n — divg(un)
= udivgn — divg(un ") — divg(u(N,n)N)
=udivgn — divg(un ') — u||Np||. divs N.

Hence we get
A'(0) = /S (udivsg n — 2u(N, T)(J(Ny),n)) dS

+/ divs (|| Nal|«U T —un') dSs.

s

From here we obtain formula (3.1) since the integral [, ||Ny||.U T dS is equal to 0

by the divergence theorem for Lipschitz vector fields. O
Now we simplify the first term appearing in the first variation formula (3.1).

LEMMA 3.5. Let S be a C? surface immersed in H' with unit normal N hori-
zontal unit normal vy,. Let Z = J(vy). Then we have

(3.7) divsn —2(N, T)(J(Ny),n) = (Dzn, Z).
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PROOF. Let us consider the orthonormal basis in S\ Sy given by the vector
fields Z = —J(v,) and E = (N,T)vp, — |[Np|T = avp, + bT. Using equation (3.5)
with F' = F, we get

(Dgn, E) = a(Dgn, vy) + b(Dpn, T)
= —a({E,T)(n, J(vn)) + b(E((n,T)) — (n, DpT))
—ab(n, J (vn)) — ab(n, J(vn))
= —2ab(n, J (vn)),
as DT = J(E) = aJ(vp) = —aZ. From ab = —(N,T)|N}| we obtain
(D, E) = 2(N.T)(n, (V).

Taking into account this equation and that divg n = (Dzn, S)+(Dgn, E), we obtain
equation (3.7). O

DEFINITION 3.6. Given an oriented surface S immersed in H' endowed with a
smooth strictly convex left-invariant norm ||-||x, its mean curvature is the function

(38) H = <Dz77K,Z>,
defined on S\ Sp.

REMARK 3.7. In [79, 80], the author obtained an expression of the mean
curvature of a C? surface in terms of a parametrization when H' is endowed with
the left-invariant norm || - ||, and defined a notion of distributional mean curvature
for polygonal norms.

COROLLARY 3.8. Let S be an oriented C? surface immersed in H'. Let U be a
C? wvector field with compact support on S\ So, normal component u = (U, N) and
associated one-parameter group of diffeomorphisms {@s}ser. Then

LA = [unas,

(3.9) — :

s=0

where H is the mean curvature of S defined in (3.8).

By equation (3.8), a unit speed horizontal curve I" contained in the regular part
of a surface S satisfy the equation

(3.10) (Zn(()).1) = B,

where D/ds is the covariant derivative along I'. Uniqueness of curves I' satisfying
(3.10) with given initial conditions T'(0), I'(0) cannot be obtained from (3.10). In the
next result we prove that the horizontal components of I" satisfy indeed an ordinary

differential equation, thus providing uniqueness with given initial conditions.

COROLLARY 3.9. Let S be a C? oriented surface immersed in (H, || - ||) with
mean curvature H. Let T : T — S\ Sp be a horizontal curve in the reqular part of S
parameterized by arc-length with T'(s) = (z1(s),x2(s),t(s)). Then v(s) = (x1,x2)
satisfies a differential equation of the form

(3.11) ¥ =F(),
where F(%) = H [A(%)](¥) and A is a nonsingular C' matriz of order 2.
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PROOF. Let ~ be the covariant derivative along the curve I'. Since I' is hori-
zontal and parameterlzed by arc-length, the vector ﬁeld I‘ along I' is proportional
to J(I'). Then there exists a function A : I — R such that

D = \J(D).

Taking scalar product with n =n(J(I')) we get
_(@haM) gl aJ@D)) - H
| .

HJ(F)I* 17(0)]1-

Hence we have
(3.12) (D) 2T = fJ(1) = —HJ(D),

where f = (I, w(J(I)). Since I' = i1 X + #,Y, %f‘ = i X + &Y, and J(I) =
—i9X + @Y, equation (3.12) is equivalent to the system
T &1 + fio = Hio,
(313) ()] &1 + fio 2
1 T(D)||. &2 — fin = —Hir.
Let us compute f = df /ds. Writing m(aX + bY) = 71 (a, )X + mo(a, b)Y we have
f= <F,7T(J(F))> = $1W1(—i2,i‘1) + ig?‘(’g(—i‘2,i‘1)

and so:

G (mr e 2™ a2 ) a4 (- 0~ 3,972 ) &y — gy 4 b
= 1 1(9 289&2 1 2 1(91 28331 2 =4I 25

where the functions 7,7y are evaluated at (—i9,41). Hence equation (3.13) is
equivalent to

(3.14) (”J(Fz'g}j e h) <i> -1 (—x>

The determinant of the square matrix in (3.14) is equal to

1T (1T D) + (gdry — hin)).

Since

gy — hig = (mida — mody) + Zxx]a —||J@)|]. + waﬂa
3,j=1 i,7=1
we get that the determinant is equal to

||J(T sz]@x

7,7=1

and we write

. . 871'1/81'1 87‘(1/3(E2 i’l
Z l‘ll‘]a xl x2) (871'2/81'1 87'(2/8%2 i‘g ’
Since the kernel of (37ri/8:cj)ij is generated by (—i29,41), we have

87T1/8$1 87r1/8:v2 7&0
(971’2/81‘1 87'('2/81‘2 1‘2
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and, since the image of (0m;/0z;) ; is generated by (i1, #2), we get

. . 6771/81‘1 87T1/8$2 jfl
(.131 xQ) (87‘(’2/81‘1 67r2/8x2 jig 7& 0.
So we can invert the matrix in (3.14) to get (3.11). O

REMARK 3.10. It is not difficult to prove that
Zr(J(0) = HD —[|J(@)[|. T.

Indeed it is only necessary to show that (27 (J (), J(I')) = 0, which follows from

(3.6) using that J(I') = vp. Observe that the above equation is equivalent to
[%W(J(F))]h = HI.
Writing I’ = X + ¢, we have

(rfors omlare) ()= ().

However, since the determinant of the square matrix is 0 we cannot invert it to
obtain an ordinary differential equation for (&, ).

LEMMA 3.11. Let || - || be a C% left-invariant norm in H'. Let v : I — R? be
a unit speed clockwise parameterization of a translation of the unit sphere of || - ||
in R? by a vector v € R%2. Let ' be a horizontal lifting of z. Then T satisfies the
equation

(3.15) 1= (27(J(1)),T).

PROOF. We have 7(J(I")) = 71 (J ()X + m2(J(§))Y. Since J(%) is the outer
normal to the unit sphere at v — v we have y — v = (7, (J(I")), m2(J(I'))). Hence
Dr(J(I) =4X +9Y and we get (3.15). O

LEMMA 3.12. Let || - || be a C% left-invariant norm in H' and T' a hori-
zontal curve parameterized by arc-length satisfying the equation <£7T(J(I")),I"> =
H, with H € R. Then o(s) = ha(I'(s/\)) is parameterized by arc-length and

(2w (J(6)),6) = H/A.
PROOF. We have ¢(s) = I'(s/\) and J(&(s)) = J(I'(s/\)). 0

REMARK 3.13. Horizontal straight lines are solutions of

(Zm(J(1),T) =0

since I' is the restriction of a left-invariant vector field in H' and so they are J(I')
and 7w(J(T)).

THEOREM 3.14. Let || - || be a C% left-invariant norm in H'. Let T be a
horizontal curve satisfying the equation
(3.16) (Z7(J(1)),T) = H,

forsome H > 0. ThenT is either a horizontal straight line if H = 0 or the horizontal
lifting of a dilation and traslation of a unit speed clockwise parameterization of the
circle || - || = 1 in R? in case H > 0.
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PrOOF. Horizontal straight lines and horizontal liftings of translations and
dilations of the unit circle ||-|| = 1 in R? satisfy equation (3.16). Uniqueness follow
since the projection to ¢ = 0 satisfy equation (3.11) and, by using translations and
dilations, we can obtain any prescribed initial condition. [

REMARK 3.15. The result in Theorem 3.14 includes that constant mean curva-
ture surfaces for the sub-Riemannian area in the Heisenberg group are foliated by
geodesics. This result can be found, with slight variations, in [12, 15, 13, 42, 41].

To finish this section we prove the following result, that holds trivially for
variations supported in the regular part of S.

PROPOSITION 3.16. Let S be a compact C? oriented surface in (HY,|| - ||)
enclosing a region E. Assume that S has constant mean curvature H and a finite
number of singular points. Then

(1) S is a critical point of the sub-Finsler area for any volume-preserving

variation.
(2) S is a critical point of the functional A — H |- |.

PROOF. It is only necessary to prove that if U is a smooth vector field with
compact support in H' and {p,}ser is its associated flow, then

d
s S:0A(<,05(S)) :/SHudS.

From formula (3.1) this is equivalent to proving that
/ divg (unT) dsS = 0.
s

To compute the integral [ S un ' dS we consider the finite number of singular points
Pi,--.,Dn, and take small disjoint balls B;(p;) centered at the points p;. For € > 0
small enough so that the balls B.(p;) are contained in B; we have

/ divun"ds =" / (&i,un") d(0B.(p;)),
S\UiZ, B:(pi) i=1 0Bc(pi)

where &; is the unit inner normal to OB (p;). Since un' is bounded and the lengths
of 0B.(p;) go to 0 when ¢ — 0 we have

ty 3 [, 0B =0
Since the modulus of
divs(un') = (Vsu,n") +udiven’
= (Vsu,n") +u(diven — (n", N)divg N)
is uniformly bounded, the dominated convergence theorem implies

/ divgun'dS = lim divun' dS
S SP0SS\UL, Be(pi)

—im > [ () dOB(p) =0 0
i=1 aBs(pi)

e—0 4
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COROLLARY 3.17 (Minkowski formula). Let S be a compact C? oriented surface
in (HY, || -]]) enclosing a region E. Assume that S has constant mean curvature H
and a finite number of singular points. Then

(3.17) 3A(S) — 4H|E| = 0.

PROOF. We consider the vector field W = x% + ya% + 2% and its associated
flow o, ((z,y,t)) = (e, ey, e25t). Since

d d
J— A s = A y —_— s E == 4 E 5
T|_Ap)=34), | jeB) =48
Proposition 3.16 implies
d d
0= 2| Alu(S) = Ho|  Ipu(BE)| = 3A(S) - 4H| B =
S 1s=0 Sls=0

3.2. The mean curvature of a horizontal graph. Assume that 2 is an
open set of the xy plane and that u : Q — R is a C'! function. The sub-Finsler area
Aj of the graph of u, when K is a convex body of class Ci, can be computed as

(3.18) AK(gmph(u)):/Q||Vu—|—f*‘||*d£',2

from equation (2.16), since the horizontal unit normal Ny, in the graph is given by

(ua: - yauy + l‘)

Ny, = ,
N (e )P ()2

and
dS = (1+ (uz —y)> + (uy +2)»)Y2dL2.

We remark that the area in equation (3.18) is computed with respect to the down-
ward pointing unit normal to the graph (the one with negative third coordinate).
Since the norm || - ||x is asymmetric, taking the opposite normal would give a
different area.

For the mean curvature of the graph of a C? function we have the following
result.

THEOREM 3.18. Let K be a convex body of class C3 with 0 € int(K). Let
Q be an open set in the xy plane, and v : Q — R a C? function. Then the sub-
Finsler mean curvature Hg in the reqular part of the graph of u with respect to the
downward pointing unit normal is given by

(3.19) Hg = div (7x (Vu + F)).

PROOF. Let v : 2 — R be a C* function with compact support in the
projection of the regular set of graph(u) to . We consider a vector field U
with compact support which coincides with the vector field vT near the graph
of u. If ¢, is the one parameter group of diffeomorphisms associated to U then
vs(z,y,u(z,y)) = (z,y,u(z,y) + sv(z,y)) for all (z,y) € Q and s small enough.
Hence ¢, (graph(u)) = graph(u+ sv) for s small enough. Since || ||k is of class CF
we can represent the dual norm in terms of mx to compute the first variation. So
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we have

5 Axteteah() = [ 2

s (V(u+ sv) + F, g (V(u+ sv) + F)) dLC?
s=0

s=0

/ (Vu, mx (Vu+ F)) dL?
Q
7k (V(u+ sv) + F)) dL?

d
Jr/(VquF,—
Q dS s=0

= —/ v div (mg (Vu+ F)) dC?
Q

/ (U, N) div (nx(Vu + F)) dS.
graph(u)

In the third equality we have used equation (3.3) and in the fourth one that
—vdL? = (U,N)dS. Comparing the last formula with the first variation formula
involving the mean curvature (3.9) we obtain (3.19). O

REMARK 3.19. Recall that in the sub-Riemannian case K is the unit disk D
and that mp(v) = v/|v| for any v # 0, so the sub-Riemannian mean curvature of
the graph satisfies

Vu+ F
Hp =div| =——=
b= < |Vu + F| ) ’

see Cheng et al. [14].

3.3. The singular set of C? surfaces with constant mean curvature.
The singular set of a C? surface with a bounded condition on the sub-Riemannian
mean curvature was considered in a paper by Cheng et al. [12] and, for symmetric
sub-Finsler norms, in § 7 of [34]. In both cases, which include the case where the
mean curvature is constant, it is composed of isolated points and C! curves. In the
general sub-Finsler case we have the following result.

THEOREM 3.20. Let K C R? be a convex body with C%. boundary and 0 € int(K),
and let S C H' be a C? surface with constant mean curvature. Then the singular
set Sy of S is composed of isolated points and C' curves.

PrOOF. We take py = (0, %0,%0) € So. Since T, S = H,, we can describe the
surface around pg as the graph of a C? function u : Q — R, where Q is an open set
in the zy plane containing the projection (xg,yg) of pg. The graph of u, graph(u),
is an open set of S containing py.

The intersection graph(u) NSy is composed of the points of graph(u) whose
projection (x,y) satisfies the equations

(3.20) Uy —Y = Uy +2 =0.
Let us consider the map G : Q C R?2 — R? defined by
G = (ug — Yy, uy + ).
Its derivative is given by
. Uy Ugy — 1
dG = (uxy—kl Uy )

We observe that rank dG > 1 since ugzy — 1, uzy + 1 cannot vanish simultaneously.
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If rank dG(zg, yo) = 2 then the inverse function theorem implies that there is
a neighborhood U C  of (xg,y0) so that (zg,yo) is the only point in U which
satisfies equation (3.20). Hence py is an isolated singular point of S.!

If rank dG(xo,yo) = 1 then the kernel of dG(xo,yo) is 1-dimensional. We take
any (a,b) € R? with a® + b? = 1 and such that

(a7b) : dG(x07y0) 7& (070)

The gradient of the function F, ; : @ — R, defined by F, p = a (uz—y)+b (uy+2), is
equal to (a,b)-dG(z,y). Since VF, y(xo, yo) # (0,0), the implicit function theorem
implies the existence of an open set U, C 2 so that

{(xay) € Ua,b : Fa,b(m7y) = 0}

is a C! curve.

Now fix another (a’,’) € R? such that (a')? + (V)% = 1, (, V') - dG(z0,v0) #
(0,0), and so that (a,b) and (a’,b') are linearly independent. Taking U = U, N
Uq pr we conclude that

{(:E7y) eU: Fopla,y) = 0}, {(:r7y) eU: Fpy(r,y) = 0}

are C' curves Iy, and Ty 1, respectively. The projection of SyNgraph(u) inside U
is contained in I'y , N Ty p. Moreover, since (a,b), (¢’,’) are linearly independent,
we conclude that the projection of Sy N graph(u) inside U is ezactly the set I'y p N
Fa’,b’~

To end the proof let us show that the C' curves 'y, T'orpr coincide in an
open neighborhood of (x¢, yo). Observe that 'y, and I'y py are tangent at (zo, o).
We reason by contradiction assuming that I', ;, and I'ys v do not coincide in any
neighborhood of (zo, yo).

Assume first that pg is not an isolated point of Sy. Then there is a sequence of
piecewise smooth domains €; converging in Hausdorff distance to (xg, o). Each one
is bounded by a segment of I'; ;, and a segment of I'y/ jy meeting at the endpoints.
Observe that (a,b) is perpendicular to Vu+ F on I'y 5 and (a', ') is perpendicular
to Vu+ F on 'y py. Hence g (Vu + F) is a constant vector on each component,
equal to mx (£(—b,a)) on I'y p and to mx (£(—b',a’)) on I'y 1. On the other hand,
the outer unit normal v; to ; approaches the unit vector £V F, ,/|V F, (0, o)
so that (mx(Vu + F),v;) approaches the quantity ¢y = £(mx(£(-b,a)),vp) on
Top and ¢ = H(mr(£(=b,a’),vp). For i large enough, the distance function r to
(20, Yo) is monotone over the curves I'y ; and I'y/ »» and we have

0<r; <r(x,y) <s

for any (x,y) € ;. Finally observe that ; is contained in a cone of vertex (zo, yo)
and angle 6;, with lim;_, . 6; = 0 since I'y 3, T4y are tangent at (xo, yo).
Applying the divergence theorem to the mean curvature equation (3.19) we get

/{mﬁ (e (Vi + F), ) = /Q div(r i (Vi + F)) = /Q H.

We estimate
S |Cl + CQ|

‘/ani (r(Vu+ F), 1) ‘ Z 9 (8i —13).

IMoreover, Lemma 3.2 in [12] implies that, if pg is not isolated in Sy then det dG(zo,yo) = 0
and so rank dG(zo,yo) = 1.
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1—‘a,b

Fa/,b’

On the other hand, assuming s; < 1 we get

si  poit0;
’/ H‘g‘/ / Hrdrd9‘<|H|9i(si—7“i)~
Q; T [e7)

|Cl + Cg|
2
Letting 6; — 0 we get ¢; = +ca, a contradiction since (a,b) and (a’,b’) are linearly
independent.

Finally we consider the case when I', j, and I'ys 1 do not meet in a neighborhood
of (x0,y0) except at (xg,yo). In this case we take the region §2; surrounded by two
segments of I'yp, Ty leaving (xo, yo) in the same direction, and 0B(r;), where
the Euclidean ball B(r;) C R? is centered at (xo, yo).

Hence we get

< |H]6;.

0B(r;)

Since the arc-length of Q;NdB(r;) is bounded by 6;7;, we conclude that ¢; = 4c»
as in the previous case. O

REMARK 3.21. The hypothesis on the mean curvature in Theorem 3.3 in [12]
is that H < C/r near a singular point for some constant C' > 0. Here r is the
Fuclidean distance to the singular point. In this case, using the notation in the
proof of Theorem 3.20, it is enough to estimate

si  po+0; C
/ H ‘ < ‘/ / — rdrdf ‘ < C;(si —ry).
Q; T Q; r

3.4. Existence of isoperimetric sets. For the existence of isoperimetric
sets we follow the paper by Leonardi and Rigot [56] on Carnot groups, and the
adaptation to symmetric sub-Finsler norms in § 3 of [34].
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3.5. Pansu-Wulff spheres and examples. We consider a convex body K C
R? containing 0 in its interior and the associated norm || - ||x in H!.

DEFINITION 3.22. Consider a clockwise-oriented L-periodic parameterization
7 : R — R? of the curve || - || = 1. For fixed v € R take the translated curve
u + y(u+v) —v(v) and its horizontal lifting T',, : R — H! with initial point (0,0, 0)
at u=0.

The set Sk is defined as

(3.21) Sk = J Tu(0,L]).
vel0,L)

We shall refer to Sk as the Pansu- Wulff sphere associated to the left-invariant norm
k-

When K = D, the closed unit disk centered at the origin in R?, the Pansu-Wulff
sphere Sp is Pansu’s sphere, see [66, 67].

REMARK 3.23. In the construction of the Pansu-Wulff sphere we are not as-
suming any regularity on the boundary of K. Since K is a locally Lipschitz curve,
its horizontal lifting is well defined.

REMARK 3.24. The set Sk is union of curves leaving from (0,0,0) that meet
again at the point (0,0, 2|K]). Since v is L-periodic, the construction is L-periodic
in v and so Sk is the image of a continuous map from a sphere to H'.

EXAMPLE 3.25. Given the Euclidean norm | - | in R? and a = (a;,az), where
ai,as > 0, we define the norm:

||($171'2)||a = |(%7 %”

FIGURE 3. The Pansu-Wulff sphere associated to the norm || - ||
with @ = (1,1.5). Observe that the projection to the horizontal
plane ¢t = 0 is an ellipse with semiaxes of lengths 2 and 3.
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The unit ball K, for this norm is an ellipsoid with axes of length a; and as.
We parameterize clockwise the unit circle of the norm || - ||k by

v(s) = (a1 sin(s),az cos(s)), se€R.

This parameterization is injective of period 27w. The translation of this curve to the
origin by the point —vy(v) is given by the curve

Ay (u) = ~(u+v) =7(v).
The horizontal lifting of A, is given by (A, (w),t,(u)), where

to(u) = / 1A - T(A(6)] de.

Since
Ay(€) - T(An () = (v(€ +v) —7(v) - J(H(€ + v)),

we get
ty(u) = araz(u + sin(v) cos(u + v) — cos(v) sin(u + v)).
Hence a parameterization of Sk, is given by
z(u,v) = ay (sin(u+ v) —sin(v))
y(u,v) = az(cos(u + v) — sin(v)),
t(u,v) = araz (u + sin(v) cos(u + v) — cos(v) sin(u + v)).

EXAMPLE 3.26. Given any convex set K containing 0 in its interior, we can
parameterize its Lipschitz boundary 0K as

v(s) = (x(s),y(s)) = r(s) (sin(s),cos(s)), s€R.
where r(s) = p(sin(s),cos(s)) and p is the radial function of K defined as p(u) =
sup{\ = 0: \u € K} for any vector u of modulus 1 in R?.
A horizontal lifting of the curve 7 passing through the point (y(0),0) can be
obtained computing

i(s) = /0 () - T((E) de = /O Tr2(6) de,

since J(§(s)) = r(s) (sin(s), cos(s)) + 7(s) (— cos(s), sin(s)). Hence the curve

I(s) = (e 9(6).1(5) = (165 [ ") de)

is a horizontal lifting of the curve ~.
Now we translate all these curves to pass through the origin of H'. This way
we get the parameterization @i of Sk given by

(u,v) = €_p@)(T'(u +v))
for (u,v) € [0,27]?. Since
e(zo,yo,to)(xa Y, t) = (Jf + o,y + Yo, t+ tO + (myO - xol/))7
computing the left-translation using the expression for I' obtained before we get
z(u,v) = r(u+v)sin(u + v) — r(v) sin(v),
y(u,v) = r(u+ v) cos(u + v) — r(v) cos(v),
t(u,v) =rW)r(u+v) ( sin(v) cos(u + v) — cos(v) sin(u + v))
+ [T r2(€) de.

(3.22)
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The parameterization given by equations (3.22) is useful to obtain regularity
properties of Sg. If OK is of class C*, ¢ > 0, its radial function r(s) = (x(s)? +
y(s)?)/? is of class C* and hence the parameterization ® g is an immersion of class
C* for 0 < u < 27.

EXAMPLE 3.27. Let ¢ > 1. We consider the ¢-norm in R? defined as

1/¢
s @2)lle = (faal” + foal) "
Denote by K, the unit ball for this f-norm. We can parametrize the unit circle
[|-]le = 1 using (3.22). In this case

1
plr,y) = ————7,  |@yl=1
(Il + 1)/
By the previous example, the Pansu-Wulff sphere Sk, is parameterized by equations
(3.22).

REMARK 3.28. Assume we have a sequence of of convex sets (K;) converging in
Hausdorff distance to a limit convex set K. Then the radial functions rx, uniformly
converge to the radial function 7 of the limit set K. Hence equations (3.22) imply
that the Pansu-Wulff spheres Sk, converge in Hausdorff distance to a ball bounded
by the horizontal liftings of translations of a parameterization v of 0K.

Since limg—1 || - |l¢ = || - ||1 and limy—oo || ||e = || - ||, We can use the previous
argument to show that the Pansu-Wulff spheres Sg, converge to the two spheres S;
and S,,. Under these conditions, it is not difficult to check that the corresponding
perimeters converge to the limit perimeter.

2

FIGURE 4. The Pansu-Wulff sphere Sk, for the ¢-norm, ¢ = 1.5.
The horizontal curve is the projection of the equator to the plane
t = 0. We observe that the Pansu-Wulff sphere projects to the set
[| - ]le <2 in the ¢ = 0 plane.
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FIGURE 6. The sphere S., obtained as Hausdorff limit of the
Pansu-Wulff spheres Sk, of the f-norm when ¢ converges to oo

EXAMPLE 3.29. Let us consider the equilateral triangle 7' in the plane R?
defined as the convex envelope of the points a; = (0,1), ag = (v/3/2,—1/2), a3 =
(—v/3/1,-1/2). We can define a norm || - ||z by the equality

||z||7 = max {(z,a;) : i =1,2,3}, z€R%
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FIGURE 7. The Pansu-Wulff sphere St for the norm ||-||7,¢, with
r=2.
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The unit ball of the norm || - ||z is the triangle T. It is neither smooth nor
strictly convex. However we may consider the approximating norms

lellre = (gmax{@,a»,ov) "

31
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These norms are smooth and strictly convex and lim_, ||z||7,c = ||z||r. Hence
the Pansu-Wulff spheres Sk,., converge in Hausdorff distance when £ — oo to the
sphere Sy obtained by traslating &7 to touch the origin and lifting the obtained
curves as horizontal ones to H'.

3.6. Geometric properties of the Pansu-Wulff spheres. In this section
we show several geometric properties of the Pansu-Wulff spheres S associated with
a left-invariant norm || - || . We start by looking at the projection of the sphere to
the ¢t = 0 plane. This projection is determined by the geometry of the convex set
K.

Given a convex body K C R"™, the difference body of K is the set

DK=K-K={x—y:z,y€ K}

The difference body DK is a centrally symmetric convex body. This means that
—x € DK whenever x € DK. If hg is the support function of K then the support
function of DK is given by

hDK(u) = hK(’U,) + hK(—u),
see [78, p. 140]. This is the width of K in the direction of u.

LEMMA 3.30. Let K C R" be a convex body with 0 € int(K). We consider the
set

(3.23) K= | (-p+K).
peEOK

Then we have

(1) 0 € Ko.

(2) Ky is a convez body.

(3) Ky is the difference body of K. In particular, Ky is centrally symmetric.
(4) If K is centrally symmetric then Ko = 2K.

(5) We have

U (p+EK)= |J (-p+0K).

pEOK pEOK

PRrROOF. To prove 1 take into account that 0 = —p+p € —p+ K C K| for any
p € 0K.
To prove 2, we take p1,ps € 0K, q1,q2 € K and A € [0,1]. Then

A=p1+a@) + 1 =N (=p2+ ) =—pr+ax,
where
pax = Ap1 + (1 — N)pa, o =Aq1 + (1= N)ga.
If py = ¢\ then —py + ¢g» = 0 € K. Otherwise the segment [py,¢y] is not

trivial and contained in K. Let g > 1 such that gy + uo(pa —gx) € K. The value
o is computed as the supremum of the set {u > 0: gx + u(pr —qn) € K}. We have

—px+ax = —(an + po(px —an)) + (an + (o — 1)(px — q0))-

The point gy + po(px — gx) belongs to 0K by the choice of py and the point
gx + (o — 1)(pa — gx) belongs to K since 0 < pg — 1 < po. Hence —py + ¢x € Ko
and so K| is convex.

To prove 3, we take a vector v with (v,v) = 1. Let ¢ € 9Ky such that

(3.24) hi,(v) = (q,v) = (z,v) V¥ z € K.
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By the definition of Ky, there exists p € 0K such that ¢ € —p + K. We claim
that ¢ € —p + OK: otherwise p + ¢ € int(K) and there exists € > 0 such that
p+q+ev e K. So we have

(—p+ (p+q+ev),v) =(q+ev,v) = (q,v) +& > (q,v).

Since p+ g +ev € K this yields a contradiction. Hence ¢ € —p+ 0K = 9(—p+ K)
for some p € 0K.

Since —p + K C K and ¢ is a boundary point for both sets, we deduce that v
is a normal vector to —p + K at gq. As h_,1x(v) = —(p,v) + hx(v),we have

hicy (0) = hopir(v) = hi (v) + (p, —v).

It remains to prove that hx(—v) = (p,—v). Assume by contradiction that
(p, —v) < hg(—v) = (x, —v) for some z € OK. Then we have

<*.’,E + (p+ Q)vv> = <7‘T + D, ’U> + <Qa U> > <q,’U>,
that cannot hold by (3.24) since p+¢g € K andso —x+p+qg € —x+ K C Ky.

To prove 4, we note that hx(v) = hx(—v) when K is centrally symmmetric
and, by 3, hx, = 2hg. Hence K = 2K.

Finally, to prove 5 we notice that (J,cox (—p + K) D U,cox(—p + 0K). To
prove the remaining inclusion we take p € 0K and v € K such that g = —p+u €
Upeax(=p + K). Then Lemma 3.31 allows us to find pi,u1 € 9K such that
g=—-p+u=—p +u. HencquUpeaK(—p+8K). O

LEMMA 3.31. Let K C R be a convex body, and a,b € K. Then there exist
p,q € OK such thatb—a = q— p.

PrOOF. If a =bora,b € OK the result follows trivially. Henceforth we assume
a # b and that at least a or b is an interior point of K. We pick a point ¢ € K out
of the line ab. Let P be the plane containing a,b,c and W = K N P. The set W
is a convex body in P and the boundary of W in P is contained in 0K. We take
orthogonal coordinates (z,y) in P so that (b — a) points into the positive direction
of the y-axis. Let I be the orthogonal projection in P of W onto the z-axis.

Given x € I, define the set W(z) as {y € R : (z,y) € W}. A simple ap-
plication of Kuratowski criterion, see Theorem 1.8.8 in [78], implies that W (x;)
converges to W (x) in Hausdorff distance when z; converges to x. Hence the func-
tion x € I — |W(x)| is continuous and takes a value larger than ||b — al| at the
projection of a,b over the z-axis. If |W(z)| = ||b — a|| for some = € I, we take
as p,q the extreme points of the interval W (z) chosen so that ¢ —p = b —a to
conclude the proof. Otherwise, we would have |W(zg)| > ||b — al| at an extreme

point xg of I. We may choose two points p,q € W (xg) such that |[p, q]| = ||b — al]
and ¢ —p = b — a. Since W (xg) is contained in the boundary of W in P, it is
contained in 0K and so p,q € 0K. O

Now we refine the results in Lemma 3.30 when K is strictly convex and has
boundary of class Cf;_, ¢ > 2. We say that a convex body K is of class C’f_, {>1,

when 9K is of class C and its normal map Ng : 9K — S! is a diffeomorphism of
class C¢1.

COROLLARY 3.32. Let K C R? be a convex body containing 0 as interior point.
Then

(1) If K C R? is strictly conver, then K is strictly convex.
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(2) If K is of class C, £ > 2, then Ky is of class C*..

PRrROOF. To prove that K is strictly convex, we take two different points x; —
ZTo, Y1 — Y2 € 0Kq, with z;,y; € K, i = 1,2. Then the four points belong to the
boundary of K. For any A € (0,1), we write the convex combination A(z; — z2) +

(1 =XN)(y1 — y2) as
Ty —yr = (A1 + (1 = ANy1) — (Azz + (1 = Nya).
Since 1 # y1 or Ty # Y2, the strict convexity of K implies that x or y, is an
interior point of K. Then x) — y, is an interior point of Kj. Since A € (0,1) and
the boundary points are arbitrary, the set Ky is strictly convex.
To prove the boundary regularity of Ky we follow Schneider’s arguments [78,
p. 115] and observe that the support function hx of K is defined, when u # 0, by

hic(u) = (u, N (w),

where N : 0K — S' is the Gauss map, a diffeomorphism of class C*~! since K is
of class C%. By Corollary 7.1.3 in [78]

(3.25) Vhi(u) = Ny <|“|>
u

and so hg is of class C*. This implies that the support function of Ky, hg,(u) =

hi(u) + hx(—u), is of class C*. Hence the polar body K¢ of Ky has boundary of

class C*. The Gauss map Nk; of Kj can be described as

Ng' (w)

[N ()]

where p(K¢,-) = hi'(-) is the radial function of K¢, of class C*~'. Hence Nk; is a

diffeomorphism of class C*~! and so K¢ is of class Cﬁ. Now the support function

of K is of class C’i and we reason in the same way interchanging the roles of K
and Ky to get the result. (I

Nis @ p(Kg,u)u =

REMARK 3.33. If K C R? is a centrally symmetric convex body, for any p € 0K,
the line passing through p and —p divides K into two regions of equal area. Hence
the line through 0 and —2p divides —p+ K into two regions of the same area. When
p moves along 0K, the point —2p parametrizes 0(2K).

Let K be a convex set of class Cﬁ, ¢ >2 C=0Kand v: R — R? an
L-periodic clockwise arc-length parameterization of C, with L = length(C). The
set Ko = Upec(*p + K) has smooth boundary Cy. For any v € R, we denote
by vu(u) = v(u + v) — y(v). Let T'y = (y4,t,) be the horizontal lifting of 7, with
t,(0) = 0. If we call Q,(u) the planar region delimited by the segment [0, ~,(u)]
and the restriction of 7, to [0,u] then a standard application of the Divergence
Theorem to the vector field 9:8% + ya% implies

() = / o TN (E) dE = 210 (u).

Our next goal is to prove that Sk is the union of two graphs defined in Ky of
class C? and coinciding on 0Kj.

THEOREM 3.34. Let K C R? be a convex body with Cﬁ boundary, £ > 2. Then
(1) Sk is of class C* outside the poles.
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(2) There exist two functions g1,g2 : Ko — R of class C* on int(Ky) such
that
Sk = graph(g1) U graph(gz),
with g1 > go on int(Ky) and g1 = g2 on Cy. This imples that Sk is an
embedded surface.
Moreover, if K is centrally symmetric then g1 + g2 = 2| K| and hence
Sk is symmetric with respect to the horizontal Fuclidean plane t = |K]|.

DEFINITION 3.35. The domain delimited by the embedded sphere Sk is a ball
Bk that we call the Pansu- Wulff shape of || - || k-

PROOF OF THEOREM 3.34. That S is C! outside the singular set follows
from the parameterization (3.22) since the function 7(s) is of class C*. This proves
1.

We break the proof of 2 into several steps. Recall that C' = 90K and Cy = 0Kj.

Step 1. Given xz € Ky\{0}, we claim that x € C' — p for some p € C if and
only if the segment [p,p + ] is contained in K and p,p + a € C. This means that
the number of curves C' — p, with p € C, passing through x # 0 coincides with the
number of segments parallel to z of length |x| and boundary points in C. This step
is trivial.

Step 2. Given z € Ky \ {0}, the number of segments [p, p + 2] contained in K
with p,p+a € C is either 1 or 2. The first case corresponds to maximal length and
happens if and only if x belongs to Cj.

To prove this we consider v = z/|z| and a line L orthogonal to v. For any z in
L we consider the intersection I, = L, N K, where L, is the line passing through
z with direction v. The set J = {z € L : I, # (0} is a non-trivial segment in L.
The strict convexity of K implies that the map F': J — R defined by F(z) = |I,|
is strictly concave. Since F' vanishes at the extreme points of J, it has just one
maximum point zo € int(J) and each value in the interval (0, F(z)) is taken by
two different points in J. The observation that there is a bijective correspondence
between the segments [p,p + ] contained in K with p,p + « € C and the points
z € L with F(z) = |z| proves the first part of the claim.

K L

pt+x

FIGURE 9. Construction of the map F'

To prove the second part of the claim we fix some x € Ky. We take p € C such
that the segment [p,p + x| is contained in K and p,p + x € C. Assume first that
x € Cp. If there were a larger segment [q, ¢+ px] contained in K with ¢,q+ px € C
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and g > 1 then we would have uxr € C'—q C Ky, a contradiction. Hence the length
of [p,p + ] is is the largest possible in the direction of x. Assume now that the
length of [p, p + x] yields the maximum of length of intervals contained in K in the
direction of z. If € Cy then z is an interior point of Ky and, since 0 € int(Kj),
there would exist A > 1 such that Az € K. Hence there is some g € C such that
Ar € C — p and the segment [¢,q + A\z] C C and has length larger than |z|, a
contradiction that proves that = € Cy.

Step 8. Given any point = € int(Kjy), there are exactly two points in S at
heights g1(x) > ga2(z). In case K is centrally symmetric then g1 (z) + g2(x) = 2|K]|.

By the previous steps, there are exactly two points p, ¢ € C' so that p+x,q+x €
C' and the segments [p,p + ], [¢q, ¢ + x] are contained in K. We may assume that
p,p+ x,q + x,q are ordered clockwise along C. The heights of the points in Sg
projecting over x are given by twice the areas of the sets A and B, where A is
determined by the portion of C' from p to p + x and the segment [p + x,p|, and B
is determined by the portion of C from ¢ to ¢ + x and the segment [¢q + x, ¢]. Since
A is properly contained in B we have go(x) = 2|A| < 2|B| = g1(x).

In case K is centrally symmetric, the central symmetry maps p + = to ¢ and
q + x to p since [p,p + z| and [g, ¢ + z] are the only segments in K of length |z
with boundary points on C. Hence |A| + |B| = | K| and so g1(x) + g2(x) = 2|K]|.

Step 4. The functions g1, g2 are of class C* in int(Kj) \ {0}.

This follows from the implicit function theorem since Sy is C¢ outside the
poles. O

THEOREM 3.36. Let K C R? be a convex body of class Ci. Then Sk is of class
C? around the poles.

ProoF. We consider a horizontal lifting I' = (x, y,t) of a clockwise arc-length
parametrization vy of K. Then a parameterization of Sk is given by (x,y,t)(u,v) =
{_p@y(I'(u +v)). This means

x(u,v) = z(u +v) — 2(v),
(3.26) y(u,v) = y(u+v) —y(v),

t(u,v) =t(u+v) — t(v) — z(u+v)y(v) + y(u + v)z(v).
The tangent vectors 9/0u, d/0u are the image of (1,0) and (0, 1) under the param-
eterization and are given by

% =z(u+v) X +g(ut+v)Y.

% = (¢(u+v) — () X + (glu+v) —g(v)) Y + h(u,v) T,
where
(3.27) h(u,v) = 2(&(v) (y(u +v) = y(v)) = §(v)(@(u+v) = 2(v))).

Geometrically, h(u,v) is the scalar product of the position vector (z(u + v) —
z(v),y(u + v) — y(v)) with J((Z,7)), that is always negative for v > 0. A Rie-
mannian unit normal vector N can be easily computed from the expressions of
0/0u and 9/0v and is given by

h(g(u+v)X —@(u+0)Y) +gT

(3.28) N = )"

)
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where
(3.29) g(u,v) = &(v)y(u+ v) — g(v)i(u + v).
We have
I g
INn| = ————7, (NT)=—"55
(h? +92)1/2 (12 +g2)1/2

Let us see that Sk is a C? surface near the south pole (0,0, 0). The arguments
for the north pole of are similar. To see that Sk is C' near the south pole, it is
enough to check that N extends continuously to u = 0. Let us see that

(3.30) lim  N(u,v)=-T.

(u,0)=(0,v0)
Since g < 0, from the expression (3.28) it is enough to prove that
h

(3.31) (u,v)lgr(lo,'uo) E(% v) = 0.

Since = and y are functions of class C2, we use Taylor expansions around v to get
z(u+v) =x() + (v)u+ R(u,v)u, ylu+v)=y)+yv)u+ R(u,v)u,
Z(u+v) =z(v) + z(v)u + R(u,v)u, gylu+v)=7gw)+ jv)u+ R(u,v)u.

In the above equations R denotes a continuous functions of (u,v) (depending on

the equation) that converges to 0 when u — 0 independently of v. This follows
from the integral expression for the reminder in Taylor’s expansion. Then we have

. . R(u,v)u
lim —(u,v)=  lim
(u,0)—(0,00) g (u,0)=(0,00) —K(V)u + R(u,v)u
= lim _ Ry 0
(u,0)=(0,00) —kK(v) + R(u,v)

where
o) = (3 — ) (0
is the (positive) geodesic curvature of 4. This proves (3.31) and so Sk is of class
C! around (0,0,0).
To prove that Sk is of class C? around the origin it is enough to show that the
Riemannian second fundamental form of Sk converges to 0 when (u,v) — (0,vo).
We first compute

lim  Dgyg,N.
(u,v)—(0,v0) /0
Since
9 hy(U+v)> 0 <h:‘c(u+v)> g ;
PorouN =5\ Je s 2) X " u Y + J(2
as 8<W o\ s ) T s T

(i) )T
Ju h? + g2 h2 + g2

A direct computation taking into account % = 2g yields

ou \/m - (h2 + ¢2)3/2° ou /7h2+92 - (h2 + ¢2)3/2"
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It is straightforward to check from the Taylor expressions that

im o) =  lim —k(vo)u? + R(u, v)u? _ 1 .
(u,0)>(0,00) g2 (u,0)=(0,00) K(vg)?u? + R(u,v)u®  kK(vg)

Then we immediately get, dividing by —g¢2,

. P h . -2+ % 32
lim — | —YV/— = lim TThNo L aNa7o =-—1
(u,0)=(0,00) Ou \ \/h2 + ¢2 (u,0)=(0,00) ((5)? +1)3/2
and
D)o CEEETR
()= 00) Qu\ /A2 +¢2 ) (o)) (B)241)3/2 7

Taking limits in (3.32) we get
lim  Dy/guN =J(Z) = J(Z)+0=0.

(u,v)—(0,v0)

We complete % to an orthonormal basis of the tangent plane by adding the
vector

E = v ou’ dv/ du )
1= 217
Since limy, ) (0,00) % =0, we have
lim DN = lim Dgs,N
()2 000) T () (0,00) 7?

= lim — 9(__n J(Z) + o 9
()= (0.0) v \/m Ou v\ (h2+¢g)/2) )

A computation shows that

8( h )_92%%% 8( g )_h2gi hok
w\\/n2+g2) B2+ w\nrtg2) (WP +g2)P?%]
We trivially have
('u,v)h—>n(10,vo) % wv) = ('u,v)l—>n(10,vo) %(u, 'U) =0.
Hence
(u,0)—(0,v0) OV \/W ()3 (0.00) ((%)2 " 1)3/2

On the other hand
1 0h h Og

lim a(h > - m e e
(u,0)—(0,00) OV \ /B2 + ¢2 (u,0)—=(0,00) (h2 + g2)3/2
This equality holds from the Taylor expansions since
10h
0 (u,v) =  lim Rlu, v)u =
(u,0)=(0,00) —K(V)u + R(u,v)u

im -
(u,0)—=(0,00) g OV
So we conclude that lim, )—(0,0,) PEN = 0. (]
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3.7. Minimization property of the Pansu-Wulff shapes. We prove in
this section a minimization property satisfied by the balls B . Let K be a convex
body containing 0 in its interior. We assume that K is of class Ci, with ¢ > 2.

REMARK 3.37. Existence of isoperimetric regions in Carnot and nilpotent
groups endowed with a sub-Finsler norm is proved in [71]. In the Heisenberg
group H' with a sub-Finsler norm this is done in [34, Thm. 3.1]. Proofs are based
on Leonardi-Rigot’s paper [56].

DEFINITION 3.38. Given Sk, we let g : Ky — R be the function g(z) =
(g1(x) + g2(x))/2, where g1 and gy are the functions obtained in Theorem 3.34.

We also introduce the notation Si; := Sk N{(x,t) : t > g(2)}, Sk := SN{(z,t) :
t < g(x)} and Dy = {(x,g(x)) : x € Kp}.

THEOREM 3.39. Let || - ||x be the norm associated to a convex body K C R? of

class Cﬁ, with > 2. Letr >0 and h: 7Ky — R a C° function. Consider a subset
E C H! with finite volume and finite K -perimeter such that

graph(h) C E C rKy x R.
Then
(3.33) |0E|k > |0BE|Kk,
where By is the Wulff shape in (H', || - ||x) with |E| = |Bg|.

PRrOOF. Let g, : 7Ky — R the function defined by g,(z) = 7“29(%:1:), where g is
the function in Definition 3.38. Let D be the graph of g,.. We know that D divides
the Wulff shape Sk into two parts TS;'_( and rSy. Let W and W~ the vector
fields in 7Ky x R\ L defined by translating vertically the vector fields

WK(VO)’TS;’ FK(VO)‘TS;(’

respectively. Here 1 is the horizontal unit normal to Sgk.
As a first step in the proof we are going to show that if ¥ C rKy x R is a set
of finite volume and K-perimeter so that rel int(D) C int(F'), then the inequality

(3.34) 1IF| </<W+—W—,ND>dD+|aF|K
D

holds, where Np is the Riemannian normal pointing down and dD is the Riemann-
ian measure of D. Equality holds in (3.34) if and only if W+ = 7k (v,) |0k F|-a.e.
on Ft =Fn{t>g-} and W~ =7k () |0k F|-a.e. on F~ = FN{t < g.}. Here
vy, is the horizontal unit normal to F.

To prove (3.34) we consider two families of functions. For 0 < ¢ < 1 we consider
smooth functions ¢, depending on the Riemannian distance to the vertical axis
L ={z=y =0} sothat 0 < . < 1and

pe(p) =0, d(p,L
e:(p)=1, d(p.L
[Vee(p)| <2/, € <d(p,L) <e.
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Again for 0 < £ < 1 we consider smooth functions 1., depending on the Riemannian
distance to the Euclidean hyperplane IIy = {¢t = 0}, so that 0 < ¢ < 1 and

Yelp) =1,  d(p,Tp) <e '/,
Ye(p) =0, d(p,To) > /% +1,
Vy-(p)| <2, e <dp, ) <e V241
For any € > 0, the vector field .. W has compact support.
It is easy to prove that F'™ and F'~ have finite K-perimeter. Since F'™ has also

finite (sub-Riemannian) perimeter, applying the Divergence Theorem to F* and
the horizontal vector field ¢ . W, we have

div(pcp. WH)dH = / (bW, Np)dD
(3.35) e D

+/ <<p€¢EW+,l/h>d‘6F|.
{t>gr}

Where Np is the Riemannian unit normal to D pointing into F'~, dD is the Rie-
mannian area element on D, and vy, is the outer horizontal unit normal to F'.
We take limits in the left hand side of Equation (3.35) when € — 0. We write

(3.36) / div(pcp. WH)dH = / b div W dH? +/ (V(perpe), WH)dH?.
F+ F+ F+
Since (¢-Vp., W) is bounded and converges pointwise to 0, and
| wveawh < | b [Vipl|dE,
F+ {(z,t):e2<|z|<e, O<t<e—1/241}

we have

(3.37) Hm [ (V(peape), WHdH" = 0.

e—=0 Jp+

On the other hand, divW* = %, the mean curvature of rBx. We consider the
orthonormal vectors Z = —J(vp,), E = (N, T) vy, — |vp| T and N, globally defined
on (rKop x R)\ L by vertical translations. We know from Lemma 3.5 that

<DZW+7Z>:%7 <DEw+7E>:2<N7T>|Nh|<W+7J(Vh)>'

It remains to compute (DNyW T, N). We express N = A\E + uT as a linear combi-
nation of F and T, where A = |N|/(N,T), u = 1/(N,T). Observe that (N,T) # 0
on int(Kjp) since rS}; is a t-graph. So we have

(DNWT,N)y = NDgW™,N) + u(DrWT, N)
= AN(DpgWH, E) + Mi(DeW T, T) + u(J(W), Ny,)
= N(DpW*, E) = NN, TYW ™, J(vp)) — uI No[ (W™, T (vn))

= (DEW+,E>,

where we have used that DyW™+ = J(W) since W7 is a linear combination of
W+,Y multiplied by functions that do not depend on t. Hence

1
divWT = (DzWt,Z) + (DEW™T,E) + (DyW™T,N) = -
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on int(Kp). Since @b, div W™ is uniformly bounded, F* has finite volume and
lime_,g @ = 1, we can apply Lebesgue’s Dominated Convergence Theorem to get

(3.38) lim [ . diviWHdH" = 1[FT).
e—0 F+

So we get from (3.36), (3.37) and (3.38)

(3.39) lim [ div(gep-WT)dH = L|F*).
e—=0 )+

Now we treat the remainings terms in (3.35). Using the representation of
perimeter obtained in (2.9) for sets of finite K-perimeter sets we have

(3.40) / (W, un)d|OF| < / lonll.dIOF| = [0F* .
{t>gr} {t>gr}

with equality if and only if W* = n(vp,) |0F|-a.e. on {¢t > g,}. From equations
(3.39) and (3.40), taking limits in Equation (3.35) when ¢ — 0,

(3.41) HF| < [ (4 Np)aD +10F
D

with equality if and only if W* = 7(v,) |0F|-a.e. on OF N{t > g, }.
We consider now the foliation of rKy x R by vertical translations of rSj.
Reasoning as in the previous case we get

(3.42) HF-| < —/ (W=, Np)dD + |0F |-
D

with equality if and only if W~ = 7(v) |0F|-a.e. on 0{t < g,}. Hence, adding
(3.41) and (3.42), and taking into account |0F |k (H! \ D) = |0F |k and that FN D
does not contribute to the volume of F, we get

HPI< [ 7~ W Np)aD + [0k,
D

and so (3.34) holds, with equality if and only if equalities (3.41) and (3.42) hold.
This completes the first part of the proof.

Recall that h : 7Ky — R is a function so that D = graph(h) C E. We take two
values t,, < tp; such that

h4tnm <gr <h4+ty.
We apply inequality (3.34) to the set B = B~ U B U B*, where
o BO={(z,t): 2 €rKo, |t — g-| < (tamr —tm)/2},
o BY =B + (0, (trr — tm)/2),
e B~ =rByr — (0, (tm —tm)/2).
By construction, D = graph(g,) C B°. Since the lateral boundary of BY is

contained in (rKy x R) and the outer unit normal to d(rKy x R) coincides with
W+ and W, the lateral K-boundary area of B is equal to

(tar — ) /3 o Il @K,

where d(9(rKp)) is the Riemannian length element of the C! curve 9(rKy). Hence
we get

|0B|k = (tm — tm)/ [vol[+d(9(rKo)) + [0(rBxk )|k
9(rKo)
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+
S

g + atm h+ty
iy .
gr — tM gt'm, h + tm

Sy

FIGURE 10. Geometric construction in the proof of Theorem 3.39

On the other hand, since
|B| = [rBx| + |rKol(tar — tim),
we obtain

LB | + IrKol(tar — tm)) = / (W+ — W, Np)dD
(3.43) D

- (tar — ) / 1v0ll-dO(rKo) + 10(Bx) .
9(rKyp)

Now we apply (3.34) to the set E consisting on the union of E* = EN{t > h}
translated by the vector (0,¢5), E- = EN{t < h} translated by the vector (0,¢,,)
and the vertical filling in between the two sets. We reason as before to get

L(1B| + [rKol(tar — tm) < / (W* — W=, Np)dD
(3.44) D

+ (ty — tm)/ llvoll«dODg + |OE| k-
oD

From (3.43) and (3.44) we get

0E|k > |0(rBx)|x + +(|E| = |rB|).

Let f(p) = |0(pBk)|x + %(|E| — |pB|). Since pBx has mean curvature %,

Theorem 3.16 guarantees that the Wulff shape pBg is a critical point of A — % .



VARIATIONAL PROBLEMS RELATED TO THE SUB-FINSLER AREA IN H! 43

for any variation. Therefore |(pBx)|f — %| pBK|" = 0 where primes indicates the
derivative with respect to p. Hence we have

7'(0) = ~ % (1E| - |pBi)).

So the only critical point of f corresponds to the value pg so that |poBx| = |E|.
Since the function p — |pBg]| is strictly increasing and takes its values in (0, 4+00),
we obtain that f(p) is a convex function with a unique minimum at pg. Hence we
obtain

|0E|k = f(r) = f(po) = |0(roBk )|k,
which implies (3.33). O

4. Regularity of sets with prescribed mean curvature

4.1. Regularity of sets with prescribed mean curvature.
4.1.1. Sets with prescribed mean curvature. Consider an open set 2 C M, and
an integrable function f € L}, .(€2). We say that a set of locally finite K-perimeter

E C Q has prescribed K-mean curvature f in § if, for any bounded open set B C (Q,
F is a critical point of the functional

(4.1) Py (E,B) — fdH.
ENB
If S=0F N is a Euclidean Lipschitz surface then S has prescribed K-mean
curvature f if it is a critical point of the functional

(4.2) Ar (SN B) —/ fdH,
ENB
for any bounded open set B C §2.
If E has boundary S = 0E N of class C?, standard arguments imply that E
has prescribed K-mean curvature f in € if and only if Hx = f, where Hg is the
K-mean curvature

Hyg = (Dz7mk(vp), Z),

and vy, is the outer horizontal unit normal, see [72]. Since by [72, Lemma 2.1]
the Levi-Civita connection D and the pseudo-hermitian connection V coincide for
horizontal vector fields, we obtain that

HK = <Dz7TK(l/h),Z> = <VZ7I'K(I/}L),Z>.

It is important to remark that the mean curvature Hg strongly depends on the
choice of vp. When K is centrally symmetric, mx(—u) = —mg (u) and so the mean
curvature changes its sign when we take —vy, instead of v,. When K is not centrally
symmetric, there is no relation between the mean curvatures associated to v, and
—UVp.

A set E C H! with Euclidean Lischiptz boundary has locally finite K-perimeter:
we know that it has locally bounded sub-Riemannian perimeter by Proposition 2.14
in [36] and we can apply the perimeter estimates in § 2.3. Letting H? be the
Riemannian 2-dimensional Hausdorff measure, the Riemannian outer unit normal
N is defined H?-a.e. in OF, and it can be proven that

(4.3) P(E,V) = / [ Na 1.0 dH2.
OENV
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We say that a set E of locally finite K-perimeter in an open set  C H' has
constant prescribed K-mean curvature if there exists A € R such that E has pre-
scribed K-mean curvature A. This means that E is a critical point of the functional
E — Pk (E,B) — A|E N B| for any bounded open set B C .

Our next result implies that Euclidean Lipschitz isoperimetric boundaries (for
the K-perimeter) have constant prescribed K-mean curvature.

PROPOSITION 4.1. Let E C H' be a bounded set with Euclidean Lipschitz bound-
ary. Assume that E a critical point of the K-perimeter for variations preserving
the volume of E up to first order. Let 0 C H' be an open set so that QN Sy =
and Pk (E,Q) > 0. Then E has constant prescribed K-mean curvature in ).

PrROOF. Since the K —perimeter of E in (2 is positive there exists a horizontal
vector field Uy with compact support in €2 so that fE div U dH! > 0. Let {ts}ser
be the flow associated to Uy and define

om0 Ax (¥s(S))
% s=0 |¢é (E)‘
Let W any vector field with compact support in Q and associated flow {©; }ser.
Choose A € R so that W — AU, satisfies
d

d
s s:ol%(E)‘ - )\E SZOW)s(EN =0.

(4.4) Hy =

This means that the flow of W — AUy preserves the volume of E up to first order.
By our assumption on E we get

QW — Alp) =0,

where @ is defined in (4.5). Now Lemma 4.2 implies Q(W) = AQ(Up) and, from
the definition of Hy, we get

QUV) = \Q(UD) = M| [ou(B)] = Ho L] Jpu(B)].

0—
ds s=0 ds s=0

This implies that E is a critical point of the functional E +— |0F|x — Ho|E| and so
it has prescribed K-mean curvature equal to the constant Hy. O

LEMMA 4.2. Let E C H! be a bounded set with Euclidean Lipschitz boundary
S. Let Q C H' be an open set such that QN Sy = 0. Let U be a vector field with
compact support Q and {@s}ser the associated flow. Then the derivative

(45) QU= 2|  Ak(ei(8))
s=0
exists and is a linear function of U.

PROOF. For every s € R, the set ¢;(F) has Euclidean Lipschitz boundary and
so it has finite K-perimeter. By Rademacher’s Theorem, the set

B = {peS:S isnot differentiable at p}

has H2-measure equal to 0.
For any p € S\ B we take the curve o(s) = ¢4(p). For every s € R the surface
@s(5) is differentiable at o(p) and the vector field W (s) = ((Ns)n)o(s), Where N
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is the outer unit normal to ps(OF), is differentiable along the curve o. Let us

estimate the quotient

W (s + )|l — [IW(s)l|x.

o .
Writing W(s) = £(5)Xo(ay + 9(5)¥o(e) we have [[IW(s)l[x. = [1(/(5), ()], where
| - ]| is the planar asymmetric norm associated to the convex set K. We have
W (s + D)l ke = (W ()l | < II(f(s+R) = f(s),9(s + h) = g(s))]]

SC(If(s+h) = f(s)+1g(s +h) —g(s)]),

for a constant C' > 0 that only depends on K. The derivates of f and g can be

estimated in terms of the covariant derivative 2W = £(N,), along o. Since

(4.6)

K,

D
— (N,
‘ds( )

< | divgos (S) (U) ’

we get an uniform estimate on the derivatives of f and ¢ independent of p. So the
quotient (4.6) is uniformly bounded above by a constant independent of p.
To compute the derivative of Ak (ps(S)) at s = 0 we write

Ax(pa(S)) = / IVl 0 04) Tac(os) dH2

The uniform estimate of the quotient (4.6) allows us to apply Lebesgue’s dominated
convergence theorem and Leibniz’s rule to compute the derivative of A (ps(5)),

given by
d
Lol (0nio e sacten ) are
s as s=0

Given a point p € (S~ B) Nsupp(U), since supp(U) C Q and Q2N Sy = 0 we
get (Ny)p # 0 and so

P Nl = 2| (N mae( (N} o(5)
s=0 s=0
D D
~ (] ) + (s () (] V))
Since
D D D
% s:O(NS)h B % s:ON - <£ s:ON’ T> T7
and
D 2
- s:oN = ;<Np, Ve, U)ei,

where e; is an orthonormal basis of T),(OF), we get that

D

ds|,_
is a linear function L(U) of U. O

[N | s
0

REMARK 4.3. Proposition 4.1 can be applied to isoperimetric regions in H' with
FEuclidean Lipschitz boundary. Of course, the regularity of isoperimetric regions in
H! is still an open problem.
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4.1.2. Intrinsic Euclidean Lipschitz graphs on a vertical plane in H'. We denote
by Gr(u) the intrinsic graph (Riemannian normal graph) of the Lipschitz function
u : D — R, where D is a domain in a vertical plane. Using Euclidean rotations
about the vertical axis x = y = 0, that are isometries of the Riemannian metric g, we
may assume that D is contained in the plane y = 0. Since the vector field Y is a unit
normal to this plane, the intrinsic graph Gr(u) is given by {exp,(u(p)Y,) : p € D},
where exp is the exponential map of g, and can be parameterized by the map

O (x,t) = (z,u(z,t),t — zu(z,t)).
The tangent plane to any point in S = Gr(u) is generated by the vectors

QY = (1, ug, —u — 2uy) = X +u, Y — 2uT,

oY = (0,u,1 —auy) =u Y +T
and the characteristic direction is given by Z = Z/|Z| where
(4.7) Z = X + (ug + 2uu,)Y.
A unit normal to S is given by N = N/|N| where

N = &% x O = (uy + 2uu))X — Y + u,T
and Jac(®¥) = | x PY| = |]~V |. Therefore the horizontal projection of the unit
normal to S is given by Ny, = N, /|N|, where Nj, = (uy +2uus) X —Y. Observe that
J(Z) — —Vp. B

We also assume that S = Gr(u) is an H-regular surface, meaning that N; and
Z in (4.7) and are continuous. Hence also (u, + 2uu;) is continuous.

REMARK 4.4. Let v(s) = (z,t)(s) be a C* curve in D then
L(s) = (z,u(z,t),t — zu(z,t))(s) C Gr(u)
is also C! and
I'(s) =2’ X + (2'uy + t'u)Y + (' — 2ua”)T.
In particular horizontal curves in Gr(u) satisfy the ordinary differential equation

(4.8) "= 2u(z, t)x’.
From (2.15), the sub-Finsler K-area for a Euclidean Lipschitz surface S is
Ax(S) = [ ¥4l x..d5
S

where | Ny ||k« = (Np, 7(Np)) with m = (71, m2) = mx and dS is the Riemannian
area measure. Therefore when we consider the intrinsic graph S = Gr(u) we obtain

A(Gr(u)) = / (N, m(Ny)) dadt

D

= / (ug + 2uuy)m1 (ug + 2uny, —1) — ma(uy + 2uuy, —1) dadt.
D

Observe that the K-perimeter of a set was defined in terms of the outer unit normal.
Hence we are assuming that S is the boundary of the epigraph of w.
Given v € C§°(D), a straightforward computation shows that

d

(4.9) p

A(Gr(u+ sv)) = / (vg + 2vug + 2uvy) M dadt,

s=0 D
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where
(4.10) M = F(ug + 2uuy),

and F' is the function
(4.11) F(z) =m(z,—-1)+z——
Since (uy + 2uw;) is continuous and 7 is at least C'! the function M is continuous.

4.2. Characteristic curves are C?. Here we prove our main result, that
characteristic curves in an intrinsic Euclidean Lipschitz H-regular surface with con-
tinuous prescribed K-mean curvature are of class C2. The reader is referred to
Theorem 4.1 in [42] for a proof of the the sub-Riemannian case. The proof of
Theorem 4.5 depends on Lemmas 4.6 and 4.7.

THEOREM 4.5. Let K be a C2 convex set in R?* with 0 € int(K) and || - ||k
the associated left-invariant norm in H'. Let Q C H' be an open set and E C
a set of prescribed K- mean curvature f € C°(Q2) with an Euclidean Lipschitz and
H-regular boundary S. Then the characteristic curves of SN Q are of class C2.

PrOOF. By the Implicit Function Theorem for H-regular surfaces, see Theo-
rem 6.5 in [36], given a point p € S, after a rotation about the vertical axis, there
exists an open neighborhood B C H! of p such that BN S is the intrinsic graph
Gr(u) of a function u : D — R, where D is a domain in the vertical plane y = 0,
and B N E is the epigraph of u. The function u is Euclidean Lipschitz by our as-
sumption. Since Gr(u) has prescribed continuous mean curvature f, from equation
(4.9) we get

(4.12) / (vg + 2vuy + 2uvy) M + fvdzdt =0,
D

for each v € C§°(D). The function M is defined in (4.10). By Remark 4.3 in
[42] implies that (4.12) holds for each v € CJ(D) for which v, + 2uv, exists and is
continuous.

Let T'(s) be a characteristic horizontal curve passing through p whose velocity
is the vector field Z defined in (4.7), that only depends on u, + 2uu,. Since S
is H-regular the function u, + 2uu, is continuous and I'(s) is of class C!. Let us
consider the function F' defined in (4.11) and define

9(8) = (uz + 2unt)r(s)-

Hence F(g(s)) = M(s). The function F is C! for any convex set K of class C2
and, from Lemma 4.6, we obtain that F'(xz) > 0 for each € R. Therefore F~!
is also C! and g(s) = F~1(M(s)). Thanks to Lemma 4.7 we obtain that M is C*
along I and we conclude that also g is C" along I. So Z is C' and the curve T
is C2. g

LEMMA 4.6. Let K C R? be a convez body of class C% such that 0 € int(K).
Then the function F defined in (4.11) is C* and F'(z) > 0 for each x € R.

PROOF. Parameterize the lower part of the boundary of the convex body K
by a function ¢ defined on a closed interval I C R. The function ¢ is of class C?
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in I and the graph becomes vertical at the endpoints of I. As K is of class C3 we
have ¢”(x) > 0 for each z € R. Take x € R, then we have

~1)
7TZE7—1 :Nil 7(11;’ ),
( ) K (m
where N is the outer unit normal to K. Let p(z) € I be the point where
(p(z), p(p(x))) = m(x, -1).
Therefore, if we consider the normal N of the previous equality we obtain
(el ) @)
VI+ (¢ (p(2)?  V1+a?

Hence ¢'(p(z)) = x and so ¢ is the inverse of ¢/, that is invertible since ¢ (z) > 0
for each = € R. Notice that

F(z) =m(z,-1) + x%(x, -1) - %(m, -1)
= (@) + z¢'(x) — ¢'(0(2))¢' () = p(2),
since ¢’ (p(z)) = z. Hence we obtain

F(a) = ) = s >0

for each = € R. O

LEMMA 4.7. Let  C H' be an open set and E C Q a set of prescribed K -mean
curvature f € C°(Q) with Euclidean Lipschitz and H-regular boundary S. Then the
function M defined in (4.10) is of class C' along characteristic curves. Moreover,
the differential equation

LM = F(5)

is satisfied along any characteristic curve -y.

PROOF. Let I'(s) be a characteristic curve passing through p in Gr(u). Let
v(s) be the projection of I'(s) onto the zt-plane, and (a,b) € D the projection
of p to the xt-plane. We parameterize v by s — (s,t(s)). By Remark 4.4 the
curve s — (s,¢(s)) satisfies the ordinary differential equation ¢’ = 2u. For ¢ small
enough, Picard-Lindel6f’s theorem implies the existence of r > 0 and a solution
te :Ja — r,a + r[— R of the Cauchy problem

(4.13) {té(s) = 2u(s, t<(s)),

te(a) =b+e.

We define 7. (s) = (s,t-(s)) so that y9 = 7. Here we exploit an argument similar to
the one developed in [65]. By Theorem 2.8 in [82] we gain that ¢. is Lipschitz with
respect to ¢ with Lipschitz constant less than or equal to el”. Fix s €]la —r,a + 7],
the inverse of the function € — t.(s) is given by x:(—s) = xt(—s) — b where x; is
the unique solution of the following Cauchy problem

Xi(7) = 2u(7, Xx4(7))
(4.14) {Xt(a +s)=t.

Again by Theorem 2.8 in [82] we have that y; is Lipschitz continuous with respect
to t, thus the function € — ¢, is a locally bi-Lipschitz homeomorphisms.
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We consider the following Lipschitz coordinates

(4.15) G(&,e) = (§:1(8)) = (s,1)

around the characteristic curve passing through (a, ). Notice that, by the unique-
ness result for (4.13), G is injective. Given (s,t) in the image of G using the inverse
function y: defined in (4.14) we find e such that t.(s) = t, therefore G is surjective.
By the Invariance of Domain Theorem [5], is a homeomorphism. The Jacobian of
G is defined by

1 0 ot.
(4.16) Jo det( g o ) SE(s)

almost everywhere in €. Any function ¢ defined on D can be considered as a
function of the variables (£,¢) by making @(€,¢) = ¢(£,t-(£)). Since the function
G is C! with respect to & we have

op

—= =+t z + 2

o€ = Yo Tl Pr = Pu + 2upy.
Furthermore, by [28, Theorem 2 in Section 3.3.3] or [50, Theorem 3|, we may apply
the change of variables formula for Lipschitz maps. Assuming that the support of
v is contained in a sufficiently small neighborhood of (a,b), we can express the
integral (4.12) as

a+r - -
(4.17) /1 (/ ((%g + 200 )M + f@)% d€)de =

where I is a small interval containing 0. Instead of ¢ in (4.17) we consider the
function oh/(t.4p — te), where h is a small enough parameter. Then we obtain

LN
85 (te-‘rh - ta) 85 ( e+h — ) (te-‘rh - ta)Q
_ @ h o 26hu(£7t€+h(£)) - U(f,ts(f)

OE (tesn —te) (tewn —tc)? ’

9 9€ Ul a.e. ,

when h goes to 0. Putting 0h/(te4n — te) in (4.17) instead of ¥ we gain

“hr o hGE (90 LA eh) a9 o i B
/1</ (ts+h—te)<8§+2 (@ (tosn — ) ))M+f”d5 de = 0.

Using Lebesgue’s dominated convergence theorem and letting h — 0 we have

a+r 9~
(4.18) /1(/ gEM—i—fvdg) de = 0.

Let n : R — R be a positive function compactly supported in I and for p > 0 we
consider the family n,(z) = p~'n(z/p), that weakly converge to the Dirac delta
distribution. Putting the test functions n,(¢)y(§) in (4.18) and letting p — 0 we
get

that tends to

(4.19) / $(E)NI(E.0) + F(£.0)0(€) dE =0,
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for each ¢ € C§°((a — r,a + r)). Since u, + 2uuy is continuous, M in (4.10) is
continuous, thus also M. Hence thanks to Lemma 4.8 we conclude that M is C*
along v, thus by Remark 4.4 is also C! along T.

Since M is C! along the characteristic curve, we can integrate by parts in
equation (4.19) to obtain

a+r
/a (—31'(0.8) + 7(0.)) w(€) de = 0,

—-r

for each ¢ € C§°((a — r,a +r)). That means that M satisfies the equation

along characteristic curves. O

LEMMA 4.8 ([42, Lemma 4.2]). Let J C R be an open interval and g, h € CO(J).
Let H € C1(J) be a primitive of h. Assume that

/Jw'g+hw=o,

for each ip € C§°(J). Then the function g — H is a constant function in J. In
particular g € C1(J).

REMARK 4.9. Let K be a convex body of class C% such that 0 € K. Following
[72] we consider a clockwise-oriented P-periodic parameterization v : R — R? of
OK. For a fixed v € R we take the translated curve s — y(s+v)—y(v) = (z(s), y(s))
and we consider its horizontal lifting ', (s) to H' starting at (0,0, 0) € H* for s = 0,
given by

ru(s) = (w000, [ o' (r) — ' (r)ar).
0
The Pansu-Wulff shape associated to K is defined by

SK: U Fv([OvPD'

ve(0,P)

In [72, Theorem 3.14] it is shown that the horizontal liftings I',,, for each v € [0, P),
are solutions for Hx = 1, therefore Si has constant prescribed K-mean curvature
equal to 1. Since the curves I', have the same regularity as 0K, the C? regularity
result for horizontal curves obtained in Theorem 4.5 is optimal.

COROLLARY 4.10. Let K be a C% convez set in R? with 0 € int(K) and || - ||k
the associated left-invariant norm in H'. Let Q C H' be an open set and E C
a set of prescribed K-mean curvature f € C°(Q) with C' boundary S. Then the
characteristic curves in S ~ Sy are of class C?.

PROOF. Since S is of class C!, in the regular part S~ Sy the horizontal normal
vp, is a nowhere-vanishing continuous vector fields, thus S ~ Sy is an H-regular
surface. In particular a C! surface is Lipschitz, thus S \. Sy verifies the hypotheses
of Theorem 4.5 and the characteristic curves in S~ Sy are of class C2. [

REMARK 4.11. When S is of class C' the proof of Lemma, 4.7 is is much easier.
Indeed the solution ¢. of the Cauchy Problem (4.13) is differentiable in ¢, thus the
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function Ot /0e satisfies the following ODE

ot.\’ ot ot
(85) (s) = 2ut(s,t8(s))a—;, 8—;(61) =1
That implies that
or.
Oe
Since the Jacobian J¢ defined in (4.16) is equal to dt./0s > 0 the change of

variables G (&, ¢) is invertible. Hence the rest of the proof of Lemma 4.7 goes in the
same way as before.

(S) — ef; 2ut(77tE(T)))dT > 0

4.3. The sub-Finsler mean curvature equation. Given an Euclidean Lip-
schitz boundary S whose characteristic curves in S . Sy are of class C2, for each
point p € S\ Sy we can define the K-mean curvature Hx of S by

(420) HK = <Dz7TK(l/h),Z> = <VZ7TK(Vh),Z>,

where v, is the outer horizontal unit normal to S. This definition was given in [72]
for surfaces of class C?.

PROPOSITION 4.12. Let  C H' be an open set and E C Q a set of prescribed
K- mean curvature f € C°(Q) Euclidean Lipschitz and H-regular boundary S. Then
Hk(p) = f(p) for each p € S~ Sy.

ProOF. By the Implicit Function Theorem for H-regular surfaces, Theorem 6.5
in [36], given a point p € S, after a rotation about the t-axis, there exists an open
neighborhood B C H!' of p such that BN S is the intrinsic graph of a function
u : D — R where D is a domain in the vertical plane y = 0. The function wu is
Euclidean Lipschitz by our assumption. We set BN S = Gr(u). We assume that
is locally the epigraph of w.

Let T'(s) be a characteristic curve passing through p in Gr(u) and ~y(s) its
projection on the zt-plane. The characteristic vector Z defined in (4.7) is given by

X + (ug + 2uwy)Y
(14 (up + 2uu;)?)z

Since S is H-regular, Z and the horizontal unit normal
(ug + 2uu) X =Y
(14 (ug + 2uwy)?)2

Vp =

are continuous vector fields. By Lemma 4.7 we have that M = F(ug, +2uu;) defined
in (4.10) satisfies the differential equation

S M0(s)) = f(v(s))
along the characteristic curves. Therefore we obtain

L M((5)) = P+ 2 o (1 + 20, (1(5))]

ds
1 d

= a1 2wy ds (e 20w) (06D,
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As in proof of Lemma 4.6, we parametrize the lower part of the boundary of
the convex body K by a function ¢ defined on a closed interval I C R. Again by
Lemma 4.6 we have

where ¢ is the inverse function of ¢’. Furthermore the K-mean curvature defined
(4.20) is equivalent to

Hg = <Dz7TK(ux + 2uuy, —1),Z>

D
(7 [o(ua + 2uu) X + @ (us + 2uu))Y3], Z)
1+ (up + 2uuy)?

d
o (uy + 2uut)£(uz + 2uny) (14 ¢ (p(ug + 2uuy)) (ug + 2uuy))
1+ (ug + 2uuy)?

1 d

= m@ [(um + 2uut)('y(s))}.

Hence we obtain Hg = LM (y(s)) and so Hg(p) = f(p) for each p € S\ Sp. O

The following result allows us to express the K-mean curvature Hg in terms
of the sub-Riemannian mean curvature Hp.

PROPOSITION 4.13. Let K C R? be a convex body of class Ci such that 0 €
int(K) and g = Nl;l. Let k be the strictly positive curvature of the boundary
OK. Let Q C H' be an open set and E C ) a set of prescribed K -mean curvature
f € C%Q) with Euclidean Lipschitz and H-regular boundary S. Then, we have

Hp(p) = k(g (vn)) f(p) for each pe S~ Sy,

where Hp(p) = (Dzvp, Z) is the sub-Riemannian mean curvature, vy be the hor-
izontal unit normal at p to S\ Sy and Z = J(v,) be the characteristic vector
field.

ProoF. By Proposition 4.12 we have Hg (p) = f(p) for each p € S\ Sy. We
remark that Theorem 4.5 implies that Hg is well-defined.

Let v : (—e,e) = S\ Sy be the integral curve of Z passing through p, namely
v'(8) = Zy(s) and y(0) = p. Let vx(s) = —J(Z,(s)) be the horizontal unit normal
along v and let

T(vn(s)) = m1(Va($)) Xy (s) + m2(Vn(8))Ya(s)-
Noticing that VX = VY = 0 we gain

\Y% d
%‘SZOW(V}L(S)) o % s=0

Setting vy, = aX + bY we obtain

4
ds

71 (Vh(8)) Xy (0) + m2(vn(8)) Y5 (0)-

s=0

A\ A\
(4.21) s s=07r(l/h(8)) = (dﬂ')(a’b) (ds Szol/h(s)> ,
where 5 5
ﬂ(mb) ﬂ(%b)
(dﬂ') b = (9(1 81)
(a,b) % Oy

da (a7b) E(aab)
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Moreover, by Corollary 1.7.3 in [78] we get mx = Vh, where h is a C? function.
Thus by Schwarz’s theorem the Hessian Hess(q ) (h) = (d7) (4,5 is symmetric, i.e.
(dm) = (dm)*. Equation (4.21) then implies
Hyg = (Vzrr(vn),Z) = (Vzvn, (dr);, Z) = (V zvp, (d7),, Z).

Finally, by Lemma 4.14 we get
_
k(mk (vh))
Hence we obtain <Dth, Z> = IQ(?TK(I/;L)), since Dzl/h = Vzl/h. O

LEMMA 4.14. Let K C R? be a convez body of class C2 such that 0 € int(K)
and Ng be the Gauss map of OK. Let k be the strictly positive curvature of the

boundary OK. Let S be an H-regular surface with horizontal unit normal vy, and
characteristic vector field Z = J(vy,). Then we have

HK: <Vzl/h,Z>.

1
(dm)y, Z = EZ and (dm),, vy, =0,

where (dr),, is the differential of T = N

PRrROOF. Let a(t) = (z(t),y(t)) be an arc-length parametrization of 9K such
that ©2(t) +52(t) = 1. Let vy, = aX +bY be the horizontal unit normal to S, with
a = cos(f) and b = sin(f) and 6 € (—%,%). Notice that § = arctan(2). Then we
have

ric(a,8) = Nk ((a,b).
Let ¢ : (=5, %) — R be the function satisfying

Tk (cos(8),sin(0)) = (z((0)), y((0)))-
If we consider the normal Ny of the previous equality we obtain

(cos(0),sin(6)) = (9((0)), —2(p(0)))-

Therefore we have )
6 = arctan (—x(go(ﬂ)))
Y

for each 6 € (—7, 5 ). That means that ¢ is the inverse of the function arctan(—%(t)),

that is invertible since

4 arctan(—%(t)) =&y — y& = k(t) > 0.

dt
Let Z = J(vp) = —bX + aY be the characteristic vector field, then we have
(d7)(a,p) = (dm){, ) and
NKAIpLLL
* . a a
e =\ om | om |
ab " ob

where

m(a,b) = m((p(arctan(g))), ma(a,b) = y((p(arctan(g))).
Thus we get

(A7) (o0 2 = @’(arctan(S)))Z = )Z.
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A similar straightforward computation shows that (dr),, vy, = 0. O

5. Cones

5.1. The first variation formula and a stationary condition. In this
section we present some consequences of the first variation formula. We assume
that the Heisenberg group H! is endowed with the sub-Finsler structure associated
to a convex set K of class C2 with 0 € int(K). Recall that, given a surface S C H*
of class C1, its singular set Sy is composed of those points of S where the tangent
plane is horizontal. The regular part of S is S ~\ Spy.

THEOREM 5.1 (Theorem 3.1 in [72]). Let S be an oriented surface of class C*
such that the reqular part S ~ Sy is of class C?. Consider a C? vector field U with
compact support on S, normal component u = (U, N), and associated flow {@s}scr.
Let n = w(vy,), where vy, is the horizontal unit normal to S. Then we have

d

(5.1) —|  Ag(ps(9)) = / HiudS — divg(un')dsS,
ds{s_g 5\So 5\So

where divg is the Riemannian divergence on S and the superscript T indicates the

projection over the tangent plane to S. The quantity Hx = (Vzm(vy),Z), for

Z = —J(vp), is the K-mean curvature of S.

Using Theorem 5.1 we can prove the following necessary and sufficient condition
for a surface S to be Ag-stationary. When a surface S of class C' is divided into
two parts ST, S~ by a singular curve Sy so that S*, S~ are of class C? up to the
boundary, the tangent vectors ZT, Z~ can be chosen so that they parameterize the
characteristic curves (i. e., horizontal curves en the regular part of S) as curves
leaving from Sp, see Corollary 3.6 in [12] . In this case n* = 7(v) = 7(J(Z7))
and n~ =7(J(Z7)).

COROLLARY 5.2. Let S be an oriented surface of class C* such that the singular
set Sy is a C' curve. Assume that S\ Sy is the union of two surfaces ST, S~ of class
C? meeting along Sy. Let nt,n~ the restrictions of n to ST and S~, respectively.
Then S is area-stationary if and only if

(1) Hx =0, and
(2) nt —n~ is tangent to Sy.

In particular, condition Hyx = 0 implies that S~ Sy is foliated by horizontal straight
lines.

ProoF. We may apply the divergence theorem to the second term in (5.1) to
get
d —\T
S Axeusn = [ Hewds- [ utelrt —a)T)as
Sls=0 S\So So
where ¢ is the outer unit normal to ST along Sy. Hence the stationary condition
is equivalent to H = 0 on S\ Sp and (£,n" —n~) = 0. The latter condition is
equivalent to that nt — 1~ be tangent to Sp.
That Hx = 0 implies that S ~\ Sy is foliated by horizontal straight lines was
proven in Theorem 3.14 in [72]. O
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Since v = J(ZT),v™ = J(Z7), where ZT and Z~ are the extensions of
the horizontal tangent vectors in S*,S~, we have that the second condition in
Corollary 5.2 is equivalent to

(5.2) 7(J(Z")) —w(J(Z7)) is tangent to Sp.

So a natural question is, given a C’?r convex body K containing 0 in its interior,
and a unit vector v € S, can we find a pair of unit vectors Z*, Z~ such that (5.2)
is satisfied? If such vectors exist, how many pairs can we get? The answer follows
from the next result.

LEMMA 5.3. Let K be a convez body of class C3 such that 0 € int(K). Given
v € R?2\ {0}, let L C R? be the vector line generated by v. Then, for any u € 0K,
we have the following possibilities

(1) The only w € OK such that w —u € L is w = u, or
(2) There is only one w € 0K, w # u such that w —u € L.

The first case happens if and only if L is parallel to the support line of K at u.

PROOF. Let T be the translation in R? of vector u. Then T'(L) is a line that
meets OK at u. The line T'(L) intersects 0K only once when L is the supporting
line of T(K) at 0; otherwise L intersects K just at another point w # u so that
w—1u€ L. U

REMARK 5.4. We use Lemma 5.3 to understand the behavior of characteristic
curves meeting at a singular point p € Sy. Let Z1, Z~ be the tangent vectors to
the characteristic lines starting from p. Let v, v~ be the vectors J(Z71), J(Z7),
and L the line generated by the tangent vector to Sy at p. The condition that S is
stationary implies that n*™—n~ € L. If w = 5™ and u = 5~ are equal then v = v~
are orthogonal to L, which implies that Z+, Z~ lie in L. This is not possible since
characteristic lines meet tranversaly the singular line, again by Corollary 3.6 in
[12].

Hence ™ # n~ and nT is uniquely determined from 1~ by Lemma 5.3. Obvi-
ously the roles of 7 and 1~ are interchangeable.

0K
L 0
T(L) = a tu=q-
+/\_//\
v 7 v

FIGURE 11. Geometric construction to obtain w = n* from u =
1~ so that the stationary condition is satisfied. The case v+ = v~
cannot hold.
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5.2. Examples of entire K-perimeter minimizing horizontal graphs
with one singular line. Remark 5.4 implies that Z~ can be uniquely determined
from Z* when S is a stationary surface. Let us see that this result can be refined to
provide a smooth dependence of the oriented angle (v, Z~) in terms of /(v, Z%).
We use complex notation for horizontal vectors assuming that the horizontal dis-
tribution is positively oriented by v, J(v) for any v € H ~ {0}.

LEMMA 5.5. Let K be a convex body of class C3 with 0 € int(K). Consider
a unit vector v € R? and let L C R? be the vector line generated by v. Then, for
any o € (0,7) there exists a unique B € (m,27) such that if Z+ = ve'®, Z~ = ve',
then ©(J(Z1)) —n(J(ZT)) belongs to L.

Moreover the function (3 : (0,7) — (m,2m) is of class C* with negative deriva-
tive.

PrOOF. We change coordinates so that L is the line y = 0. We observe that
Zt = ve' implies that J(Z1) = ve'®+7/2) We define (z,y) : S' — K by

(z(a),y(a)) = N (ve'*T7/2)),

where Ng : 9K — S! is the (outer) Gauss map of K. The functions z,y are C!
since N is C'. The point (z(c), y(c)) is the only one in K such that the clockwise
oriented tangent vector to K makes an angle « with the positive direction of the
line L. A line parallel to L meets 0K at a single point only when o + 7/2 = 7/2
or o+ /2 = 3w /2. Hence, for a € (0,7), there is a unique 8 € (m, 27) such that

(@(8),5(P)) — (z(a), y(@)) € L.

Observe that, for a € (0,7), we have dy/da > 0 and, for 8 € (m,2m), we get
dy/dp < 0. We can use the implicit function theorem (applied to y(5) — y(a)) to
conclude that 3 is a C! function of . Moreover

g dy/da

do = dyjag =~

as desired. 0

Now we give the main construction in this section.

We fix a vector v € R? \ {0} and the line L, = {\v : A € R}. For every A € R,
we consider two half-lines, rj\r, ry C R?, extending from the point p = \v € L,, with
angles a(A) and B(A) respectively. Here a : R — (0, ) is a non-increasing function
and S(A) is the composition of «(\) with the function obtained in Lemma 5.5.
Hence S()) is a non-decreasing function. The line L, can be lifted to the horizontal
straight line R, = L, x {0} C H! passing through the point (0,0,0), and the half-
lines rf can be lifted to horizontal half-lines Rf starting from the point (Av,0) in
the line R,.

The surface obtained as the union of the half-lines Rj\' and R, for A € R, is
denoted by X, o. Since any Rf is a graph over rf and UAGR(Tj Ury ) covers the
xy-plane, we can write the surface 3, , as the graph of a continuous function u :
R? — R. Writing v = €@, the surface %, , can be parametrized by ¥ : R? — R3
as follows

()\eiao + Nei(a0+@()\))7 —'u)\ sina()\)),

=0,
(Aer@0 + |ule @otF) —|u[Asin B(N)), u <O

(53) W) = {
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27 — B(a)

FIGURE 12. The planar configuration to obtain the surface ¥, .
Here « is a constant function and K is the unit disk D. Such
surfaces were called herringbone surfaces by Young [84] as they
are the union of horizontal rays that branch out of a horizontal
line.

EXAMPLE 5.6. A special example to be considered is the sub-Riemannian cone
Y, where a € (0,7). The projection of X, to the horizontal plane t = 0 is
composed of the line y = 0 and the half-lines starting from points in y = 0 with
angles o and —a. This cone can be parametrized, for s € R, ¢ > 0, by

(u,v) — (u + v cos a,vsina, —uv sin @)
when y > 0, and by
(u + v cos a, —v sin av, uw sin )
when y < 0. A straigthforward computation implies that ¥, is the t-graph of the
function

(5.4) uo(z,y) = —zy + cot ayly|.
Observe that
400, y >0,
(5:5) lim wa(z,y) =40, y=0,
-0, y< 07

so that the subgraph of ¥, converges pointwise locally when o — 0 to a vertical
half-space.

The following rsult provides some properties of u, when () is a smooth func-
tion of A.

PROPOSITION 5.7. Let a € C¥(R), k > 2, be a non-decreasing function. Then
i) Uq is a CF function in R?\ L,,
i) uq is merely CY! near L, when B # a + .
i1i) uq is C* in any open set I of values of X when 8 =a+7 on 1.
W) 3y 18 K-perimeter-minimizing when = B(«).
v) The projection of the singular set of ¥, o to the xy-plane is L,,.

PROOF. i), ii), iii) and v) are proven in Lemma 3.1 in [73].

We prove iv) by a calibration argument. We shall drop the subscript « to
simplify the notation. Let E be the subgraph of u and F C H! such that F = E
outside a Euclidean ball centered at the origin. Let P = {(z,¢) : (z,v) = 0},
Pt ={(2,t) : {z,0) > 0} and P? = {(2,t) : (z,v) < 0}. We define two vector fields
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Ul, U? on P!, P? respectively by vertical translations of the vectors 7(vg)|p1 = n*
and 7(vg)|pz = n~. They are C? in the interior of the half-spaces and extend
continuously to the boundary plane P. As div(U’ )(=,t) coincides with the sub-
Finsler mean curvature of the translation of ¥, , passing through (z,t) as defined
in [72], and these surfaces are foliated by horizontal straight lines in the interior of
the half-spaces, by Theorem 3.14 in [72] we get

divU’ =0 j=1,2.

Here divU is the Riemannian divergence of the vector field U. We apply the
divergence theorem (Theorem 2.1 in [73]) to get

0:/ divUj:/<Uj,yme>|8(PjﬂB)|+/ (U, vp)|OF)|.
FNPiNB F PinB

Let C = PN B. Then, for every p € C, we have vpinp = J(v) is a normal vector
to the plane P and vp2np = —J(v), U! = n* and U? = ~. Hence, by Lemma 5.5,
we get

(U vping) + (U vpenp) = (" =1, J(v)) =0 peC.
Adding the above integrals we obtain

(5.6) 0= > /F<Uj,u3>d|33\+/B (U7, vp)d|OF).

Py Nint (HY)

From the Cauchy-Schwarz inequality and the fact that |0F] is a positive mea-
sure, we get that

(5.7) S [ Wl veidpr| < ().
i/ BOPI
In particular, if we apply the same reasoning to E, equality holds and
(5.8) 0= > / (U9, vp)d|0B| + Py (E, B).
j=1,2"E

From (5.6), (5.7), (5.8) and the fact that F' = E in the boundary of B, we get
as desired. g

The general properties of ¥, , when « is only continuous are given in the
following result.

PROPOSITION 5.8. Let o : R — R be a continuous and non-decreasing function.
Then

i) uq 18 locally Lipschitz in Euclidean sense,
ii) Eq is a set of locally finite perimeter in H', and
i0i) 3y, is K-perimeter-minimizing in H'.

PROOF. i) and ii) are proven in [73], Proposition 3.2. Let

ac(z) = / o(y)d-(x — y)dy

the usual convolution, where ¢ is a Dirac function and J. = %. Then «, is a

C* non-decreasing function and a. converges uniformly to o on compact sets of
R. By Lemma 5.5, 8. = (a.) is a O non-decreasing function. Since 3 is C* with
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respect to « it follows the uniform convergence on compact sets of 5. to a function
5.

Take F' C H' so that F' = E outside a Euclidean ball centered at the origin.
We follow the arguments of the proof of iv) in Proposition 5.7 and define vector
fields div(U?) translating vertically m(vg.), where E. is the subgraph of 3., to
obtain by the divergence theorem

Z/ (U3, v, )|OF,| = Z/ (v oF,
j=1 2/ Bint(P?) =12 Bint(PY)

the left hand side is the K-perimeter of E., while the right hand side is trivially
bounded by the K-perimeter of F. Therefore

Since E. converges uniformly in compact sets to E, we obtain the result. O

We study now with some detail the case when ¥, , is a C* surface.

COROLLARY 5.9. When o is constant, the surface ¥, is a K-perimeter-
minimizing cone in H' of class CV'. The singular set is a horizontal straight line
and the regular part of ¥, o is a C* surface.

The following extends the already known result that in the sub-Riemannian
setting the surfaces X, /5 are C°°.

LEMMA 5.10. Let v € R? \ {0} and « € (0,7) be fized. If K is centrally
symmetric with respect to O = snt+1in~ then B(a) = a+m, wheren™ = 7(J(ve'))
and n~ = w(J(ve'?)).

ProOOF. Let K be centrally symmetric with respect to O. Then 7~ is the

symmetric point of n*. On the other hand, the convex body K — O is symmet-
ric with respect to the origin. Then the dual norm is even and, in particular,

Tk—o(—vt) = —mk_o(rv"). Now, since a translation takes symmetric points of
K — O with respect to the origin to symmetric points of K with respect to O, we
get v~ = —vt. This implies that 8(a) = « + 7. O

The existence of a convex body K of class C% such that 0 € int(K) for which
Yv,a is C* is studied in Corollary 5.11 and Proposition 5.12.

COROLLARY 5.11. Let v € R? \ {0} and « € (0,7) be fived. Then there exists
a convez body K of class C3 with 0 € int(K) such that ¥, o is C>°.

PROOF. To construct the convex body K, fix a point p € {(z,y) : {(z,y), ve!®) >
0} and O € J(L) + pN L, where L is the vector line generated by v. Then any K
of class C% centrally symmetric with respect to O containing the origin such that
p € OK and ve'® L T,0K satisfies the hypothesis of Lemma 5.10, where n* = p and
n~ is the symmetric of ™ with respect to O. Thus, by (iii) in Proposition 5.7 we
get that 3, o is C°°. [l

PROPOSITION 5.12. Given a convez body K of class C% with 0 € int(K), there
exists v € R? such that Yoy 08 C°.

PrROOF. Let p and ¢ be points in K at maximal distance. Then the lines
through p and ¢ orthogonal to ¢ — p are support lines to K. Taking v = ¢ — p and
setting p = ™ we have ¢ = np~, while the vectors v+ and v~ are over the line L(v),
that is, Z* Z~ make angles 7/2 and 37 /2 with L(v). O
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For fixed v € R?, we define the surface ¥, as the one composed of all the
horizontal half-lines R:\*' and Ry, C R? extending from the lifting of the point
p=Mv € L,, A >0, to H'. The surface Zj}"a has a boundary composed of two
horizontal lines and its singular set is the ray L} = {\v: A > 0}. We present some

pictures of such surfaces.

»

FIGURE 13. The surface Zi/&ﬂ/G associated to the norm || - ||p,
where D is the unit disk. The singular set corresponds to the
purple ray of angle e™/3.

A

FIGURE 14. The surface Z:/&ﬁ/ﬁ associated to the p-norm with
p = 1.5. The left part of the figure coincides with the left part of
Figure 13, while the angle S is bigger. Notice that also the height
has increased.

5.3. Area-Minimizing Cones in H'. We proceed now to construct examples
of K-perimeter minimizing cones in H! with an arbitrary finite number of horizontal
half-lines meeting at the origin. The building blocks for this construction are liftings
of circular sectors of the cones considered in Corollary 5.9.

We first prove the following result.

LEMMA 5.13. Let K be a convez body of class C% such that 0 € int(K). Let
u,w € S, 0 = Z(u,w) > 0. Then there exists v € S* such that the vector line
L, generated by v splits the sector determined by u and w into two sectors of
oriented angles o and [ such that o + = 6. Moreover, the stationary condition

w(J(u)) — 7 (J(w)) € L, is satisfied.
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Y
FIGURE 15. The surface E:/&W/S

of K is granted by Corollary 5.11.

with 8 = a+ 7. There existence

PROOF. Let vy, = J(u), vy = J(w) and n, = 7(v0), N = 7(Vw), N 7 N since
7 is a C' diffeomorphism. Thus there exists a unique line L passing through 7,
and 1, and L = L-— 1y is a straight line passing though the origin. Notice that L
splits K in two connect open components K7 and 0Ks. There exist two points
m € 0K, and 1y € OKs such that L+ (resp. L + 72) is the support line at 7
(resp. 7)2). Setting v1 = Naxk(n1) and va = Nk (n2) we gain that v; for i = 1,2
is perpendicular to L. Without loss of generality we set that —J(v;) belongs to
the portion of plane identified by the 8 and —J(v2) belongs to the portion of plane
identified by the 2w — #. Then we set v = —J(v1). Notice that v splits 8 in two
angles 8 = Z(u,v), a = Z(v,w) with § = a+ 8 and L = L,. O

Now we proceed with the construction inspired by the sub-Riemannian con-
struction in [49]. For k > 3 consider a fixed angle 6y and family of positive ori-
ented angles 61,...,0; such that 6, + --- + 6, = 2x. Consider the planar vectors
ug = (cos(bp), sin(fy)) and

U; = (COS(90+91 —|—+92),sm(90+91++92)), ’L: ].,...,]i).
Observe that uy = ug. For every i € {1,...,k} consider the vectors u;_1,u; and
apply Lemma 5.13 to obtain a family of k vectors v; in S' between w;_; and u;.
We lift the half-lines L; = {\v; : A > 0} to horizontal straight lines passing through
(0,0,0) € H, and we also lift the half-lines

i +{pu;—1: p =0}, Av; 4+ {pu; = p = 0},
to horizontal straight lines starting from (Av;,0). This way we obtain a surface
Ck(00,01,...,0;)
with the following properties

THEOREM 5.14. The surface Ck (6o, 61, ..., 0k) is K-perimeter-minimizing cone
which is the graph of a C' function.

ProOOF. Ck(0o,01,...,0;) is a cone by construction. It is an entire graph since
it is composed of horizontal lifting of straight half-lines in the zy-plane that covered
the whole plane without intersecting themselves transversally. The K-perimeter-
minimizing property follows in a similar way to from Proposition 2.4 in [49]. That
it is the graph of a C* function is proven like in Proposition 3.2(4) in [49]. O
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A particular example of area-minimizing cones are those who uses the sub-
Riemannian cones C,, restricted to the circular sector with 0 € (—«, @) as as model
piece of the cone. Taking K = D, k > 3, and the angle o = 7/k, we define

w27 2m
TR RIEREE ?)
Let us denote by wuy, the functions in R? whose graph is C'(k). The behavior when
k tends to infinity of uy in a disk is analyzed in the following result.

C(k) = Cp(

PRrROPOSITION 5.15. The sequence uy converge to 0 uniformly on compact sub-
sets of R2.  Moreover, the sub-Riemannian area of wj converges locally to the
sub-Riemannian area of the plane t = 0. Moreover the sub-Riemannian area of uy
converges to the one of the plane t = 0.

PROOF. Since uy is obtained by collating some rotated copies of u,, where
a = 7/k, we can estimate the height of u; by the height of u,. By (5.4), using
polar coordinates (r,#), where 6 € [—a, a] and r < rg, we get

lue| < 21| sin(n/k)|

on D(rg) = B(0,79). The claim follows since limj_, sin(r/k) = 0.
The sub-Riemannian area of the graph of uy over D(rg) is given by
Ap(ugro) = [ [V + (-y.0)dody.
D(ro)
Since the sub-Riemannian perimeter is rotationally invariant, we can decompose
the above integral as k times the area of the cone C, in the circular sector with
0 € (—a,a) and r < 1. By (5.4), it is immediate that
[Vur (@, y) + (—y, )| = 2|y|sin™" (a).

A direct computation shows that

dmrd 1 —cosm/k
A =0 :
ok T0) = =3 S G T
Then Ap(ug,rg) tends to 2?8 as k — +o0. O

FIGURE 16. The cone C(4). The singular set is composed of
the red rays of angle 0,7/2,, (37)/2, while the rays of angles
w/4,(3m) /4, (57)/4), (7T7)/4, where two pieces of the construction
meet, are depicted in cyan.
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FIGURE 17. The cones C(8) and C(16). They are depicted at the
same in this Figure and the previous one. As the number of angles
increases, the cone produces more oscilations of smaller height.

References

L. Ambrosio, F. Serra Cassano, and D. Vittone. Intrinsic regular hypersurfaces in Heisenberg
groups. J. Geom. Anal., 16(2):187-232, 2006.

A. A. Ardentov, E. Le Donne, and Y. L. Sachkov. Sub-Finsler geodesics on the Cartan group.
Regul. Chaotic Dyn., 24(1):36-60, 2019.

D. Barilari, U. Boscain, E. Le Donne, and M. Sigalotti. Sub-Finsler structures from the
time-optimal control viewpoint for some nilpotent distributions. J. Dyn. Control Syst.,
23(3):547-575, 2017.

V. Barone Adesi, F. Serra Cassano, and D. Vittone. The Bernstein problem for intrinsic graphs
in Heisenberg groups and calibrations. Calc. Var. Partial Differential Equations, 30(1):17-49,
2007.

L. E. J. Brouwer. Beweis des ebenen Translationssatzes. Math. Ann., 72(1):37-54, 1912.

Y. D. Burago and V. A. Zalgaller. Geometric inequalities, volume 285 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskil, Springer Se-
ries in Soviet Mathematics.

H. Busemann. The isoperimetric problem for Minkowski area. Amer. J. Math., 71:743-762,
1949.

L. Capogna, G. Citti, and M. Manfredini. Regularity of non-characteristic minimal graphs in
the Heisenberg group H'. Indiana Univ. Math. J., 58(5):2115-2160, 2009.

L. Capogna, G. Citti, and M. Manfredini. Smoothness of Lipschitz minimal intrinsic graphs
in Heisenberg groups H", n > 1. J. Reine Angew. Math., 648:75-110, 2010.

L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson. An introduction to the Heisenberg group
and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics.
Birkhiuser Verlag, Basel, 2007.

J.-H. Cheng, H.-L. Chiu, J.-F. Hwang, and P. Yang. Umbilicity and characterization of Pansu
spheres in the Heisenberg group. J. Reine Angew. Math., 738:203-235, 2018.

J.-H. Cheng, J.-F. Hwang, A. Malchiodi, and P. Yang. Minimal surfaces in pseudohermitian
geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4(1):129-177, 2005.

J.-H. Cheng, J.-F. Hwang, A. Malchiodi, and P. Yang. A Codazzi-like equation and the singu-
lar set for C'! smooth surfaces in the Heisenberg group. J. Reine Angew. Math., 671:131-198,
2012.

J.-H. Cheng, J.-F. Hwang, and P. Yang. Existence and uniqueness for p-area minimizers in
the Heisenberg group. Math. Ann., 337(2):253-293, 2007.

J.-H. Cheng, J.-F. Hwang, and P. Yang. Regularity of C! smooth surfaces with prescribed
p-mean curvature in the Heisenberg group. Math. Ann., 344(1):1-35, 2009.

G. Citti, G. Giovannardi, and M. Ritoré. Variational formulas for submanifolds of fixed degree.
Calc. Var. Partial Differential Equations, 60(6):Paper No. 233, 44, 2021.



64

(17)
(18]
19]

[20]

(21]

(22]

23]
24]
[25]

[26]

27)
(28]
29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
37)

(38]

(39]
[40]
[41]

[42]

MANUEL RITORE

G. Citti and A. Sarti. A cortical based model of perceptual completion in the roto-translation
space. J. Math. Imaging Vision, 24(3):307-326, 2006.

S. Cobzas. Functional analysis in asymmetric normed spaces. Frontiers in Mathematics.
Birkh&user/Springer Basel AG, Basel, 2013.

D. Danielli, N. Garofalo, and D. M. Nhieu. Sub-Riemannian calculus on hypersurfaces in
Carnot groups. Adv. Math., 215(1):292-378, 2007.

D. Danielli, N. Garofalo, and D. M. Nhieu. A notable family of entire intrinsic minimal graphs
in the Heisenberg group which are not perimeter minimizing. Amer. J. Math., 130(2):317-339,
2008.

D. Danielli, N. Garofalo, and D.-M. Nhieu. A partial solution of the isoperimetric problem
for the Heisenberg group. Forum Math., 20(1):99-143, 2008.

D. Danielli, N. Garofalo, D. M. Nhieu, and S. D. Pauls. Instability of graphical strips and a
positive answer to the Bernstein problem in the Heisenberg group H!. J. Differential Geom.,
81(2):251-295, 2009.

D. Danielli, N. Garofalo, D.-M. Nhieu, and S. D. Pauls. The Bernstein problem for embedded
surfaces in the Heisenberg group H'. Indiana Univ. Math. J., 59(2):563-594, 2010.

E. De Giorgi. Su una teoria generale della misura (r — 1)-dimensionale in uno spazio ad r
dimensioni. Ann. Mat. Pura Appl. (4), 36:191-213, 1954.

A. Dinghas. Uber einen geometrischen Satz von Wulff fiir die Gleichgewichtsform von
Kristallen. Z. Kristallogr., 105:304-314, 1944.

M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhiuser
Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis
Flaherty.

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks
in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks
in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.

A. Figalli, F. Maggi, and A. Pratelli. A mass transportation approach to quantitative isoperi-
metric inequalities. Invent. Math., 182(1):167-211, 2010.

I. Fonseca. The Wulff theorem revisited. Proc. Roy. Soc. London Ser. A, 432(1884):125-145,
1991.

I. Fonseca and S. Miller. A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh
Sect. A, 119(1-2):125-136, 1991.

V. Franceschi, G. P. Leonardi, and R. Monti. Quantitative isoperimetric inequalities in H".
Calc. Var. Partial Differential Equations, 54(3):3229-3239, 2015.

V. Franceschi, F. Montefalcone, and R. Monti. CMC spheres in the Heisenberg group. Anal.
Geom. Metr. Spaces, 7(1):109-129, 2019.

V. Franceschi, R. Monti, A. Righini, and M. Sigalotti. The isoperimetric problem for regular
and crystalline norms in H'. J. Geom. Anal., 33(1):Paper No. 8, 40, 2023.

B. Franchi, R. Serapioni, and F. Serra Cassano. Meyers-Serrin type theorems and relaxation
of variational integrals depending on vector fields. Houston J. Math., 22(4):859-890, 1996.
B. Franchi, R. Serapioni, and F. Serra Cassano. Rectifiability and perimeter in the Heisenberg
group. Math. Ann., 321(3):479-531, 2001.

B. Franchi, R. Serapioni, and F. Serra Cassano. Regular submanifolds, graphs and area
formula in Heisenberg groups. Adv. Math., 211(1):152-203, 2007.

M. Galli. First and second variation formulae for the sub-Riemannian area in three-
dimensional pseudo-Hermitian manifolds. Calc. Var. Partial Differential Equations, 47(1-
2):117-157, 2013.

M. Galli. On the classification of complete area-stationary and stable surfaces in the subrie-
mannian Sol manifold. Pacific J. Math., 271(1):143-157, 2014.

M. Galli. The regularity of Euclidean Lipschitz boundaries with prescribed mean curvature
in three-dimensional contact sub-Riemannian manifolds. Nonlinear Anal., 136:40-50, 2016.
M. Galli and M. Ritoré. Area-stationary and stable surfaces of class C'! in the sub-Riemannian
Heisenberg group H!. Adv. Math., 285:737-765, 2015.

M. Galli and M. Ritoré. Regularity of C! surfaces with prescribed mean curvature in three-
dimensional contact sub-Riemannian manifolds. Calc. Var. Partial Differential Equations,
54(3):2503-2516, 2015.



[43]

[44]

[45]

[46]

[47]
48]
[49]
[50]
[51]
[52]
/53]
[54]
[55]
[56]
[57]

(58]
[59]

[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

VARIATIONAL PROBLEMS RELATED TO THE SUB-FINSLER AREA IN H! 65

R. J. Gardner. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.),
39(3):355-405, 2002.

N. Garofalo and D.-M. Nhieu. Isoperimetric and Sobolev inequalities for Carnot-Carathéodory
spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49(10):1081-1144,
1996.

G. Giovannardi. Higher dimensional holonomy map for rules submanifolds in graded mani-
folds. Anal. Geom. Metr. Spaces, 8(1):68-91, 2020.

G. Giovannardi, J. Pozuelo, and M. Ritoré. Area-minimizing horizontal graphs with low regu-
larity in the sub-Finsler Heisenberg group H'. In New trends in geometric analysis—Spanish
Network of Geometric Analysis 2007-2021, volume 10 of RSME Springer Ser., page 209-226.
Springer, Cham, [2023] ©2023.

G. Giovannardi and M. Ritoré. Regularity of Lipschitz boundaries with prescribed sub-Finsler
mean curvature in the Heisenberg group H'. J. Differential Equations, 302:474-495, 2021.
G. Giovannardi and M. Ritoré. The Bernstein problem for (X, Y')-Lipschitz surfaces in three-
dimensional sub-Finsler Heisenberg groups. arXiv e-prints, page arXiv:2105.02179, May 2021.
S. N. Golo and M. Ritoré. Area-minimizing cones in the Heisenberg group H. Ann. Fenn.
Math., 46(2):945-956, 2021.

P. Hajlasz. Change of variables formula under minimal assumptions. Collog. Math.,
64(1):93-101, 1993.

R. K. Hladky and S. D. Pauls. Constant mean curvature surfaces in sub-Riemannian geometry.
J. Differential Geom., 79(1):111-139, 2008.

R. K. Hladky and S. D. Pauls. Variation of perimeter measure in sub-Riemannian geometry.
Int. Electron. J. Geom., 6(1):8-40, 2013.

A. Hurtado, M. Ritoré, and C. Rosales. The classification of complete stable area-stationary
surfaces in the Heisenberg group H'. Adv. Math., 224(2):561-600, 2010.

A. Hurtado and C. Rosales. Area-stationary surfaces inside the sub-Riemannian three-sphere.
Math. Ann., 340(3):675-708, 2008.

G. P. Leonardi and S. Masnou. On the isoperimetric problem in the Heisenberg group H".
Ann. Mat. Pura Appl. (4), 184(4):533-553, 2005.

G. P. Leonardi and S. Rigot. Isoperimetric sets on Carnot groups. Houston J. Math.,
29(3):609-637, 2003.

V. Magnani and D. Vittone. An intrinsic measure for submanifolds in stratified groups. J.
Reine Angew. Math., 619:203-232, 2008.

A. C. G. Mennucci. On asymmetric distances. Anal. Geom. Metr. Spaces, 1:200-231, 2013.
A. C. G. Mennucci. Geodesics in asymmetric metric spaces. Anal. Geom. Metr. Spaces,
2(1):115-153, 2014.

R. Montgomery. A tour of subriemannian geometries, their geodesics and applications, vol-
ume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 2002.

R. Monti. Brunn-Minkowski and isoperimetric inequality in the Heisenberg group. Ann. Acad.
Sci. Fenn. Math., 28(1):99-109, 2003.

R. Monti. Heisenberg isoperimetric problem. The axial case. Adv. Calc. Var., 1(1):93-121,
2008.

R. Monti and M. Rickly. Convex isoperimetric sets in the Heisenberg group. Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5), 8(2):391-415, 2009.

R. Monti, F. Serra Cassano, and D. Vittone. A negative answer to the Bernstein problem for
intrinsic graphs in the Heisenberg group. Boll. Unione Mat. Ital. (9), 1(3):709-727, 2008.

S. Nicolussi and F. Serra Cassano. The Bernstein problem for Lipschitz intrinsic graphs in the
Heisenberg group. Calc. Var. Partial Differential Equations, 58(4):Paper No. 141, 28, 2019.
P. Pansu. Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad. Sci. Paris
Sér. I Math., 295(2):127-130, 1982.

P. Pansu. An isoperimetric inequality on the Heisenberg group. Number Special Issue, page
159-174 (1984). 1983. Conference on differential geometry on homogeneous spaces (Turin,
1983).

S. D. Pauls. Minimal surfaces in the Heisenberg group. Geom. Dedicata, 104:201-231, 2004.
S. D. Pauls. H-minimal graphs of low regularity in H'. Comment. Math. Helv., 81(2):337-381,
2006.



66

[70]

[71]

[72]
(73]

[74]
[75]
[76]
[77]

(78]

[79]
(80]
(81]
(82]
(83]
(84]

(85]

MANUEL RITORE

A. Pinamonti, F. Serra Cassano, G. Treu, and D. Vittone. BV minimizers of the area func-
tional in the Heisenberg group under the bounded slope condition. Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5), 14(3):907-935, 2015.

J. Pozuelo. Existence of isoperimetric regions in sub-Finsler nilpotent groups.
arXiv:2103.06630, 2021.

J. Pozuelo and M. Ritoré. Pansu-Wulff shapes in H'. Adv. Calc. Var., 16(1):69-98, 2023.
M. Ritoré. Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group
H! with low regularity. Calc. Var. Partial Differential Equations, 34(2):179-192, 2009.

M. Ritoré. A proof by calibration of an isoperimetric inequality in the Heisenberg group H".
Calc. Var. Partial Differential Equations, 44(1-2):47-60, 2012.

M. Ritoré and C. Rosales. Rotationally invariant hypersurfaces with constant mean curvature
in the Heisenberg group H". J. Geom. Anal., 16(4):703-720, 2006.

M. Ritoré and C. Rosales. Area-stationary surfaces in the Heisenberg group H'. Adv. Math.,
219(2):633-671, 2008.

C. Rosales. Complete stable CMC surfaces with empty singular set in Sasakian sub-
Riemannian 3-manifolds. Calec. Var. Partial Differential Equations, 43(3-4):311-345, 2012.
R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition,
2014.

A. P. Sanchez. A Theory of Sub-Finsler Area in the Heisenberg Group. PhD thesis, Tutfs
University, 2017.

A. P. Sanchez. Sub-Finsler Heisenberg perimeter measures. arXiv:1711.01585, 2017.

J. E. Taylor. Crystalline variational problems. Bull. Amer. Math. Soc., 84(4):568-588, 1978.
G. Teschl. Ordinary differential equations and dynamical systems, volume 140 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.

J. Van Schaftingen. Anisotropic symmetrization. Ann. Inst. H. Poincaré Anal. Non Linéaire,
23(4):539-565, 2006.

R. Young. Harmonic intrinsic graphs in the Heisenberg group. Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5) (to appear), page arXiv:2012.09754, Dec. 2020.

R. Young. Area-minimizing ruled graphs and the Bernstein problem in the Heisenberg group.
Calc. Var. Partial Differential Equations, 61(4):Paper No. 142, 32, 2022.

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA & RESEARCH UNIT MNAT, UNIVERSIDAD DE

GRANADA, E-18071 GRANADA, ESpPANA

Email address: ritore@ugr.es



	1. Introduction
	2. Preliminaries
	3. The first variation of sub-Finsler area
	4. Regularity of sets with prescribed mean curvature
	5. Cones
	References

