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1. Introduction

In these notes we consider critical points of the perimeter associated to an
asymmetric sub-Finsler structure in the first Heisenberg group H1. Such a structure
is defined by means of an asymmetric left-invariant norm || · || on the horizontal
distribution H of H1. If we fix any frame of left-invariant horizontal vector fields,
any left-invariant norm is uniquely determined by a convex body (compact convex
set with non-empty interior) K ⊂ R2 containing 0 in its interior. We write || · ||K
to indicate the dependence of the norm on K. The case of a symmetric norm
corresponds to a centrally symmetric convex body (i.e, such that K = −K). The
norm associated to the closed unit disc D centered at 0 is the standard Euclidean
norm and is denoted by | · |. Symmetric sub-Finsler structures in H1 have received
intense interest recently, specially the study of geodesics [3, 2], see [60] for the
classical sub-Riemannian case, and the associated Minkowski content [79, 80].
General asymmetric sub-Finsler structures have an associated asymmetric distance
and might have different metric properties, see [58, 59] and [18].

On H1 we always consider the standard basis of left-invariant vector fields

X =
∂

∂x
+ y

∂

∂t
, Y =

∂

∂y
− x

∂

∂t
, T =

∂

∂t
,
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and the left-invariant Riemannian metric g, also denoted by 〈·, ·〉, making X,Y, T
orthonormal. The associated Riemannian measure is the Haar measure of the group,
and coincides with the Lebesgue measure of the underlying Euclidean space R3. The
measure of a set E is the volume of the set and is denoted by |E|. The volume
element is denoted by dH1. Any C1 surface interacts with horizontal distribution
H. The singular part of S is the set S0 ⊂ S of points p ∈ S such that TpS = Hp.

On H1 there is a one-parameter family of dilations defined by
hλ(x, y, t) = (λx, λy, λ2t),

for any (x, y, t) ∈ H1 and λ > 0.
Given a left-invariant norm || · ||K , a measurable set E ⊂ H1 and an open set

Ω ⊂ H1, we define the sub-Finsler perimeter of E in Ω by

(1.1) PK(E,Ω) = sup

{∫
E

divU dH1 : U ∈ H1
0(Ω), ||U ||K,∞ 6 1

}
,

where H1
0(Ω) is the set of C1 horizontal vector fields with compact support in Ω and

|| · ||K,∞ is the infinity norm associated to || · ||K . The perimeter associated to the
Euclidean norm | · | is the sub-Riemannian perimeter as it defined in [44, 36, 35].
A set has finite perimeter for a given norm if and only if it has finite perimeter for
the standard sub-Riemannian perimeter. Hence all known structure results in the
standard case apply to the sub-Finsler perimeter, see Franchi et al. [36].

In case the boundary S of E is a C1 or Euclidean lipschitz surface, the perimeter
of E is given by the sub-Finsler area functional

(1.2) AK(S) =

∫
S

||Nh||K,∗ dS,

where || · ||K,∗ is the dual norm of || · ||K , Nh is the orthogonal projection to the
horizontal distribution of the Riemannian outer unit normal N , and dS is the
Riemannian measure on S.

1.1. The first variation. This section is based on [72].
If we consider a convex set K with boundary of class C2

+ (i.e., so that ∂K is
of class C2 and ∂K has positive geodesic curvature everywhere), we may compute
the first variation of the area functional associated to a vector field U with compact
support in the regular part of S to get

A′
K(0) =

d

ds

∣∣∣∣
s=0

AK(ϕs(S)) =

∫
S

u
(
divS ηK

)
dS.

In this formula {ϕs}s∈R is the parameter group of diffeomorphisms associated to U ,
u = 〈U,N〉 is the normal component of the variation and divS ηK is the divergence
on S of the vector field ηK = πK(νh), where νh = Nh/|Nh| is the horizontal unit
normal and πK is the map projecting any vector v 6= 0 to the intersection of the
supporting line in the direction of v with || · ||K = 1 (the boundary of K). The
strict convexity of || · ||K implies that this map is well-defined.

The function HK = divS ηK appearing in the first variation of perimeter is
called the mean curvature of S. Further calculations imply that HK is equal to
〈DZηK , Z〉, where Z = −J(νh) is the horizontal direction on the regular part
of S. Hence the mean curvature function is localized on the horizontal curves
of S. It is not difficult to check that a horizontal curve in a surface with mean
curvature HK must satisfy a differential equation depending on HK . Hence we
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can reconstruct the regular part of a surface with prescribed mean curvature by
taking solutions of this differential equation. Furthermore, we might be able classify
surfaces with prescribed mean curvature by classifying solutions of this ordinary
differential equation and by looking at the interaction of these curves with the
singular set S0 of S composed of the points where the tangent plane is horizontal,
as was done in [76] for the standard sub-Riemannian perimeter.

Key observations are that horizontal straight lines are solutions of the differ-
ential equation for HK = 0 and that horizontal liftings of the curve || · ||K = 1
are solutions for HK = 1. The strict convexity of || · ||K = 1 together with the
invariance of the equation by left-translations and dilations imply that all solutions
are of this type.

Hence, given a convex body K ⊂ R2 containing 0 in its interior and its as-
sociated left–invariant norm || · ||K , we consider the set BK obtained as the ball
enclosed by the horizontal liftings of all translations of the curve ∂K containing 0.
It is not difficult to prove that this way we obtain a topological sphere SK with two
poles on the same vertical line, that is the union of two graphs, and whose singular
set consists of the two poles. Moreover the boundary of BK is C2 outside the poles
(indeed C` if the boundary of K is of class C`, ` > 2) and of regularity C2 around
the poles. When K = D, these sets were build by P. Pansu [67] and are frequently
referred to as Pansu spheres. They are of class C2 but not C3 near the singular
points, see Proposition 3.15 in [21] and Example 3.3 in [76].

Figure 1. The set BK when K is the unit ball of the r-norm
||(x, y)||r =

(
|x|r + |y|r

)1/r, r = 1.5

We observe that these objects have constant mean curvature. Hence they are
critical points of the sub-Finsler area functional under a volume constraint. Further
evidence that they have stronger minimization properties is given in Section 3.7,
where it is proven that, under a geometric condition, a set of finite perimeter E
with volume equal to the volume of BK has perimeter larger than or equal to the
one of the ball BK . A slightly weaker result for the Euclidean norm was proven in
[74].
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Figure 2. The set BK when K is a smooth approximation of the
triangular norm

We have organized this part into several sections. In section 3.1 we compute
the first variation of perimeter for surfaces of class C2 and, assuming that K is
of class C2

+, prove the property that the regular part of the surface is foliated by
horizontal liftings of translations of homothetic expansions of ∂K. In section 3.5
we define the Pansu-Wulff shapes and compute some examples and prove regularity
properties of these objects. In Section 3.6 we study some geometric properties of the
Pansu-Wulff shapes and, finally, in Section 3.7 we obtain a minimization property
of these Pansu-Wulff shapes. This property indicates that these shapes are good
candidates to be solutions of the sub-Finsler isoperimetric problem in H1.

Some justification on the terminology Pansu-Wulff shape must be given. Con-
sider a norm || · || in Euclidean space and its dual norm || · ||∗. For a Lipschitz
surface S, the integral ∫

S

||N ||∗dS,

where N is an a.e. unit normal to S, defines a functional that represents the Gibbs
free energy, proportional to the area of the surface of contact and to the surface
tension, of an anisotropic interface separating two fluids or gases. The contribution
of each element of area depends on the orientation. An equilibrium state is obtained
by minimizing the free energy for a drop of given volume. This is an isoperimetric
problem in mathematical terms.

The solutions of this problem were described by the crystallographer G. Wulff
in 1895: they are translations and dilations of the set {x ∈ R : ||x|| 6 1}, usually
referred to as the Wulff shape of the free energy. A first mathematical proof of
this fact was given by Dinghas [25]. Other versions of Wulff’s results were given
by Busemann [7], Taylor [81], Fonseca [30] and Fonseca and Müller [31]; see also
Gardner [43], Burago and Zalgaller [6], Van Schaftingen [83], and Figalli, Maggi
and Pratelli [29].

The counterpart of the free energy in the Heisenberg group H1 is given in
formula (1.2). When K = D we obtain the classical sub-Riemannian area. In his
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Ph. D. Thesis, Pansu exhibited in [67] an example of an area-stationary candidate,
which coincides with the Pansu-Wulff shape, and conjectured that this set is a
solution of the sub-Riemannian isoperimetric problem in H1. While many partial
results have been obtained in the direction of proving this conjecture, see [75, 76,
74, 63, 32, 62, 61, 55, 21, 33] and the monograph [10], it still remains open.

The Pansu-Wulff shapes were introduced by Pozuelo and Ritoré in [72] and
also considered by Franceschi et al., see [34].

1.2. Regularity of surfaces with prescribed mean curvature. This sec-
tion is based on [47].

The aim of this part is to study the regularity of the characteristic curves of the
boundary of a set with continuous prescribed mean curvature in the first Heisenberg
group H1 with a sub-Finsler structure. We assume also in this part that K has C2

boundary with positive geodesic curvature.
Following De Giorgi [24], the authors of [72] defined a notion of sub-Finsler K-

perimeter, see also [34]. Given a measurable set E ⊂ H1 and an open subset
Ω ⊂ H1, it is said that E has locally finite K-perimeter in Ω if for any relatively
compact open set V ⊂ Ω we have

PK(E, V ) = sup

{∫
E

div(U) dH1 : U ∈ H1
0(V ), ||U ||K,∞ 6 1

}
< +∞,

where H1
0(V ) is the space of horizontal vector fields of class C1 with compact

support in V , and ||U ||K,∞ = supp∈V ||Up||K . Both the divergence and the integral
are computed with respect to a fixed left-invariant Riemannian metric g on H1.
When S = ∂E ∩Ω is a Euclidean Lipschitz surface the K-perimeter coincides with
the area functional

AK(S) =

∫
S

||Nh||K,∗ dH2,

where H2 is the 2-dimensional Hausdorff measure associated to the left-invariant
Riemannian metric g, N is the outer unit normal to S, defined H2-a.e on S, Nh is
the horizontal projection of N to the horizontal distribution in H1 and || · ||K,∗ is
the dual norm of || · ||K .

We say that a set E with Euclidean Lipschitz boundary has prescribed K-mean
curvature f ∈ C0(Ω) if, for any bounded open subset V ⊂ Ω, E is a critical point
of the functional

AK(S ∩B)−
∫
E∩B

f dH1.

This notion extends the classical one in Euclidean space and the one introduced in
[42] for the sub-Riemannian area. We refer the reader to the introduction of [42]
for a brief historical account and references.

We say that a set E has constant prescribed K-mean curvature if there exists
λ ∈ R such that E has prescribed K-mean curvature λ. In Proposition 4.1 we
consider a set E with Euclidean Lipschitz boundary and positive K-perimeter. We
show that if E is a critical point of the K-perimeter for variations preserving the
volume up to first order then E has constant prescribed K-mean curvature on any
open set Ω avoiding the singular set S0 and where PK(E,Ω) > 0. This result can be
applied to isoperimetric regions in H1 with Euclidean Lipschitz boundary. Critical
points of the area have, by definition, prescribed mean curvature equal to 0.
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The main result of this paper is Theorem 4.5, where we prove that the boundary
S of a set E with prescribed continuous K-mean curvature is foliated by horizontal
characteristic curves of class C2 in its regular part. The minimal assumptions we
require for the boundary S of E are to be Euclidean Lipschitz and H-regular. The
result holds in particular when the boundary of E is of class C1. As we point out
in Remark 4.9, C2 regularity is optimal since the Pansu-Wulff shapes obtained in
[72] have prescribed constant mean curvature and their boundaries are foliated by
characteristic curves with the same regularity as that of ∂K, that may be just C2.
In the proof of the Theorem 4.5 we exploit the first variation formula of the area
following the arguments developed in [40, 42] and make use of the bi-Lipschitz
homeomorphism considered in [65]. One of the main differences in our setting is
that the area functional strongly depends on the inverse πK of the Gauss map of
∂K. Therefore the first variation of the area depends on the derivative of the map
that describes the boundary ∂K. In order to use the bootstrap regularity argument
in [40, 42] we need to invert this map on the boundary ∂K, that is possible since
the geodesic curvature of ∂K is strictly positive, see Lemma 4.6. Moreover, the
C2 regularity of the characteristic curves implies that, on characteristic curves of a
boundary with prescribed continuous K-mean curvature f , the ordinary differential
equation

(1.3) 〈DZ πK(νh), Z〉 = f,

is satisfied. In this equation νh = Nh/|Nh| is the classical sub-Riemannian horizon-
tal unit normal, Z is the unit characteristic vector field tangent to the characteristic
curves and D the Levi-Civita connection associated to the left-invariant Riemann-
ian metric g on H1 . Equation (1.3) was proved to hold for C2 surfaces in [72].
For regularity assumptions below H-regular and Euclidean Lipschitz, equation (1.3)
holds in a suitable weak sense, a result proved in [1] for the sub-Riemannian area,
when K coincides with the unit disk centered at 0.

Moreover, in Proposition 4.13 we stress that equation (1.3) is equivalent to

(1.4) HD = κ(πK(νh))f,

where HD = 〈DZνh, Z〉 is the classical sub-Riemannian mean curvature introduced
in [1] and κ is the strictly positive Euclidean curvature of the boundary ∂K. A
key ingredient to obtain equation (1.4) is Lemma 4.14, that exploits the ideas of
Lemma 4.6 in an intrinsic setting.

This part is a natural continuation of the many recent papers concerning sub-
Riemannian area minimizers [44, 19, 14, 12, 10, 22, 4, 1, 51, 52, 53, 76, 54,
32, 8, 17, 55, 62, 16, 45, 11]. The sub-Riemannian perimeter functional is a
particular case of the sub-Finsler functionals considered in these notes where the
convex set is the unit disk D centered at 0. In the pioneering paper [44] N. Garofalo
and D. M. Nhieu showed the existence of sets of minimal perimeter in Carnot-
Carathéodory spaces satisfying the doubling property and a Poincaré inequality. In
[56] Leonardi and Rigot showed the existence of isoperimetric sets in Carnot groups.
However the optimal regularity of the critical points of these variational problems
involving the sub-Riemannian area is not completely understood. Indeed, even in
the sub-Riemannian Heisenberg group H1 there are several examples of non-smooth
area minimizers: S. D. Pauls in [69] exhibited a solution of low regularity for the
Plateau problem with smooth boundary datum; on the other hand in [14, 73, 49]
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the authors provided solutions of Bernstein’s problem in H1 that are only Euclidean
Lipschitz.

In [66] P. Pansu conjectured that the boundaries of isoperimetric sets in H1

are given by the surfaces now called Pansu’s spheres, union of all sub-Riemannian
geodesics of a fixed curvature joining two point in the same vertical line. This con-
jecture has been solved only assuming a priori some regularity of the minimizers
of the area with constant prescribed mean curvature. In [76] the authors solved
the conjecture assuming that the minimizers of the area are of class C2, using the
description of the singular set, the characterization of area-stationary surfaces, and
the ruling property of constant mean curvature surfaces developed in [12]. Hence
the a priori regularity hypothesis are central to study the sub-Riemannian isoperi-
metric problem. Motivated by this issue, it was shown in [15] that a C1 boundary
of a set with continuous prescribed mean curvature is foliated by C2 characteristic
curves. Regularity results for Lipschitz viscosity solutions of the minimal surface
equation were obtained in [8]. Furthermore, in [42] the authors generalized the
previous result when the boundary S is immersed in a three-dimensional contact
sub-Riemannian manifold. Finally M. Galli in [40] improved the result in [42] only
assuming that the boundary S is Euclidean Lipschitz and H-regular in the sense of
[36]. The Bernstein problem in H1 with Euclidean Lipschitz regularity was treated
by S. Nicolussi and F. Serra-Cassano [65]. Partial solutions of the sub-Riemannian
isoperimetric problem have been obtained assuming Euclidean convexity [63], or
symmetry properties [21, 74, 62, 32]. An analogous sub-Finsler isoperimetric
problem might be considered. Candidate solutions would be the Pansu-Wulff shapes
considered in [72]. See [72, 34] for partial results in the sub-Finsler isoperimetric
problem and [79] for earlier work.

We have organized this part into two sections. Section 4.2 is dedicated to the
proof of the main Theorem 4.5, that ensures that the characteristic curves are C2.
Finally in Section 4.3 we deal with the K-mean curvature equation, see Proposition
4.12 and Proposition 4.13.

1.3. Some examples. This section is based on [46].
The regularity of perimeter-minimizing sets in sub-Finsler geometry is currently

one of the most challenging problems in Calculus of Variations.
The regularity of sub-Riemannian perimeter-minimizing sets has been investiga-

ted by a large number of researchers [12, 76, 20, 4, 23, 53, 38, 77, 39, 73, 15,
14, 65, 8]. The boundaries of the conjectured solutions to the isoperimetric prob-
lem are of class C2, see [10], although there exist examples of area-minimizing
horizontal graphs which are merely Euclidean Lipschitz, see [14, 64, 73]. The
sub-Riemannian Plateau problem was first considered by Pauls [68]. Afterwards,
under given Dirichlet conditions on p-convex domains, Cheng, Hwang and Yang
[14] proved existence and uniqueness of t-graphs (horizontal graphs of the form
t = u(x, y)) which are Lipschitz continuous weak solutions of the minimal surface
equation in H1. Later, Pinamonti, Serra Cassano, Treu and Vittone [70] obtained
existence and uniqueness of t-graphs on domains with boundary data satisfying a
bounded slope condition, thus showing that Lipschitz regularity is optimal at least
in the first Heisenberg group H1. Capogna, Citti and Manfredini [8] established
that the intrinsic graph of a Lipschitz continuous function which is, in addition,
a viscosity solution of the sub-Riemannian minimal surface equation in H1, is of
class C1,α, with higher regularity in the case of Hn, n > 1, see [9]. It was shown
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in [15] that the regular part of a t-graph of class C1 with continuous prescribed
sub-Riemannian mean curvature in H1 is foliated by C2 characteristic curves. Fur-
thermore, in [42] the authors generalized the previous result when the boundary
S is a general C1 surface in a three-dimensional contact sub-Riemannian manifold.
Later, Galli in [40] improved the result in [42] only assuming that the boundary S
is Euclidean Lipschitz and H-regular. Recently, in [47] the first and third authors
extended the result in [40] to the sub-Finsler Heisenberg groups. Up to now, de-
termining the optimal regularity of perimeter-minimizing H-regular hypersurfaces
in the Heisenberg group remains an open problem.

Bernstein type problems for surfaces in H1 have also received a special atten-
tion. The nature of the sub-Riemannian Bernstein problem in the Heisenberg group
is completely different from the Euclidean one even for graphs. On the one hand
the area functional for t-graphs is convex as in the Euclidean setting. Therefore the
critical points of the area are automatically minimizers for the area functional. How-
ever, since t-graphs admit singular points where the horizontal gradient vanishes
their classification is not an easy task. Thanks to a deep study of the singular set for
C2 surfaces in H1, Cheng, Hwang, Malchiodi, and Yang [12] showed that minimal
t-graphs of class C2 are congruent to a family of surfaces including the hyperbolic
paraboloid u(x, y) = xy and the Euclidean planes. Under the hypothesis that the
surface is area-stationary, Ritoré and Rosales proved in [76] that the surface must
be congruent to a hyperbolic paraboloid or to a Euclidean plane. If we consider the
class of Euclidean Lipschitz t-graphs, the previous classification does not hold since
there are several examples of area-minimizing surfaces of low regularity, see [73].
The complete classification for C2 surfaces was established by Hurtado, Ritoré and
Rosales in [53], by showing that a complete, orientable, connected, stable area-
stationary surface is congruent either to the hyperbolic paraboloid u(x, y) = xy or
to a Euclidean plane. As in the Euclidean setting the stability condition is crucial
in order to discard some minimal surfaces such as helicoids and catenoids.

On the other hand, the study of the regularity of intrinsic graphs (i. e., Rie-
mannian graphs over vertical planes) is a completely different problem since the
area functional for such graphs is not convex. Indeed, Danielli, Garofalo, Nhieu in
[20] discovered that the family of graphs

uα(x, t) =
αxt

1 + 2αx2
, α > 0,

are area-stationary but unstable. In [64], Monti, Serra Cassano and Vittone pro-
vided an example of an area-minimizing intrinsic graph of regularity C1/2(R2) that
is an intrinsic cone. Therefore the Euclidean threshold of dimension n = 8 fails
in the sub-Riemannian setting. In [4], Barone Adesi, Serra Cassano and Vittone
classified complete C2 area-stationary intrinsic graphs. Later Danielli, Garofalo,
Nhieu and Pauls in [23] showed that a C2 complete stable embedded minimal sur-
face in H1 with empty characteristic set must be a plane. In [41] Galli and Ritoré
proved that a complete, oriented and stable area-stationary C1 surface without
singular points is a vertical plane. Later, Nicolussi Golo and Serra Cassano [65]
showed that Euclidean Lipschitz stable area-stationary intrinsic graphs are verti-
cal planes. Recently, Giovannardi and Ritoré [48] showed that in the Heisenberg
group H1 with a sub-Finsler structure, a complete, stable, Euclidean Lipschitz sur-
face without singular points is a vertical plane and Young [85] proved that a ruled
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area-minimizing entire intrinsic graph in H1 is a vertical plane by introducing a
family of deformations of graphical strips based on variations of a vertical curve.

In this note, we provide examples of entire perimeter-minimizing t-graphs for
a fixed but arbitrary left-invariant sub-Finsler structure in the first Heisenberg
group H1. Our examples are inspired by the corresponding sub-Riemannian ones in
[73]. Of particular interest are the conical examples, invariant by the non-isotropic
dilations of H1. In the sub-Riemannian case these examples were investigated in
[49] and [73].

The part is organized the following way. In Theorem 5.1 of Section 5.1 we
obtain a necessary and sufficient condition, inspired by Theorem 3.1 in [72], for a
surface to be a critical point of the sub-Finsler area. We assume that the surface is
piecewise C2, and composed of pieces meeting in a C1 way along C1 curves. This
condition will allow us to construct area-minimizing examples in Proposition 5.7
of Section 5.2, and examples with low regularity in Proposition 5.8. The same
construction, keeping fixed the angle at one side (and hence at the other one) of
the singular line, provides examples of area-minimizing cones, see Corollary 5.9.
Finally, in Section 5.3 we exhibit some examples of area-minimizing cones in the
spirit of [49]. These examples are obtained in Theorem 5.14 from circular sectors
of the area-minimizing cones with one singular half-line obtained in Corollary 5.9.

2. Preliminaries

2.1. The first Heisenberg group H1. We denote by H1 the first Heisenberg
group: the 3-dimensional Euclidean space R3 with coordinates (x, y, t), endowed
with the product ∗ defined by

(a, b, c) ∗ (x, y, t) = (a+ x, b+ y, c+ t+ (−ay + bx).

For p ∈ H1, the left translation by p is the diffeomorphism Lp(q) = p ∗ q. A frame
of left-invariant vector fields is given by

X =
∂

∂x
+ y

∂

∂t
, Y =

∂

∂y
− x

∂

∂t
, T =

∂

∂t
.

The horizontal distribution H in H1 is the smooth planar distribution generated
by X and Y . The horizontal projection of a vector U onto H will be denoted by
Uh. A vector field U is called horizontal if U = Uh. A horizontal curve is a C1

curve whose tangent vector lies in the horizontal distribution.
We shall consider on H1 the left-invariant Riemannian metric g = 〈·, ·〉, so that

{X,Y, T} is a global orthonormal frame, and let D be the Levi-Civita connection
associated to the Riemannian metric g.

We denote by [U, V ] the Lie bracket of two C1 vector fields U , V on H1. Note
that [X,T ] = [Y, T ] = 0, while [X,Y ] = −2T . The last equality implies that H is a
bracket generating distribution. Moreover, by Frobenius Theorem we have that H
is non-integrable. The vector fields X and Y generate the kernel of the (contact)
1-form ω := −y dx+ x dy + dt.

We shall consider on H1 the (left-invariant) Riemannian metric g = 〈· , ·〉 so that
{X,Y, T} is an orthonormal basis at every point, and the associated Levi-Civitá
connection D. The modulus of a vector field U with respect to this Riemannian
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metric will be denoted by |U |. The following derivatives can be easily computed

DXX = 0, DY Y = 0, DTT = 0,

DXY = −T, DXT = Y, DY T = −X,(2.1)
DYX = T, DTX = Y, DTY = −X.

Setting J(U) = DUT for any vector field U in H1 we get J(X) = Y , J(Y ) = −X
and J(T ) = 0. Therefore −J2 coincides with the identity when restricted to the
horizontal distribution. The Riemannian volume of a set E is, up to a constant, the
Haar measure of the group and is denoted by |E|. Since left-translations are affine
Euclidean maps with Jacobian 1, there follows that the Haar measure coincides
with Lebesque measure in R3 since left-translations are affine maps with Jacobian
1. More precisely,

L(a,b,c)

xy
t

 =

1 0 0
0 1 0
b −a 1

xy
t

+

ab
c

 .

The integral of a function f with respect to the Riemannian measure is denoted by∫
f dH1.

We refer to [76] for notation and background.

2.2. The pseudo-hermitian connection. The pseudo-hermitian connection
∇ on H1 is the only affine connection satisfying the following properties:

(1) ∇ is a metric connection,
(2) Tor(U, V ) = 2 〈J(U), V 〉T for all vector fields U, V .

The existence of the pseudo-hermitian connection can be easily obtained adapting
the proof of existence of the Levi-Civita connection, see Koszul formula, Theorem
3.6 in [26].

We shall use the following relation between the pseudo-hermitian and the Levi-
Civita connections.

Lemma 2.1. Let U , V and W be vector fields where V and W are horizontal.
Then the following equation holds

(2.2) 〈∇UV,W 〉 = 〈DUV,W 〉+ 〈J(W ), V 〉〈T,U〉.

In particular

(2.3) ∇UV = DUV − 〈T,U〉J(V ).

Proof. We use Koszul formula for ∇, see §3 in [26]. The terms in the first
two lines are equal to 〈DUV,W 〉. The last three terms can be computed using the
expression for the torsion to get

〈J(W ), V 〉〈T,U〉.

This proves (2.2). Equation (2.3) follows since 〈J(V ),W 〉 = −〈V, J(W )〉. �

Using Koszul formula it can be easily seen that ∇X = ∇Y = 0.

Corollary 2.2. Let γ : I → S be a curve on H1 and let ∇/ds, D/ds be
the covariant derivatives induced by the pseudo-hermitian connection and the Levi-
Civita connection in γ, respectively. Let V be a vector field along γ. Then we
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have

(2.4) ∇
ds
V =

D

ds
V − 〈γ̇, T 〉J(V ).

In particular, if γ is a horizontal curve, the covariant derivatives coincide.

2.3. Immersed surfaces in H1. Following [1, 36] we provide the following
definition.

Definition 2.3 (H-regular surfaces). A real measurable function f defined
on an open set Ω ⊂ H1 is of class C1

H(Ω) if the distributional derivative ∇Hf =
(Xf, Y f) is represented by a continuous function. This means that Xf , Y f are
continuous functions.

We say that S ⊂ H1 is an H-regular surface if for each p ∈ H1 there exist a
neighborhood U and a function f ∈ C1

H(U) such that ∇Hf 6= 0 and S∩U = {f = 0}.
Then the continuous horizontal unit normal is given by

νh =
∇Hf

|∇Hf |
.

Given an oriented Euclidean Lipschitz surface S immersed in H1, its unit nor-
mal N is defined H2-a.e. in S, where H2 is the 2-dimensional Hausdorff measure
associated to the Riemannian distance induced by g. In case S is the boundary
of a set E ⊂ H1, we always choose the outer unit normal. We say that a point p
belongs to the singular set S0 of S if p ∈ S is a differentiable point and the tangent
space TpS coincides with the horizontal distribution Hp. Therefore the horizontal
projection of the normal Nh at singular points vanishes. In S r S0 the horizontal
unit normal νh is defined H2-a.e. by

νh =
Nh

|Nh|
,

where Nh is the horizontal projection of the normal N . The vector field Z is defined
H2-a.e. on S r S′

0 by Z = −J(νh), and it is tangent to S and horizontal.
H-regularity plays an important role in the regularity theory of sets of finite

sub-Riemannian perimeter. In [36], B. Franchi, R. Serapioni and F. Serra-Cassano
proved that the boundary of such a set is composed of H-regular surfaces and a
singular set of small measure.

2.4. Sub-Finsler norms. The notion of norm we use in these notes is the
one of asymmetric norm. This is a non-negative function || · || : V → R defined on
a finite-dimensional real vector space V satisfying

(1) ||v|| = 0 if and and only if v = 0,
(2) ||λv|| = λ||v||, for all λ > 0 and v ∈ V , and
(3) ||v + w|| 6 ||v||+ ||w||, for all v, w ∈ V .

We stress the fact that we are not assuming the symmetry property || − v|| = ||v||.
Associated to a given a norm || · || in V we have the set F = {u ∈ V : ||u|| 6

1}, which is compact, convex and includes 0 in its interior. Reciprocally, given a
compact convex set K with 0 ∈ int(K), the function ||u||K = inf{λ > 0 : u ∈ λK}
defines a norm in V so that F = {u ∈ V : ||u||K 6 1}. The set F is referred to as
the closed unit ball (centered at 0) of the norm || · ||.
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Given a norm || · || and an scalar product 〈·, ·〉 in V , we consider its dual norm
|| · ||∗ of || · || with respect to 〈·, ·〉 defined by

||u||∗ = sup
||v||61

〈u, v〉.

The dual norm is the support function h of the unit ball K = {u ∈ V : ||u|| 6 1}
with respect to the scalar product 〈·, ·〉. From this point on, we assume that || · ||
is smooth (i.e., it is C∞ in V \ {0}) and strictly convex:

||λu+ (1− λ)v|| < 1, for all λ ∈ (0, 1),when u 6= v, ||u|| = ||v|| = 1.

Given u ∈ V , the compactness of the unit ball of || · || and the continuity of || · ||
implies the existence of u0 ∈ V satisfying equality ||u||∗ = 〈u, u0〉. Moreover, it can
be easily checked that ||u0|| = 1. In general, a point u0 satisfying this property is
not unique, but uniqueness follows from the assumption that || · || is strictly convex:
this is proved by contradiction assuming the existence of another point u′0 with
||u′0|| 6 1 satisfying ||u||∗ = 〈u, u′0〉. Of course u′0 must also satisfy ||u′0|| = 1. Then
all the points v in the segment [u0, u

′
0] satisfy ||v|| 6 1 and ||u||∗ = 〈u, v〉; hence

||v|| = 1. But this contradicts the strict convexity of || · || unless u0 = u′0. We shall
define π(u) as the only vector satisfying ||π(u)|| = 1 and

h(u) = ||u||∗ = 〈u, π(u)〉.

If λ > 0 then it is easily checked that π(λu) = π(u).
We further assume that K is of class C`

+, with ` > 2. This means that ∂K is of
class C`, ` > 2, and that the geodesic curvature of ∂K is everywhere positive. Hence
the Gauss map N : ∂K → S1 to the unit circle is a diffeomorphism of class C`−1.
Since π = N−1 we conclude that π is of class C`−1. Moreover, by Corollary 1.7.3
in [78] we have

∇h(u) = N−1

(
u

|u|

)
,

and so h is of class C`.
Given a norm || · ||0 in H0, we extend it by left-invariance to a norm || · || in the

whole horizontal distribution H by means of the formula

(2.5) ||v||p = ||d`−1
p (v)||0, p ∈ H1, v ∈ Hp.

In particular, for a horizontal vector field fX + gY , its norm at a point p ∈ H1

is given by ||f(p)X0 + g(p)Y0||0. Identifying the vector aX0 + bY0 ∈ H0 with the
Euclidean vector (a, b), we can define a norm in R2 by the formula ||(a, b)||e =
||aX0 + bY0||0.

We consider the norm (|| · ||0)∗, dual to || · ||0 in H0, and we extend it by left-
invariance to a norm || · ||∗ in H. It can be easily checked that (|| · ||∗)p is the dual
norm to || · ||p since

(||v||∗)p = (||d`−1
p (v)||0)∗ = sup

||w||061,w∈H0

〈d`−1
p (v), w〉

= sup
||w′||p61,w′∈Hp

〈v, w′〉

= (||v||p)∗.
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When || · ||0 is Cl
+ with l > 2, all norms || · ||p are Cl

+. Given a horizontal vector
field U of class C1, we define π(U) as the C1 horizontal vector field satisfying
(2.6) ||U ||∗ = 〈U, π(U)〉,
or, equivalently, (||Up||p)∗ = 〈Up, π(U)p〉 for all p ∈ H1. We recall that π(fU) =
π(U) for any positive smooth function f .

2.5. The sub-Finsler perimeter. Let E ⊂ H1 be a measurable set, || · ||K
the left-invariant norm associated to a convex body K ⊂ R2 so that 0 ∈ int(K),
and Ω ⊂ H1 an open subset. We say that E has locally finite K-perimeter in Ω if
for any relatively compact open set V ⊂ Ω we have

PK(E, V ) = sup

{∫
E

div(U) dH1 : U ∈ H1
0(V ), ||U ||K,∞ 6 1

}
< +∞.

In this expression, H1
0(V ) is the space of horizontal vector fields of class C1 with

compact support in V , and ||U ||K,∞ = supp∈V ||Up||K . The integral is computed
with respect to the Riemannian measure dH1 of this left-invariant metric.

Let K,K ′ bounded convex bodies containing 0 in its interior. Then there exist
constants α, β > 0 such that

α||x||K′ 6 ||x||K 6 β||x||K′ , for all x ∈ R2.

Let E ⊂ H1 be a measurable set, Ω ⊂ H1 an open set and V ⊂ Ω a relatively open
set. Take U ∈ H1

0(V ) a vector field with ||U ||K,∞ 6 1. Hence ||αU ||K′ 6 ||U ||K 6 1
and ∫

E

div(U)dH1 =
1

α

∫
E

div(αU) dH1 6
1

α
|∂E|K′(V ),

Taking supremum over the set of C1 horizontal vector fields with compact support
in V and || · ||K 6 1, we get PK(E, V ) 6 1

α |∂E|K′(V ). In a similar way we get the
inequality 1

β |∂E|K′(V ) 6 PK(E, V ), so that we have

(2.7) 1
β |∂E|K′(V ) 6 |∂EK |(V ) 6 1

α |∂E|K′(V ).

As a consequence, E has locally finite K-perimeter if and only if it has locally finite
K ′-perimeter.

Let E ⊂ H1 be a set with locally finite K-perimeter in Ω. Given the standard
basis X,Y of the horizontal distribution, we can define a linear functional L :
C1

0 (Ω,R2) → R by

L(g) = L((g1, g2)) =

∫
E

div(g1X + g2Y ) dH1.

For any relatively compact open set V ⊂ Ω we have
C(V ) := sup{L(g) : g ∈ C1

0 (V,R2), ||g||K,∞ 6 1} < +∞,

We fix any compact subset C ⊂ Ω and take a relatively compact open set V
such that C ⊂ V ⊂ Ω. For each g ∈ C0(Ω,R2) with support in K we can find a
sequence of C1 functions (gi)i∈N with support in V such that gi converges uniformly
to g. Hence equality

L(g) = lim
i→∞

L(gi)

allows to extend L to a linear functional L : C0(Ω,R2) → R satisfying

sup{L(g) : g ∈ C0(Ω,R2), supp(g) ⊂ C, ||g||K,∞ 6 1} 6 C(V ) < +∞.
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The proof of the Riesz Representation Theorem, see § 1.8 in [27], can be
adapted to obtain the existence of a Radon measure µK on Ω and a µK-measurable
horizontal vector field νK in Ω so that νK = ν1X + ν2Y , with (ν1, ν2) : Ω → R2 a
µK-measurable function, satisfying

L(g) =

∫
Ω

〈g1X + g2Y, νK〉 dµK .

The measure µK is the total variation measure

µK(V ) = sup{L̄(g) : g ∈ C0(Ω,R2), supp(g) ⊂ V, ||g||K,∞ 6 1}

that coincides with PK(E, V ) because L is a continuous extension of L. Henceforth
we denote µK by |∂E|K .

Let us check that

(2.8) ||(νK)p||K,∗ = 1 for |∂E|K-a.e. p.

Here || · ||K,∗ is the dual norm of || · ||K . To prove (2.8) we take a relatively compact
open set V ⊂ Ω and g ∈ C0(Ω,R2) with supp(g) ⊂ V and ||g||K,∞ 6 1. Since
〈g1X + g2Y, νK〉 6 ||νK ||K,∗ we have

L(g) 6
∫
V

||νK ||K,∗d|∂E|K .

Taking supremum over such g we have

|∂E|K(V ) 6
∫
V

||νK ||K,∗d|∂E|K .

On the other hand, we can take a sequence of functions (hi) = ((h1)i, (h2)i) with
support in V such that ||hi||K 6 1 and 〈(h1)iX+(h2)iY, νK〉 converges to ||νK ||K,∗
|∂E|K-a.e. This is a consequence of Lusin’s Theorem, see § 1.2 in [27], and fol-
lows by approximating the measurable function πK(νK) by continuous uniformly
bounded functions. Then we would have∫

V

||νK ||K,∗d|∂E|K = lim
i→∞

〈(h1)iX + (h2)iY, νK〉d|∂E|K 6 |∂E|K(V ).

So we would have

|∂E|K(V ) =

∫
V

||νK ||K,∗d|∂E|K

and so ||νK ||K,∗ = 1 for |∂E|K-a.e.
Given two convex sets K,K ′ ⊂ R2 containing 0 in their interiors, we shall

obtain the following representation formula for the sub-finsler perimeter measure
|∂E|K and the vector field νK

(2.9) |∂E|K = ||νK′ ||K,∗|∂E|K′ , νK =
νK′

||νK′ ||K,∗
.

From (2.7), there exist two positive constants λ,Λ such that

λ|∂E|K 6 |∂E|K′ 6 Λ|∂E|K .

This implies that each of the Radon measures |∂E|K , |∂E|K′ is absolutely contin-
uous with respect to the other one. Hence both Radon-Nikodym derivatives exist.
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Take a relatively compact open set V ⊂ Ω and U ∈ H1
0(V ). Then we have∫

V

〈U, νK′〉 d|∂E|K′ =

∫
V

χE div(U) dH1

=

∫
V

〈U, νK〉 d|∂E|K =

∫
V

〈U, d|∂E|K
d|∂E|K′

νK〉 d|∂E|K′ .

(2.10)

By the uniqueness of νK′ we have

(2.11) νK′ =
d|∂E|K
d|∂E|K′

νK , |∂E|K′ -a.e.

On the other hand, inserting U ∈ H1
0(V ) in (2.10) with ||U ||K 6 1 we get∫

V

〈U, νK〉d|∂E|K =

∫
V

〈U, νK′〉 d|∂E|K′ 6
∫
V

||νK′ ||K,∗d|∂E|K′ .

Taking supremum over U we obtain∫
V

d|∂E|K
d|∂E|K′

d|∂E|K′ = |∂E|K(V ) 6
∫
V

||νK′ ||K,∗d|∂E|K′

and, since V is arbitrary, we have

(2.12) d|∂E|K
d|∂E|K′

6 ||νK′ ||K,∗ |∂E|K-a.e.

Substituting (2.11) into (2.12) we have
d|∂E|K
d|∂E|K′

6 ||νK′ ||K,∗ =
d|∂E|K
d|∂E|K′

|∂E|K-a.e.

Hence we have equality and so

(2.13) d|∂E|K
d|∂E|K′

= ||νK′ ||K,∗ |∂E|K-a.e.

Hence we get from equation (2.9) from (2.13) and (2.11).
In the case of a set E with C1 boundary S = ∂E it is not difficult to check that

|∂E|K = ||Nh||K,∗dS, νK =
Nh

||Nh||K,∗
,

where Nh is the horizontal projection of the unit normal to S and dS is the Rie-
mannian measure on S. Indeed, for the closed unit disk D ⊂ R2 centered at 0 we
know that in the C1 case νD = νh and |Nh| = ||Nh||D,∗. Hence we have

(2.14) |∂E|K = ||νh||K,∗d|∂E|D, νK =
νh

||νh||K,∗
.

Here |∂E|D is the standard sub-Riemannian measure.

Remark 2.4. Some other notions of perimeter and area for higher codimen-
sional submanifolds have been considered in [37, 57, 45].

Given two convex sets K,K ′ ⊂ R2 containing 0 in their interiors, we have the
following representation formula for the sub-Finsler perimeter measure |∂E|K and
the vector field νK

|∂E|K = ||νK′ ||K,∗|∂E|K′ , νK =
νK′

||νK′ ||K,∗
.
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Indeed, for the closed unit disk D ⊂ R2 centered at 0 we know that in the Euclidean
Lipschitz case νD = νh and |Nh| = ||Nh||D,∗ where N is the outer unit normal.
Hence we have

|∂E|K = ||νh||K,∗d|∂E|D, νK =
νh

||νh||K,∗
.

Here |∂E|D is the standard sub-Riemannian measure. Moreover, νh = Nh/|Nh| and
|Nh|−1d|∂E|D = dS, where dS is the standard Riemannian measure on S. Hence
we get, for a set E with Euclidean Lipschitz boundary S

(2.15) PK(E,Ω) =

∫
S∩Ω

||Nh||K,∗ dS,

where dS is the Riemannian measure on S, obtained from the area formula using
a local Lipschitz parameterization of S, see Proposition 2.14 in [36]. It coincides
with the 2-dimensional Hausdorff measure associated to the Riemannian distance
induced by g. We stress that here N is the outer unit normal. This choice is
important because of the lack of symmetry of || · ||K and || · ||K,∗.

Remark 2.5. If E has C1 boundary ∂E, then its perimeter PK(E) is equal to
the sub-Finsler area AK of its boundary, defined by

(2.16) AK(∂E) =

∫
∂E

||Nh||K,∗dσ.

where Nh is the projection on the horizontal distribution H of the Riemannian
normal N with respect to the metric g, and dσ is the Riemannian measure of ∂E.
For more details see §2.4 in [72].

We will often omit the subscript K to simplify the notation.

3. The first variation of sub-Finsler area

3.1. First variation of sub-Finsler area. In this section we fix a convex
body K ⊂ R2 containing 0 in its interior with C2

+ boundary and consider its
associated left-invariant norm || · ||K in H1. Since the convex body is fixed, we drop
the subscript along this section.

Let S be an oriented C2 surface immersed in H1. Let U be a C2 vector field
with compact support on S, normal component u = 〈U,N〉 and associated one-
parameter group of diffeomorphisms {ϕs}s∈R. In this subsection we compute the
first variation of the sub-Finsler area A(s) = A(ϕs(S)). More precisely

Theorem 3.1. Let S be an oriented C2 surface immersed in H1. Let U be a C2

vector field with compact support on S, normal component u = 〈U,N〉 and {ϕs}s∈R
the associated one-parameter group of diffeomorphisms. Let η = π(νh). Then we
have
(3.1)

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

∫
S

(
udivS η − 2u〈N,T 〉〈J(Nh), η〉

)
dS −

∫
S

divS
(
uη>

)
dS,

where divS is the Riemannian divergence in S, and the superscript > indicates the
tangent projection to S.

In the proof of Theorem 3.1 we shall make use of the following Lemma and its
consequences.
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Lemma 3.2. Let γ : I → H1 be a C1 curve, where I ⊂ R is an open interval,
and V a horizontal vector field along γ. We have

(3.2) d

ds
||V ||∗ = 〈D

ds
V, π(V )〉+ 〈γ′, Tγ〉〈V, J(π(V ))〉.

Proof. We fix s0 ∈ I and let p = γ(s0). Assume that π(V (s0)) = aXp + bYp,
for some a, b ∈ R. Take the vector field W (s) := aXγ(s)+bYγ(s) along γ. It coincides
with π(V (s0)) when s = s0, and it is the restriction to γ of the left-invariant vector
field aX + bY . In particular, ||(aX + bY )γ(s)||γ(s) = 1 for all s ∈ I. Hence

||V (s)||∗ > 〈V (s), (aX + bY )γ(s)〉 for all s ∈ I,

and, since equality holds in the above inequality when s = s0, we have
d

ds

∣∣∣∣
s=s0

||V (s)||∗ =
d

ds

∣∣∣∣
s=s0

〈V (s), (aX + bY )γ(s)〉

= 〈 ∇
ds

∣∣∣∣
s=s0

V (s), π(V (s0))〉

since
∇
ds

∣∣∣∣
s=s0

(aX + bY )γ(s) = a∇γ′(s0)X + b∇γ′(s0)Y = 0.

The result follows from the relation between the covariant derivatives given in
Equation (2.4). �

Remark 3.3. In the proof of Lemma 3.2 we have obtained the equality
d

ds
||V ||∗ = 〈 ∇

ds
V, π(V )〉

for a horizontal vector field V along a curve γ. Since ∇ is a metric connection, we
also have

d

ds
||V ||∗ = 〈 ∇

ds
V, π(V )〉+ 〈V, ∇

ds
π(V )〉.

Hence we get

(3.3) 〈V, ∇
ds
π(V )〉 = 0

for a horizontal vector field V along γ, where ∇/ds is the covariant derivative
induced by the pseudo-hermitian connection on γ. Taking into account the relation
between the Levi-Civita and pseudo-hermitian connections we deduce from (3.3)
and (2.4)

(3.4) 〈V, D
ds
π(V )− 〈γ̇, Tγ〉J(π(V ))〉 = 0.

The following is an easy consequence of Lemma 3.2

Corollary 3.4. Let F be a vector field tangent to S and γ an integral curve
of F . We have

(3.5) 〈D
ds
ηγ , νh〉 = −〈F, T 〉〈η, J(νh)〉.

In particular, if F is horizontal,

(3.6) 〈D
ds
ηγ , νh〉 = 0.
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Proof. We take V = νh and we get (3.5) from equation (3.4). �

Proof of Theorem 3.1. Standard variational arguments, see the proof of
Lemma 4.3 in [76], yield

A′(0) =
d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

∫
S

(
d

ds

∣∣∣∣
s=0

||(Ns)h||∗ + ||Nh||∗ divS U
)
dS,

where Ns is a smooth choice of unit normal to ϕs(S) for small s. We fix a point
p ∈ S and consider the curve γ(s) = ϕs(p). Lemma 3.2 now implies

d

ds

∣∣∣∣
s=0

||(Ns)h||∗ = 〈D
ds

∣∣∣∣
s=0

(Ns)h, ηp〉+ 〈Up, Tp〉〈(Nh)p, J(ηp)〉,

By the definition of (Ns)h we also have
D

ds

∣∣∣∣
s=0

(Ns)h =
D

ds

∣∣∣∣
s=0

(
Ns − 〈Ns, T 〉T

)
,

where Ns is the Riemannian unit normal to ϕs(S). A well-known lemma in Rie-
mannian geometry implies

D

ds

∣∣∣∣
s=0

Ns = −(∇Su)(p)−AS(U
>
p ),

where AS is the Weingarten endomorphism of S. Since D
ds

∣∣
s=0

T = J(Up) and η is
horizontal, calling

B(U) = −〈N,T 〉〈J(U), η〉+ 〈U, T 〉〈Nh, J(η)〉,
we get

D
ds

∣∣
s=0

||(Ns)h||∗ =
(
〈−∇Su−AS(U

>), η〉
)
p
+B(Up)

= −〈∇Su, η〉p +B(U⊥
p ) +

(
− 〈AS(U

⊥), η〉p +B(U>
p )
)

=
(
− 〈∇Su, η〉 − 2u〈N,T 〉〈J(Nh), η〉

)
p
+ U>

p (||Nh||∗).

Observe that
−〈∇Su, η〉 = udivS η − divS(uη)

= udivS η − divS(uη
>)− divS(u〈N, η〉N)

= udivS η − divS(uη
>)− u||Nh||∗ divS N.

Hence we get

A′(0) =

∫
S

(
udivS η − 2u〈N,T 〉〈J(Nh), η〉

)
dS

+

∫
S

divS
(
||Nh||∗U> − uη>

)
dS.

From here we obtain formula (3.1) since the integral
∫
S
||Nh||∗U>dS is equal to 0

by the divergence theorem for Lipschitz vector fields. �

Now we simplify the first term appearing in the first variation formula (3.1).

Lemma 3.5. Let S be a C2 surface immersed in H1 with unit normal N hori-
zontal unit normal νh. Let Z = J(νh). Then we have
(3.7) divS η − 2〈N,T 〉〈J(Nh), η〉 = 〈DZη, Z〉.
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Proof. Let us consider the orthonormal basis in S \ S0 given by the vector
fields Z = −J(νh) and E = 〈N,T 〉νh − |Nh|T = aνh + bT . Using equation (3.5)
with F = E, we get

〈DEη,E〉 = a〈DEη, νh〉+ b〈DEη, T 〉
= −a〈E, T 〉〈η, J(νh)〉+ b

(
E(〈η, T 〉)− 〈η,DET 〉

)
= −ab〈η, J(νh)〉 − ab〈η, J(νh)〉
= −2ab〈η, J(νh)〉,

as DET = J(E) = aJ(νh) = −aZ. From ab = −〈N,T 〉|Nh| we obtain

〈DEη,E〉 = 2〈N,T 〉〈η, J(Nh)〉.

Taking into account this equation and that divS η = 〈DZη, S〉+〈DEη,E〉, we obtain
equation (3.7). �

Definition 3.6. Given an oriented surface S immersed in H1 endowed with a
smooth strictly convex left-invariant norm || · ||K , its mean curvature is the function

(3.8) H = 〈DZηK , Z〉,

defined on S \ S0.

Remark 3.7. In [79, 80], the author obtained an expression of the mean
curvature of a C2 surface in terms of a parametrization when H1 is endowed with
the left-invariant norm ‖·‖∞, and defined a notion of distributional mean curvature
for polygonal norms.

Corollary 3.8. Let S be an oriented C2 surface immersed in H1. Let U be a
C2 vector field with compact support on S \ S0, normal component u = 〈U,N〉 and
associated one-parameter group of diffeomorphisms {ϕs}s∈R. Then

(3.9) d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

∫
S

uH dS,

where H is the mean curvature of S defined in (3.8).

By equation (3.8), a unit speed horizontal curve Γ contained in the regular part
of a surface S satisfy the equation

(3.10) 〈D
ds
π(J(Γ̇)), Γ̇〉 = H,

where D/ds is the covariant derivative along Γ. Uniqueness of curves Γ satisfying
(3.10) with given initial conditions Γ(0), Γ̇(0) cannot be obtained from (3.10). In the
next result we prove that the horizontal components of Γ satisfy indeed an ordinary
differential equation, thus providing uniqueness with given initial conditions.

Corollary 3.9. Let S be a C2 oriented surface immersed in (H1, || · ||) with
mean curvature H. Let Γ : I → S \S0 be a horizontal curve in the regular part of S
parameterized by arc-length with Γ(s) = (x1(s), x2(s), t(s)). Then γ(s) = (x1, x2)
satisfies a differential equation of the form

(3.11) γ̈ = F (γ̇),

where F (γ̇) = H [A(γ̇)](γ̇) and A is a nonsingular C1 matrix of order 2.
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Proof. Let D
ds be the covariant derivative along the curve Γ. Since Γ is hori-

zontal and parameterized by arc-length, the vector field D
ds Γ̇ along Γ is proportional

to J(Γ̇). Then there exists a function λ : I → R such that
D
ds Γ̇ = λJ(Γ̇).

Taking scalar product with η = π(J(Γ̇)) we get

λ =
〈D
ds Γ̇, π(J(Γ̇))〉
||J(Γ̇)||∗

=
d
ds 〈Γ̇, π(J(Γ̇))〉 −H

||J(Γ̇)||∗
.

Hence we have
(3.12) ||J(Γ̇)||∗ D

ds Γ̇− ḟ J(Γ̇) = −HJ(Γ̇),

where f = 〈Γ̇, π(J(Γ̇))〉. Since Γ̇ = ẋ1X + ẋ2Y , D
ds Γ̇ = ẍ1X + ẍ2Y , and J(Γ̇) =

−ẋ2X + ẋ1Y , equation (3.12) is equivalent to the system

||J(Γ̇)||∗ ẍ1 + ḟ ẋ2 = Hẋ2,

||J(Γ̇)||∗ ẍ2 − ḟ ẋ1 = −Hẋ1.
(3.13)

Let us compute ḟ = df/ds. Writing π(aX + bY ) = π1(a, b)X + π2(a, b)Y we have

f = 〈Γ̇, π(J(Γ̇))〉 = ẋ1π1(−ẋ2, ẋ1) + ẋ2π2(−ẋ2, ẋ1)
and so:

ḟ =

(
π1 + ẋ1

∂π1
∂x2

+ ẋ2
∂π2
∂x2

)
ẍ1 +

(
π2 − ẋ1

∂π1
∂x1

− ẋ2
∂π2
∂x1

)
ẍ2 = gẍ1 + hẍ2,

where the functions π1, π2 are evaluated at (−ẋ2, ẋ1). Hence equation (3.13) is
equivalent to (

||J(Γ̇)||∗ + gẋ1 hẋ2
−gẋ1 ||J(Γ̇)||∗ − hẋ1

)(
ẍ1
ẍ2

)
= H

(
ẋ2
−ẋ1

)
(3.14)

The determinant of the square matrix in (3.14) is equal to

||J(Γ̇)||∗
(
||J(Γ̇)||∗ + (gẋ1 − hẋ1)

)
.

Since

gẋ1 − hẋ2 =
(
π1ẋ2 − π2ẋ1

)
+

2∑
i,j=1

ẋiẋj
∂πi
∂xj

= −||J(Γ̇)||∗ +
2∑

i,j=1

ẋiẋj
∂πi
∂xj

we get that the determinant is equal to

||J(Γ̇)||∗
2∑

i,j=1

ẋiẋj
∂πi
∂xj

and we write
2∑

i,j=1

ẋiẋj
∂πi
∂xj

=
(
ẋ1 ẋ2

)(∂π1/∂x1 ∂π1/∂x2
∂π2/∂x1 ∂π2/∂x2

)(
ẋ1
ẋ2

)
.

Since the kernel of
(
∂πi/∂xj

)
ij

is generated by (−ẋ2, ẋ1), we have(
∂π1/∂x1 ∂π1/∂x2
∂π2/∂x1 ∂π2/∂x2

)(
ẋ1
ẋ2

)
6= 0,
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and, since the image of
(
∂πi/∂xj

)
ij

is generated by (ẋ1, ẋ2), we get(
ẋ1 ẋ2

)(∂π1/∂x1 ∂π1/∂x2
∂π2/∂x1 ∂π2/∂x2

)(
ẋ1
ẋ2

)
6= 0.

So we can invert the matrix in (3.14) to get (3.11). �

Remark 3.10. It is not difficult to prove that
D
dsπ(J(Γ̇)) = HΓ̇− ||J(Γ̇)||∗ T.

Indeed it is only necessary to show that 〈D
dsπ(J(Γ̇)), J(Γ̇)〉 = 0, which follows from

(3.6) using that J(Γ̇) = νh. Observe that the above equation is equivalent to[
D
dsπ(J(Γ̇))

]
h
= HΓ̇.

Writing Γ̇ = ẋX + ẏY , we have(
∂π1/∂x1 ∂π1/∂x2
∂π2/∂x1 ∂π2/∂x2

)(
−ÿ
ẍ

)
= H

(
ẋ
ẏ

)
.

However, since the determinant of the square matrix is 0 we cannot invert it to
obtain an ordinary differential equation for (ẍ, ÿ).

Lemma 3.11. Let || · || be a C2
+ left-invariant norm in H1. Let γ : I → R2 be

a unit speed clockwise parameterization of a translation of the unit sphere of || · ||
in R2 by a vector v ∈ R2. Let Γ be a horizontal lifting of z. Then Γ satisfies the
equation

(3.15) 1 = 〈D
dsπ(J(Γ̇)), Γ̇〉.

Proof. We have π(J(Γ̇)) = π1(J(γ̇))X + π2(J(γ̇))Y . Since J(γ̇) is the outer
normal to the unit sphere at γ − v we have γ − v =

(
π1(J(Γ̇)), π2(J(Γ̇))

)
. Hence

D
dsπ(J(Γ̇)) = ẋX + ẏY and we get (3.15). �

Lemma 3.12. Let || · || be a C2
+ left-invariant norm in H1 and Γ a hori-

zontal curve parameterized by arc-length satisfying the equation 〈D
dsπ(J(Γ̇)), Γ̇〉 =

H, with H ∈ R. Then σ(s) = hλ(Γ(s/λ)) is parameterized by arc-length and
〈D
dsπ(J(σ̇)), σ̇〉 = H/λ.

Proof. We have σ̇(s) = Γ̇(s/λ) and J(σ̇(s)) = J(Γ̇(s/λ)). �

Remark 3.13. Horizontal straight lines are solutions of

〈D
dsπ(J(Γ̇)), Γ̇〉 = 0

since Γ̇ is the restriction of a left-invariant vector field in H1 and so they are J(Γ̇)
and π(J(Γ̇)).

Theorem 3.14. Let || · || be a C2
+ left-invariant norm in H1. Let Γ be a

horizontal curve satisfying the equation

(3.16) 〈D
dsπ(J(Γ̇)), Γ̇〉 = H,

for some H > 0. Then Γ is either a horizontal straight line if H = 0 or the horizontal
lifting of a dilation and traslation of a unit speed clockwise parameterization of the
circle || · || = 1 in R2 in case H > 0.
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Proof. Horizontal straight lines and horizontal liftings of translations and
dilations of the unit circle || · || = 1 in R2 satisfy equation (3.16). Uniqueness follow
since the projection to t = 0 satisfy equation (3.11) and, by using translations and
dilations, we can obtain any prescribed initial condition. �

Remark 3.15. The result in Theorem 3.14 includes that constant mean curva-
ture surfaces for the sub-Riemannian area in the Heisenberg group are foliated by
geodesics. This result can be found, with slight variations, in [12, 15, 13, 42, 41].

To finish this section we prove the following result, that holds trivially for
variations supported in the regular part of S.

Proposition 3.16. Let S be a compact C2 oriented surface in (H1, || · ||)
enclosing a region E. Assume that S has constant mean curvature H and a finite
number of singular points. Then

(1) S is a critical point of the sub-Finsler area for any volume-preserving
variation.

(2) S is a critical point of the functional A−H | · |.

Proof. It is only necessary to prove that if U is a smooth vector field with
compact support in H1 and {ϕs}s∈R is its associated flow, then

d

ds

∣∣∣∣
s=0

A(ϕs(S)) =

∫
S

HudS.

From formula (3.1) this is equivalent to proving that∫
S

divS
(
uη>

)
dS = 0.

To compute the integral
∫
S
uη>dS we consider the finite number of singular points

p1, . . . , pn, and take small disjoint balls Bi(pi) centered at the points pi. For ε > 0
small enough so that the balls Bε(pi) are contained in Bi we have∫

S\
⋃n

i=1 Bε(pi)

div uη> dS =

n∑
i=1

∫
∂Bε(pi)

〈ξi, uη>〉 d(∂Bε(pi)),

where ξi is the unit inner normal to ∂Bε(pi). Since uη> is bounded and the lengths
of ∂Bε(pi) go to 0 when ε→ 0 we have

lim
ε→0

n∑
i=1

∫
∂Bε(pi)

〈ξi, uη>〉 d(∂Bε(pi)) = 0.

Since the modulus of

divS(uη
>) = 〈∇Su, η

>〉+ udivS η
>

= 〈∇Su, η
>〉+ u (divS η − 〈η>, N〉divS N)

is uniformly bounded, the dominated convergence theorem implies∫
S

divS uη
>dS = lim

ε→0

∫
S\

⋃n
i=1 Bε(pi)

div uη> dS

= lim
ε→0

n∑
i=1

∫
∂Bε(pi)

〈ξi, uη>〉 d(∂Bε(pi)) = 0. �
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Corollary 3.17 (Minkowski formula). Let S be a compact C2 oriented surface
in (H1, || · ||) enclosing a region E. Assume that S has constant mean curvature H
and a finite number of singular points. Then

(3.17) 3A(S)− 4H|E| = 0.

Proof. We consider the vector field W = x ∂
∂x + y ∂

∂y + 2 ∂
∂t and its associated

flow ϕs((x, y, t)) = (esx, esy, e2st). Since

d

ds

∣∣∣∣
s=0

A(ϕs(S)) = 3A(S),
d

ds

∣∣∣∣
s=0

|ϕs(E)| = 4|E|,

Proposition 3.16 implies

0 =
d

ds

∣∣∣∣
s=0

A(ϕs(S))−H
d

ds

∣∣∣∣
s=0

|ϕs(E)| = 3A(S)− 4H|E|. �

3.2. The mean curvature of a horizontal graph. Assume that Ω is an
open set of the xy plane and that u : Ω → R is a C1 function. The sub-Finsler area
AK of the graph of u, when K is a convex body of class C2

+, can be computed as

(3.18) AK(graph(u)) =
∫
Ω

||∇u+ F ||∗dL2

from equation (2.16), since the horizontal unit normal Nh in the graph is given by

Nh =
(ux − y, uy + x)

(1 + (ux − y)2 + (uy + x)2)1/2
,

and
dS = (1 + (ux − y)2 + (uy + x)2)1/2 dL2.

We remark that the area in equation (3.18) is computed with respect to the down-
ward pointing unit normal to the graph (the one with negative third coordinate).
Since the norm || · ||K is asymmetric, taking the opposite normal would give a
different area.

For the mean curvature of the graph of a C2 function we have the following
result.

Theorem 3.18. Let K be a convex body of class C2
+ with 0 ∈ int(K). Let

Ω be an open set in the xy plane, and u : Ω → R a C2 function. Then the sub-
Finsler mean curvature HK in the regular part of the graph of u with respect to the
downward pointing unit normal is given by

(3.19) HK = div
(
πK(∇u+ F )

)
.

Proof. Let v : Ω → R be a C∞ function with compact support in the
projection of the regular set of graph(u) to Ω. We consider a vector field U
with compact support which coincides with the vector field vT near the graph
of u. If ϕs is the one parameter group of diffeomorphisms associated to U then
ϕs(x, y, u(x, y)) = (x, y, u(x, y) + sv(x, y)) for all (x, y) ∈ Ω and s small enough.
Hence ϕs(graph(u)) = graph(u+ sv) for s small enough. Since || · ||K is of class C2

+

we can represent the dual norm in terms of πK to compute the first variation. So
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we have
d

ds

∣∣∣∣
s=0

AK(ϕs(graph(u)) =
∫
Ω

d

ds

∣∣∣∣
s=0

〈∇(u+ sv) + F, πK(∇(u+ sv) + F )〉 dL2

=

∫
Ω

〈∇v, πK(∇u+ F )〉 dL2

+

∫
Ω

〈∇u+ F,
d

ds

∣∣∣∣
s=0

πK(∇(u+ sv) + F )〉 dL2

= −
∫
Ω

v div
(
πK(∇u+ F )

)
dL2

=

∫
graph(u)

〈U,N〉 div
(
πK(∇u+ F )

)
dS.

In the third equality we have used equation (3.3) and in the fourth one that
−v dL2 = 〈U,N〉 dS. Comparing the last formula with the first variation formula
involving the mean curvature (3.9) we obtain (3.19). �

Remark 3.19. Recall that in the sub-Riemannian case K is the unit disk D
and that πD(v) = v/|v| for any v 6= 0, so the sub-Riemannian mean curvature of
the graph satisfies

HD = div

(
∇u+ F

|∇u+ F |

)
,

see Cheng et al. [14].

3.3. The singular set of C2 surfaces with constant mean curvature.
The singular set of a C2 surface with a bounded condition on the sub-Riemannian
mean curvature was considered in a paper by Cheng et al. [12] and, for symmetric
sub-Finsler norms, in § 7 of [34]. In both cases, which include the case where the
mean curvature is constant, it is composed of isolated points and C1 curves. In the
general sub-Finsler case we have the following result.

Theorem 3.20. Let K ⊂ R2 be a convex body with C2
+ boundary and 0 ∈ int(K),

and let S ⊂ H1 be a C2 surface with constant mean curvature. Then the singular
set S0 of S is composed of isolated points and C1 curves.

Proof. We take p0 = (x0, y0, t0) ∈ S0. Since Tp0
S = Hp0

we can describe the
surface around p0 as the graph of a C2 function u : Ω → R, where Ω is an open set
in the xy plane containing the projection (x0, y0) of p0. The graph of u, graph(u),
is an open set of S containing p0.

The intersection graph(u) ∩ S0 is composed of the points of graph(u) whose
projection (x, y) satisfies the equations
(3.20) ux − y = uy + x = 0.

Let us consider the map G : Ω ⊂ R2 → R2 defined by
G = (ux − y, uy + x).

Its derivative is given by

dG =

(
uxx uxy − 1

uxy + 1 uyy

)
.

We observe that rank dG > 1 since uxy − 1, uxy + 1 cannot vanish simultaneously.
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If rank dG(x0, y0) = 2 then the inverse function theorem implies that there is
a neighborhood U ⊂ Ω of (x0, y0) so that (x0, y0) is the only point in U which
satisfies equation (3.20). Hence p0 is an isolated singular point of S.1

If rank dG(x0, y0) = 1 then the kernel of dG(x0, y0) is 1-dimensional. We take
any (a, b) ∈ R2 with a2 + b2 = 1 and such that

(a, b) · dG(x0, y0) 6= (0, 0).

The gradient of the function Fa,b : Ω → R, defined by Fa,b = a (ux−y)+b (uy+x), is
equal to (a, b) ·dG(x, y). Since ∇Fa,b(x0, y0) 6= (0, 0), the implicit function theorem
implies the existence of an open set Ua,b ⊂ Ω so that{

(x, y) ∈ Ua,b : Fa,b(x, y) = 0
}

is a C1 curve.
Now fix another (a′, b′) ∈ R2 such that (a′)2 + (b′)2 = 1, (a′, b′) · dG(x0, y0) 6=

(0, 0), and so that (a, b) and (a′, b′) are linearly independent. Taking U = Ua,b ∩
Ua′,b′ we conclude that{

(x, y) ∈ U : Fa,b(x, y) = 0
}
,

{
(x, y) ∈ U : Fa′,b′(x, y) = 0

}
are C1 curves Γa,b and Γa′,b′ , respectively. The projection of S0∩graph(u) inside U
is contained in Γa,b ∩ Γa′,b′ . Moreover, since (a, b), (a′, b′) are linearly independent,
we conclude that the projection of S0 ∩ graph(u) inside U is exactly the set Γa,b ∩
Γa′,b′ .

To end the proof let us show that the C1 curves Γa,b, Γa′,b′ coincide in an
open neighborhood of (x0, y0). Observe that Γa,b and Γa′,b′ are tangent at (x0, y0).
We reason by contradiction assuming that Γa,b and Γa′,b′ do not coincide in any
neighborhood of (x0, y0).

Assume first that p0 is not an isolated point of S0. Then there is a sequence of
piecewise smooth domains Ωi converging in Hausdorff distance to (x0, y0). Each one
is bounded by a segment of Γa,b and a segment of Γa′,b′ meeting at the endpoints.
Observe that (a, b) is perpendicular to ∇u+F on Γa,b and (a′, b′) is perpendicular
to ∇u + F on Γa′,b′ . Hence πK(∇u + F ) is a constant vector on each component,
equal to πK(±(−b, a)) on Γa,b and to πK(±(−b′, a′)) on Γa′,b′ . On the other hand,
the outer unit normal νi to Ωi approaches the unit vector ±∇Fa,b/|∇Fa,b|(x0, y0)
so that 〈πK(∇u + F ), νi〉 approaches the quantity c1 = ±〈πK(±(−b, a)), ν0〉 on
Γa,b and c2 = ±〈πK(±(−b′, a′), ν0〉. For i large enough, the distance function r to
(x0, y0) is monotone over the curves Γa,b and Γa′,b′ and we have

0 < ri 6 r(x, y) 6 si

for any (x, y) ∈ Ωi. Finally observe that Ωi is contained in a cone of vertex (x0, y0)
and angle θi, with limi→∞ θi = 0 since Γa,b,Γa′,b′ are tangent at (x0, y0).

Applying the divergence theorem to the mean curvature equation (3.19) we get∫
∂Ωi

〈πK(∇u+ F ), νi〉 =
∫
Ωi

div(πK(∇u+ F )) =

∫
Ωi

H.

We estimate ∣∣∣∣ ∫
∂Ωi

〈π(∇u+ F ), νi〉
∣∣∣∣ > |c1 ± c2|

2
(si − ri).

1Moreover, Lemma 3.2 in [12] implies that, if p0 is not isolated in S0 then det dG(x0, y0) = 0
and so rank dG(x0, y0) = 1.
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Γa,b

Γa′,b′

Ωi

On the other hand, assuming si 6 1 we get∣∣∣∣ ∫
Ωi

H

∣∣∣∣ 6 ∣∣∣∣ ∫ si

ri

∫ αi+θi

αi

H rdrdθ

∣∣∣∣ 6 |H|θi(si − ri).

Hence we get
|c1 ± c2|

2
6 |H|θi.

Letting θi → 0 we get c1 = ±c2, a contradiction since (a, b) and (a′, b′) are linearly
independent.

Finally we consider the case when Γa,b and Γa′,b′ do not meet in a neighborhood
of (x0, y0) except at (x0, y0). In this case we take the region Ωi surrounded by two
segments of Γa,b, Γa′,b′ leaving (x0, y0) in the same direction, and ∂B(ri), where
the Euclidean ball B(ri) ⊂ R2 is centered at (x0, y0).

(x0, y0) Ωi

Γa,b

Γa′,b′

∂B(ri)

Since the arc-length of Ωi∩∂B(ri) is bounded by θiri, we conclude that c1 = ±c2
as in the previous case. �

Remark 3.21. The hypothesis on the mean curvature in Theorem 3.3 in [12]
is that H 6 C/r near a singular point for some constant C > 0. Here r is the
Euclidean distance to the singular point. In this case, using the notation in the
proof of Theorem 3.20, it is enough to estimate∣∣∣∣ ∫

Ωi

H

∣∣∣∣ 6 ∣∣∣∣ ∫ si

ri

∫ αi+θi

αi

C

r
rdrdθ

∣∣∣∣ 6 Cθi(si − ri).

3.4. Existence of isoperimetric sets. For the existence of isoperimetric
sets we follow the paper by Leonardi and Rigot [56] on Carnot groups, and the
adaptation to symmetric sub-Finsler norms in § 3 of [34].
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3.5. Pansu-Wulff spheres and examples. We consider a convex body K ⊂
R2 containing 0 in its interior and the associated norm || · ||K in H1.

Definition 3.22. Consider a clockwise-oriented L-periodic parameterization
γ : R → R2 of the curve || · ||K = 1. For fixed v ∈ R take the translated curve
u 7→ γ(u+v)−γ(v) and its horizontal lifting Γv : R → H1 with initial point (0, 0, 0)
at u = 0.

The set SK is defined as

(3.21) SK =
⋃

v∈[0,L)

Γv([0, L]).

We shall refer to SK as the Pansu-Wulff sphere associated to the left-invariant norm
|| · ||K .

When K = D, the closed unit disk centered at the origin in R2, the Pansu-Wulff
sphere SD is Pansu’s sphere, see [66, 67].

Remark 3.23. In the construction of the Pansu-Wulff sphere we are not as-
suming any regularity on the boundary of K. Since ∂K is a locally Lipschitz curve,
its horizontal lifting is well defined.

Remark 3.24. The set SK is union of curves leaving from (0, 0, 0) that meet
again at the point (0, 0, 2|K|). Since γ is L-periodic, the construction is L-periodic
in v and so SK is the image of a continuous map from a sphere to H1.

Example 3.25. Given the Euclidean norm | · | in R2 and a = (a1, a2), where
a1, a2 > 0, we define the norm:

||(x1, x2)||a = |(x1

a1
, x2

a2
)|.

-3
-1.5

 0
 1.5

 3 -2
-1

 0
 1

 2

Figure 3. The Pansu-Wulff sphere associated to the norm || · ||a
with a = (1, 1.5). Observe that the projection to the horizontal
plane t = 0 is an ellipse with semiaxes of lengths 2 and 3.
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The unit ball Ka for this norm is an ellipsoid with axes of length a1 and a2.
We parameterize clockwise the unit circle of the norm || · ||K by

γ(s) = (a1 sin(s), a2 cos(s)), s ∈ R.
This parameterization is injective of period 2π. The translation of this curve to the
origin by the point −γ(v) is given by the curve

Λv(u) = γ(u+ v)− γ(v).

The horizontal lifting of Λv is given by (Λv(u), tv(u)), where

tv(u) =

∫ u

0

[
Λv(ξ) · J(Λ̇v(ξ))

]
dξ.

Since
Λv(ξ) · J(Λ̇v(ξ)) = (γ(ξ + v)− γ(v)) · J(γ̇(ξ + v)),

we get
tv(u) = a1a2

(
u+ sin(v) cos(u+ v)− cos(v) sin(u+ v)

)
.

Hence a parameterization of SKa
is given by

x(u, v) = a1
(
sin(u+ v)− sin(v)

)
y(u, v) = a2

(
cos(u+ v)− sin(v)

)
,

t(u, v) = a1a2
(
u+ sin(v) cos(u+ v)− cos(v) sin(u+ v)

)
.

Example 3.26. Given any convex set K containing 0 in its interior, we can
parameterize its Lipschitz boundary ∂K as

γ(s) =
(
x(s), y(s)

)
= r(s)

(
sin(s), cos(s)

)
, s ∈ R.

where r(s) = ρ(sin(s), cos(s)) and ρ is the radial function of K defined as ρ(u) =
sup{λ > 0 : λu ∈ K} for any vector u of modulus 1 in R2.

A horizontal lifting of the curve γ passing through the point (γ(0), 0) can be
obtained computing

t(s) =

∫ s

0

γ(ξ) · J(γ̇(ξ)) dξ =
∫ s

0

r2(ξ) dξ,

since J(γ̇(s)) = r(s) (sin(s), cos(s)) + ṙ(s) (− cos(s), sin(s)). Hence the curve

Γ(s) =
(
x(s), y(s), t(s)

)
=
(
γ(s),

∫ s

0

r2(ξ) dξ
)

is a horizontal lifting of the curve γ.
Now we translate all these curves to pass through the origin of H1. This way

we get the parameterization ΦK of SK given by
(u, v) 7→ `−Γ(v)(Γ(u+ v))

for (u, v) ∈ [0, 2π]2. Since
`(x0,y0,t0)(x, y, t) =

(
x+ x0, y + y0, t+ t0 + (xy0 − x0y)

)
,

computing the left-translation using the expression for Γ obtained before we get
x(u, v) = r(u+ v) sin(u+ v)− r(v) sin(v),

y(u, v) = r(u+ v) cos(u+ v)− r(v) cos(v),

t(u, v) = r(v)r(u+ v)
(
sin(v) cos(u+ v)− cos(v) sin(u+ v)

)
+
∫ u+v

v
r2(ξ) dξ.

(3.22)
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The parameterization given by equations (3.22) is useful to obtain regularity
properties of SK . If ∂K is of class C`, ` > 0, its radial function r(s) = (x(s)2 +
y(s)2)1/2 is of class C` and hence the parameterization ΦK is an immersion of class
C` for 0 < u < 2π.

Example 3.27. Let ` > 1. We consider the `-norm in R2 defined as
||(x1, x2)||` =

(
|x1|` + |x2|`

)1/`
.

Denote by K` the unit ball for this `-norm. We can parametrize the unit circle
|| · ||` = 1 using (3.22). In this case

ρ(x, y) =
1(

|x|` + |y|`
)1/` , |(x, y)| = 1.

By the previous example, the Pansu-Wulff sphere SK`
is parameterized by equations

(3.22).
Remark 3.28. Assume we have a sequence of of convex sets (Ki) converging in

Hausdorff distance to a limit convex set K. Then the radial functions rKi uniformly
converge to the radial function r of the limit set K. Hence equations (3.22) imply
that the Pansu-Wulff spheres SKi

converge in Hausdorff distance to a ball bounded
by the horizontal liftings of translations of a parameterization γ of ∂K.

Since lim`→1 || · ||` = || · ||1 and lim`→∞ || · ||` = || · ||∞, we can use the previous
argument to show that the Pansu-Wulff spheres SK`

converge to the two spheres S1
and S∞. Under these conditions, it is not difficult to check that the corresponding
perimeters converge to the limit perimeter.

-2
-1

 0
 1

 2
-2

-1

 0

 1

 2

Figure 4. The Pansu-Wulff sphere SK`
for the `-norm, ` = 1.5.

The horizontal curve is the projection of the equator to the plane
t = 0. We observe that the Pansu-Wulff sphere projects to the set
|| · ||` 6 2 in the t = 0 plane.
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Figure 5. The sphere S1 obtained as Hausdorff limit of the Pansu-
Wulff spheres SKr of the `-norm when ` converges to 1

Figure 6. The sphere S∞ obtained as Hausdorff limit of the
Pansu-Wulff spheres SKr

of the `-norm when ` converges to ∞

Example 3.29. Let us consider the equilateral triangle T in the plane R2

defined as the convex envelope of the points a1 = (0, 1), a2 = (
√
3/2,−1/2), a3 =

(−
√
3/1,−1/2). We can define a norm || · ||T by the equality

||x||T = max
{
〈x, ai〉 : i = 1, 2, 3

}
, x ∈ R2.
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Figure 7. The Pansu-Wulff sphere ST,` for the norm || · ||T,`, with
r = 2.

Figure 8. The sphere ST obtained as limit of the Pansu-Wulff
spheres ST,` when r → ∞.

The unit ball of the norm || · ||T is the triangle T . It is neither smooth nor
strictly convex. However we may consider the approximating norms

||x||T,` =

( 3∑
i=1

max{〈x, ai〉, 0}`
)1/`

.
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These norms are smooth and strictly convex and lim`→∞ ||x||T,` = ||x||T . Hence
the Pansu-Wulff spheres SKT,`

converge in Hausdorff distance when ` → ∞ to the
sphere ST obtained by traslating ∂T to touch the origin and lifting the obtained
curves as horizontal ones to H1.

3.6. Geometric properties of the Pansu-Wulff spheres. In this section
we show several geometric properties of the Pansu-Wulff spheres SK associated with
a left-invariant norm || · ||K . We start by looking at the projection of the sphere to
the t = 0 plane. This projection is determined by the geometry of the convex set
K.

Given a convex body K ⊂ Rn, the difference body of K is the set
DK = K −K = {x− y : x, y ∈ K}.

The difference body DK is a centrally symmetric convex body. This means that
−x ∈ DK whenever x ∈ DK. If hK is the support function of K then the support
function of DK is given by

hDK(u) = hK(u) + hK(−u),
see [78, p. 140]. This is the width of K in the direction of u.

Lemma 3.30. Let K ⊂ Rn be a convex body with 0 ∈ int(K). We consider the
set
(3.23) K0 =

⋃
p∈∂K

(−p+K).

Then we have
(1) 0 ∈ K0.
(2) K0 is a convex body.
(3) K0 is the difference body of K. In particular, K0 is centrally symmetric.
(4) If K is centrally symmetric then K0 = 2K.
(5) We have ⋃

p∈∂K

(−p+K) =
⋃

p∈∂K

(−p+ ∂K).

Proof. To prove 1 take into account that 0 = −p+ p ∈ −p+K ⊂ K0 for any
p ∈ ∂K.

To prove 2, we take p1, p2 ∈ ∂K, q1, q2 ∈ K and λ ∈ [0, 1]. Then
λ(−p1 + q1) + (1− λ)(−p2 + q2) = −pλ + qλ,

where
pλ = λp1 + (1− λ)p2, qλ = λq1 + (1− λ)q2.

If pλ = qλ then −pλ + qλ = 0 ∈ K0. Otherwise the segment [pλ, qλ] is not
trivial and contained in K. Let µ0 > 1 such that qλ+µ0(pλ− qλ) ∈ ∂K. The value
µ0 is computed as the supremum of the set {µ > 0 : qλ+µ(pλ−qλ) ∈ K}. We have

−pλ + qλ = −(qλ + µ0(pλ − qλ)) + (qλ + (µ0 − 1)(pλ − qλ)).

The point qλ + µ0(pλ − qλ) belongs to ∂K by the choice of µ0 and the point
qλ + (µ0 − 1)(pλ − qλ) belongs to K since 0 6 µ0 − 1 6 µ0. Hence −pλ + qλ ∈ K0

and so K0 is convex.
To prove 3, we take a vector v with 〈v, v〉 = 1. Let q ∈ ∂K0 such that

(3.24) hK0
(v) = 〈q, v〉 > 〈z, v〉 ∀ z ∈ K0.
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By the definition of K0, there exists p ∈ ∂K such that q ∈ −p + K. We claim
that q ∈ −p + ∂K: otherwise p + q ∈ int(K) and there exists ε > 0 such that
p+ q + εv ∈ K. So we have

〈−p+ (p+ q + εv), v〉 = 〈q + εv, v〉 = 〈q, v〉+ ε > 〈q, v〉.
Since p+ q+ εv ∈ K this yields a contradiction. Hence q ∈ −p+ ∂K = ∂(−p+K)
for some p ∈ ∂K.

Since −p+K ⊂ K0 and q is a boundary point for both sets, we deduce that v
is a normal vector to −p+K at q. As h−p+K(v) = −〈p, v〉+ hK(v),we have

hK0
(v) = h−p+K(v) = hK(v) + 〈p,−v〉.

It remains to prove that hK(−v) = 〈p,−v〉. Assume by contradiction that
〈p,−v〉 < hK(−v) = 〈x,−v〉 for some x ∈ ∂K. Then we have

〈−x+ (p+ q), v〉 = 〈−x+ p, v〉+ 〈q, v〉 > 〈q, v〉,
that cannot hold by (3.24) since p+ q ∈ K and so −x+ p+ q ∈ −x+K ⊂ K0.

To prove 4, we note that hK(v) = hK(−v) when K is centrally symmmetric
and, by 3, hK0 = 2hK . Hence K = 2K0.

Finally, to prove 5 we notice that
⋃

p∈∂K(−p + K) ⊃
⋃

p∈∂K(−p + ∂K). To
prove the remaining inclusion we take p ∈ ∂K and u ∈ K such that q = −p+ u ∈⋃

p∈∂K(−p + K). Then Lemma 3.31 allows us to find p1, u1 ∈ ∂K such that
q = −p+ u = −p1 + u1. Hence q ∈

⋃
p∈∂K(−p+ ∂K). �

Lemma 3.31. Let K ⊂ R be a convex body, and a, b ∈ K. Then there exist
p, q ∈ ∂K such that b− a = q − p.

Proof. If a = b or a, b ∈ ∂K the result follows trivially. Henceforth we assume
a 6= b and that at least a or b is an interior point of K. We pick a point c ∈ K out
of the line ab. Let P be the plane containing a, b, c and W = K ∩ P . The set W
is a convex body in P and the boundary of W in P is contained in ∂K. We take
orthogonal coordinates (x, y) in P so that (b− a) points into the positive direction
of the y-axis. Let I be the orthogonal projection in P of W onto the x-axis.

Given x ∈ I, define the set W (x) as {y ∈ R : (x, y) ∈ W}. A simple ap-
plication of Kuratowski criterion, see Theorem 1.8.8 in [78], implies that W (xi)
converges to W (x) in Hausdorff distance when xi converges to x. Hence the func-
tion x ∈ I 7→ |W (x)| is continuous and takes a value larger than ||b − a|| at the
projection of a, b over the x-axis. If |W (x)| = ||b − a|| for some x ∈ I, we take
as p, q the extreme points of the interval W (x) chosen so that q − p = b − a to
conclude the proof. Otherwise, we would have |W (x0)| > ||b − a|| at an extreme
point x0 of I. We may choose two points p, q ∈ W (x0) such that |[p, q]| = ||b− a||
and q − p = b − a. Since W (x0) is contained in the boundary of W in P , it is
contained in ∂K and so p, q ∈ ∂K. �

Now we refine the results in Lemma 3.30 when K is strictly convex and has
boundary of class C`

+, ` > 2. We say that a convex body K is of class C`
+, ` > 1,

when ∂K is of class C` and its normal map NK : ∂K → S1 is a diffeomorphism of
class C`−1.

Corollary 3.32. Let K ⊂ R2 be a convex body containing 0 as interior point.
Then

(1) If K ⊂ R2 is strictly convex, then K0 is strictly convex.
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(2) If K is of class C`
+, ` > 2, then K0 is of class C`

+.

Proof. To prove that K0 is strictly convex, we take two different points x1 −
x2, y1 − y2 ∈ ∂K0, with xi, yi ∈ K, i = 1, 2. Then the four points belong to the
boundary of K. For any λ ∈ (0, 1), we write the convex combination λ(x1 − x2) +
(1− λ)(y1 − y2) as

xλ − yλ = (λx1 + (1− λ)y1)− (λx2 + (1− λ)y2).

Since x1 6= y1 or x2 6= y2, the strict convexity of K implies that xλ or yλ is an
interior point of K. Then xλ − yλ is an interior point of K0. Since λ ∈ (0, 1) and
the boundary points are arbitrary, the set K0 is strictly convex.

To prove the boundary regularity of K0 we follow Schneider’s arguments [78,
p. 115] and observe that the support function hK of K is defined, when u 6= 0, by

hK(u) = 〈u,N−1
K (u)〉,

where NK : ∂K → S1 is the Gauss map, a diffeomorphism of class C`−1 since K is
of class C`

+. By Corollary 7.1.3 in [78]

(3.25) ∇hK(u) = N−1
K

(
u

|u|

)
,

and so hK is of class C`. This implies that the support function of K0, hK0(u) =
hK(u) + hK(−u), is of class C`. Hence the polar body K∗

0 of K0 has boundary of
class C`. The Gauss map NK∗

0
of K∗

0 can be described as

NK∗
0
: ρ(K∗

0 , u)u 7→
N−1

K (u)

|N−1
K (u)|

,

where ρ(K∗
0 , ·) = h−1

K (·) is the radial function of K∗
0 , of class C`−1. Hence NK∗

0
is a

diffeomorphism of class C`−1 and so K∗
0 is of class C`

+. Now the support function
of K∗

0 is of class C`
+ and we reason in the same way interchanging the roles of K∗

0

and K0 to get the result. �

Remark 3.33. IfK ⊂ R2 is a centrally symmetric convex body, for any p ∈ ∂K,
the line passing through p and −p divides K into two regions of equal area. Hence
the line through 0 and −2p divides −p+K into two regions of the same area. When
p moves along ∂K, the point −2p parametrizes ∂(2K).

Let K be a convex set of class C`
+, ` > 2, C = ∂K and γ : R → R2 an

L-periodic clockwise arc-length parameterization of C, with L = length(C). The
set K0 =

⋃
p∈C(−p + K) has smooth boundary C0. For any v ∈ R, we denote

by γv(u) = γ(u + v) − γ(v). Let Γv = (γv, tv) be the horizontal lifting of γv with
tv(0) = 0. If we call Ωv(u) the planar region delimited by the segment [0, γv(u)]
and the restriction of γv to [0, u] then a standard application of the Divergence
Theorem to the vector field x ∂

∂x + y ∂
∂y implies

tv(u) =

∫ u

0

〈γv, J(γ̇v)〉(ξ) dξ = 2 |Ωv(u)|.

Our next goal is to prove that SK is the union of two graphs defined in K0 of
class C2 and coinciding on ∂K0.

Theorem 3.34. Let K ⊂ R2 be a convex body with C`
+ boundary, ` > 2. Then

(1) SK is of class C` outside the poles.
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(2) There exist two functions g1, g2 : K0 → R of class C` on int(K0) such
that

SK = graph(g1) ∪ graph(g2),
with g1 > g2 on int(K0) and g1 = g2 on C0. This imples that SK is an
embedded surface.

Moreover, if K is centrally symmetric then g1 + g2 = 2|K| and hence
SK is symmetric with respect to the horizontal Euclidean plane t = |K|.

Definition 3.35. The domain delimited by the embedded sphere SK is a ball
BK that we call the Pansu-Wulff shape of || · ||K .

Proof of Theorem 3.34. That SK is C` outside the singular set follows
from the parameterization (3.22) since the function r(s) is of class C`. This proves
1.

We break the proof of 2 into several steps. Recall that C = ∂K and C0 = ∂K0.
Step 1. Given x ∈ K0\{0}, we claim that x ∈ C − p for some p ∈ C if and

only if the segment [p, p+ x] is contained in K and p, p+ x ∈ C. This means that
the number of curves C − p, with p ∈ C, passing through x 6= 0 coincides with the
number of segments parallel to x of length |x| and boundary points in C. This step
is trivial.

Step 2. Given x ∈ K0 \ {0}, the number of segments [p, p+ x] contained in K
with p, p+x ∈ C is either 1 or 2. The first case corresponds to maximal length and
happens if and only if x belongs to C0.

To prove this we consider v = x/|x| and a line L orthogonal to v. For any z in
L we consider the intersection Iz = Lz ∩K, where Lz is the line passing through
z with direction v. The set J = {z ∈ L : Iz 6= ∅} is a non-trivial segment in L.
The strict convexity of K implies that the map F : J → R defined by F (z) = |Iz|
is strictly concave. Since F vanishes at the extreme points of J , it has just one
maximum point z0 ∈ int(J) and each value in the interval (0, F (z0)) is taken by
two different points in J . The observation that there is a bijective correspondence
between the segments [p, p + x] contained in K with p, p + x ∈ C and the points
z ∈ L with F (z) = |x| proves the first part of the claim.

K

L

Lz

z

p

p+ x

Figure 9. Construction of the map F

To prove the second part of the claim we fix some x ∈ K0. We take p ∈ C such
that the segment [p, p + x] is contained in K and p, p + x ∈ C. Assume first that
x ∈ C0. If there were a larger segment [q, q+µx] contained in K with q, q+µx ∈ C
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and µ > 1 then we would have µx ∈ C− q ⊂ K0, a contradiction. Hence the length
of [p, p + x] is is the largest possible in the direction of x. Assume now that the
length of [p, p+ x] yields the maximum of length of intervals contained in K in the
direction of x. If x 6∈ C0 then x is an interior point of K0 and, since 0 ∈ int(K0),
there would exist λ > 1 such that λx ∈ K0. Hence there is some q ∈ C such that
λx ∈ C − p and the segment [q, q + λx] ⊂ C and has length larger than |x|, a
contradiction that proves that x ∈ C0.

Step 3. Given any point x ∈ int(K0), there are exactly two points in SK at
heights g1(x) > g2(x). In case K is centrally symmetric then g1(x) + g2(x) = 2|K|.

By the previous steps, there are exactly two points p, q ∈ C so that p+x, q+x ∈
C and the segments [p, p + x], [q, q + x] are contained in K. We may assume that
p, p + x, q + x, q are ordered clockwise along C. The heights of the points in SK
projecting over x are given by twice the areas of the sets A and B, where A is
determined by the portion of C from p to p+ x and the segment [p+ x, p], and B
is determined by the portion of C from q to q+ x and the segment [q+ x, q]. Since
A is properly contained in B we have g2(x) = 2|A| < 2|B| = g1(x).

In case K is centrally symmetric, the central symmetry maps p + x to q and
q + x to p since [p, p + x] and [q, q + x] are the only segments in K of length |x|
with boundary points on C. Hence |A|+ |B| = |K| and so g1(x) + g2(x) = 2|K|.

Step 4. The functions g1, g2 are of class C` in int(K0) \ {0}.
This follows from the implicit function theorem since SK is C` outside the

poles. �

Theorem 3.36. Let K ⊂ R2 be a convex body of class C2
+. Then SK is of class

C2 around the poles.

Proof. We consider a horizontal lifting Γ = (x, y, t) of a clockwise arc-length
parametrization γ of ∂K. Then a parameterization of SK is given by (x,y, t)(u, v) =
`−Γ(v)(Γ(u+ v)). This means

x(u, v) = x(u+ v)− x(v),

y(u, v) = y(u+ v)− y(v),

t(u, v) = t(u+ v)− t(v)− x(u+ v)y(v) + y(u+ v)x(v).

(3.26)

The tangent vectors ∂/∂u, ∂/∂u are the image of (1, 0) and (0, 1) under the param-
eterization and are given by

∂

∂u
= ẋ(u+ v)X + ẏ(u+ v)Y.

∂

∂v
=
(
ẋ(u+ v)− ẋ(v)

)
X +

(
ẏ(u+ v)− ẏ(v)

)
Y + h(u, v)T,

where
(3.27) h(u, v) = 2

(
ẋ(v)(y(u+ v)− y(v))− ẏ(v)(x(u+ v)− x(v))

)
.

Geometrically, h(u, v) is the scalar product of the position vector (x(u + v) −
x(v), y(u + v) − y(v)) with J((ẋ, ẏ)), that is always negative for u > 0. A Rie-
mannian unit normal vector N can be easily computed from the expressions of
∂/∂u and ∂/∂v and is given by

(3.28) N =
h
(
ẏ(u+ v)X − ẋ(u+ v)Y

)
+ gT(

h2 + g2
)1/2 ,
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where

(3.29) g(u, v) = ẋ(v)ẏ(u+ v)− ẏ(v)ẋ(u+ v).

We have

|Nh| =
|h|(

h2 + g2
)1/2 , 〈N,T 〉 = g(

h2 + g2
)1/2

Let us see that SK is a C2 surface near the south pole (0, 0, 0). The arguments
for the north pole of are similar. To see that SK is C1 near the south pole, it is
enough to check that N extends continuously to u = 0. Let us see that

(3.30) lim
(u,v)→(0,v0)

N(u, v) = −T.

Since g < 0, from the expression (3.28) it is enough to prove that

(3.31) lim
(u,v)→(0,v0)

h

g
(u, v) = 0.

Since x and y are functions of class C2, we use Taylor expansions around v to get

x(u+ v) = x(v) + ẋ(v)u+R(u, v)u, y(u+ v) = y(v) + ẏ(v)u+R(u, v)u,

ẋ(u+ v) = ẋ(v) + ẍ(v)u+R(u, v)u, ẏ(u+ v) = ẏ(v) + ÿ(v)u+R(u, v)u.

In the above equations R denotes a continuous functions of (u, v) (depending on
the equation) that converges to 0 when u → 0 independently of v. This follows
from the integral expression for the reminder in Taylor’s expansion. Then we have

lim
(u,v)→(0,v0)

h

g
(u, v) = lim

(u,v)→(0,v0)

R(u, v)u

−κ(v)u+R(u, v)u

= lim
(u,v)→(0,v0)

R(u, v)

−κ(v) +R(u, v)
= 0,

where
κ(v) =

(
ẏẍ− ẋÿ

)
(v)

is the (positive) geodesic curvature of γ. This proves (3.31) and so SK is of class
C1 around (0, 0, 0).

To prove that SK is of class C2 around the origin it is enough to show that the
Riemannian second fundamental form of SK converges to 0 when (u, v) → (0, v0).
We first compute

lim
(u,v)→(0,v0)

D∂/∂uN.

Since

D∂/∂uN =
∂

∂u

(
hẏ(u+ v)√
h2 + g2

)
X − ∂

∂u

(
hẋ(u+ v)√
h2 + g2

)
Y +

g√
h2 + g2

J( ∂
∂u )

+

(
∂

∂u

(
g√

h2 + g2

)
+

h√
h2 + g2

)
T.

(3.32)

A direct computation taking into account ∂h
∂u = 2g yields

∂

∂u

(
h√

h2 + g2

)
=

2g3 − gh ∂g
∂u

(h2 + g2)3/2
,

∂

∂u

(
g√

h2 + g2

)
=
h2 ∂g

∂u − 2g2h

(h2 + g2)3/2
.
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It is straightforward to check from the Taylor expressions that

lim
(u,v)→(0,v0)

h

g2
(u, v) = lim

(u,v)→(0,v0)

−κ(v0)u2 +R(u, v)u2

κ(v0)2u2 +R(u, v)u2
=

−1

κ(v0)
.

Then we immediately get, dividing by −g3,

lim
(u,v)→(0,v0)

∂

∂u

(
h√

h2 + g2

)
= lim

(u,v)→(0,v0)

−2 + h
g2

∂g
∂u

((hg )
2 + 1)3/2

= −1

and

lim
(u,v)→(0,v0)

∂

∂u

(
g√

h2 + g2

)
= lim

(u,v)→(0,v0)

−h
g

h
g2

∂g
∂u + 2h

g

((hg )
2 + 1)3/2

= 0.

Taking limits in (3.32) we get

lim
(u,v)→(0,v0)

D∂/∂uN = J( ∂
∂u )− J( ∂

∂u ) + 0 = 0.

We complete ∂
∂v to an orthonormal basis of the tangent plane by adding the

vector

E =
∂
∂v − 〈 ∂

∂u ,
∂
∂v 〉

∂
∂u

(1− 〈 ∂
∂u ,

∂
∂v 〉2)1/2

.

Since lim(u,v)→(0,v0)
∂
∂v = 0, we have

lim
(u,v)→(0,v0)

DEN = lim
(u,v)→(0,v0)

D∂/∂vN

= lim
(u,v)→(0,v0)

(
− ∂

∂v

(
h√

h2 + g2

)
J( ∂

∂u ) +
∂

∂v

(
g

(h2 + g2)1/2

))
.

A computation shows that

∂

∂v

(
h√

h2 + g2

)
=
g2 ∂h

∂v − gh∂g
∂v

(h2 + g2)3/2
,

∂

∂v

(
g√

h2 + g2

)
=
h2 ∂g

∂v − gh∂h
∂v

(h2 + g2)3/2
.

We trivially have

lim
(u,v)→(0,v0)

∂h

∂v
(u, v) = lim

(u,v)→(0,v0)

∂g

∂v
(u, v) = 0.

Hence

lim
(u,v)→(0,v0)

∂

∂v

(
g√

h2 + g2

)
= lim

(u,v)→(0,v0)

−h
g

h
g2

∂g
∂v + h

g2
∂h
∂v

((hg )
2 + 1)3/2

= 0.

On the other hand

lim
(u,v)→(0,v0)

∂

∂v

(
h√

h2 + g2

)
= lim

(u,v)→(0,v0)

− 1
g
∂h
∂v + h

g2
∂g
∂v

(h2 + g2)3/2
= 0.

This equality holds from the Taylor expansions since

lim
(u,v)→(0,v0)

1

g

∂h

∂v
(u, v) = lim

(u,v)→(0,v0)

R(u, v)u

−κ(v)u+R(u, v)u
= 0.

So we conclude that lim(u,v)→(0,v0)DEN = 0. �
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3.7. Minimization property of the Pansu-Wulff shapes. We prove in
this section a minimization property satisfied by the balls BK . Let K be a convex
body containing 0 in its interior. We assume that K is of class C`

+, with ` > 2.

Remark 3.37. Existence of isoperimetric regions in Carnot and nilpotent
groups endowed with a sub-Finsler norm is proved in [71]. In the Heisenberg
group H1 with a sub-Finsler norm this is done in [34, Thm. 3.1]. Proofs are based
on Leonardi-Rigot’s paper [56].

Definition 3.38. Given SK , we let g : K0 → R be the function g(x) =
(g1(x) + g2(x))/2, where g1 and g2 are the functions obtained in Theorem 3.34.

We also introduce the notation S+K := SK∩{(x, t) : t > g(x)}, S−K := S∩{(x, t) :
t 6 g(x)} and D0 = {(x, g(x)) : x ∈ K0}.

Theorem 3.39. Let || · ||K be the norm associated to a convex body K ⊂ R2 of
class C`

+, with ` > 2. Let r > 0 and h : rK0 → R a C0 function. Consider a subset
E ⊂ H1 with finite volume and finite K-perimeter such that

graph(h) ⊆ E ⊂ rK0 × R.

Then

(3.33) |∂E|K > |∂BE |K ,

where BE is the Wulff shape in (H1, || · ||K) with |E| = |BE |.

Proof. Let gr : rK0 → R the function defined by gr(x) = r2g( 1rx), where g is
the function in Definition 3.38. Let D be the graph of gr. We know that D divides
the Wulff shape rSK into two parts rS+K and rS−K . Let W+ and W− the vector
fields in rK0 × R \ L defined by translating vertically the vector fields

πK(ν0)
∣∣
rS+K

, πK(ν0)
∣∣
rS−K

,

respectively. Here ν0 is the horizontal unit normal to SK .
As a first step in the proof we are going to show that if F ⊂ rK0 × R is a set

of finite volume and K-perimeter so that rel int(D) ⊂ int(F ), then the inequality

(3.34) 1
r |F | 6

∫
D

〈W+ −W−, ND〉dD + |∂F |K

holds, where ND is the Riemannian normal pointing down and dD is the Riemann-
ian measure of D. Equality holds in (3.34) if and only if W+ = πK(νh) |∂KF |-a.e.
on F+ = F ∩ {t > gr} and W− = πK(νh) |∂KF |-a.e. on F− = F ∩ {t 6 gr}. Here
νh is the horizontal unit normal to F .

To prove (3.34) we consider two families of functions. For 0 < ε < 1 we consider
smooth functions ϕε, depending on the Riemannian distance to the vertical axis
L = {x = y = 0}, so that 0 6 ϕε 6 1 and

ϕε(p) = 0, d(p, L) 6 ε2,

ϕε(p) = 1, d(p, L) > ε,

|∇ϕε(p)| 6 2/ε, ε2 6 d(p, L) 6 ε.
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Again for 0 < ε < 1 we consider smooth functions ψε, depending on the Riemannian
distance to the Euclidean hyperplane Π0 = {t = 0}, so that 0 6 ψε 6 1 and

ψε(p) = 1, d(p,Π0) 6 ε−1/2,

ψε(p) = 0, d(p,Π0) > ε−1/2 + 1,

|∇ψε(p)| 6 2, ε−1/2 6 d(p,Π0) 6 ε−1/2 + 1.

For any ε > 0, the vector field ϕεψεW has compact support.
It is easy to prove that F+ and F− have finite K-perimeter. Since F+ has also

finite (sub-Riemannian) perimeter, applying the Divergence Theorem to F+ and
the horizontal vector field ϕεψεW

+, we have∫
F+

div(ϕεψεW
+)dH1 =

∫
D

〈ϕεψεW
+, ND〉dD

+

∫
{t>gr}

〈ϕεψεW
+, νh〉d|∂F |.

(3.35)

Where ND is the Riemannian unit normal to D pointing into F−, dD is the Rie-
mannian area element on D, and νh is the outer horizontal unit normal to F .

We take limits in the left hand side of Equation (3.35) when ε→ 0. We write

(3.36)
∫
F+

div(ϕεψεW
+)dH1 =

∫
F+

ϕεψε divW
+dH1 +

∫
F+

〈∇(ϕεψε),W
+〉dH1.

Since 〈ϕε∇ψε,W
+〉 is bounded and converges pointwise to 0, and∫

F+

〈ψε∇ϕε,W
+〉 6

∫
{(x,t):ε2<|x|<ε, 0<t<ε−1/2+1}

ψε|∇ϕε|dH1,

we have

(3.37) lim
ε→0

∫
F+

〈∇(ϕεψε),W
+〉dH1 = 0.

On the other hand, divW+ = 1
r , the mean curvature of rBK . We consider the

orthonormal vectors Z = −J(νh), E = 〈N,T 〉 νh − |νh|T and N , globally defined
on (rK0 × R) \ L by vertical translations. We know from Lemma 3.5 that

〈DZW
+, Z〉 = 1

r , 〈DEW
+, E〉 = 2 〈N,T 〉|Nh| 〈W+, J(νh)〉.

It remains to compute 〈DNW
+, N〉. We express N = λE + µT as a linear combi-

nation of E and T , where λ = |Nh|/〈N,T 〉, µ = 1/〈N,T 〉. Observe that 〈N,T 〉 6= 0
on int(K0) since rS+K is a t-graph. So we have

〈DNW
+, N〉 = λ〈DEW

+, N〉+ µ〈DTW
+, N〉

= λ2〈DEW
+, E〉+ λµ〈DEW

+, T 〉+ µ〈J(W+), Nh〉
= λ2〈DEW

+, E〉 − λµ〈N,T 〉〈W+, J(νh)〉 − µ|Nh|〈W+, J(νh)〉

=

(
|Nh|
〈N,T 〉

)2

〈DEW
+, E〉 − 1

〈N,T 〉2
〈DEW

+, E〉

= 〈DEW
+, E〉,

where we have used that DTW
+ = J(W+) since W+ is a linear combination of

W+, Y multiplied by functions that do not depend on t. Hence

divW+ = 〈DZW
+, Z〉+ 〈DEW

+, E〉+ 〈DNW
+, N〉 = 1

r
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on int(K0). Since ϕεψε divW
+ is uniformly bounded, F+ has finite volume and

limε→0 ϕεψε = 1, we can apply Lebesgue’s Dominated Convergence Theorem to get

(3.38) lim
ε→0

∫
F+

ϕεψε divW
+dH1 = 1

r |F
+|.

So we get from (3.36), (3.37) and (3.38)

(3.39) lim
ε→0

∫
F+

div(ϕεψεW
+) dH1 = 1

r |F
+|.

Now we treat the remainings terms in (3.35). Using the representation of
perimeter obtained in (2.9) for sets of finite K-perimeter sets we have

(3.40)
∫
{t>gr}

〈W+, νh〉d|∂F | 6
∫
{t>gr}

‖νh‖∗d|∂F | = |∂F+|K ,

with equality if and only if W+ = π(νh) |∂F |-a.e. on {t > gr}. From equations
(3.39) and (3.40), taking limits in Equation (3.35) when ε→ 0,

(3.41) 1
r |F

+| 6
∫
D

〈W+, ND〉dD + |∂F+|K ,

with equality if and only if W+ = π(νh) |∂F |-a.e. on ∂F ∩ {t > gr}.
We consider now the foliation of rK0 × R by vertical translations of rS−K .

Reasoning as in the previous case we get

(3.42) 1
r |F

−| 6 −
∫
D

〈W−, ND〉dD + |∂F−|K .

with equality if and only if W− = π(νh) |∂F |-a.e. on ∂{t < gr}. Hence, adding
(3.41) and (3.42), and taking into account |∂F |K(H1 \D) = |∂F |K and that F ∩D
does not contribute to the volume of F , we get

1
r |F | 6

∫
D

〈W+ −W−, ND〉dD + |∂F |K ,

and so (3.34) holds, with equality if and only if equalities (3.41) and (3.42) hold.
This completes the first part of the proof.

Recall that h : rK0 → R is a function so that D = graph(h) ⊂ E. We take two
values tm < tM such that

h+ tm < gr < h+ tM .

We apply inequality (3.34) to the set B = B− ∪B0 ∪B+, where
• B0 = {(x, t) : x ∈ rK0, |t− gr| 6 (tM − tm)/2},
• B+ = rB+

K + (0, (tM − tm)/2),
• B− = rB−

K − (0, (tM − tm)/2).
By construction, D = graph(gr) ⊂ B0. Since the lateral boundary of B0 is

contained in ∂(rK0 × R) and the outer unit normal to ∂(rK0 × R) coincides with
W+ and W−, the lateral K-boundary area of B0 is equal to

(tM − tm)

∫
∂(rK0)

||ν0||∗d(∂(rK0)),

where d(∂(rK0)) is the Riemannian length element of the C1 curve ∂(rK0). Hence
we get

|∂B|K = (tM − tm)

∫
∂(rK0)

‖ν0‖∗d(∂(rK0)) + |∂(rBK)|K .
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gr +
tM−tm

2

gr − tM−tm
2

gr

h+ tM

gr

h+ tm

rS+K

rS−K

E+

E−

Figure 10. Geometric construction in the proof of Theorem 3.39

On the other hand, since

|B| = |rBK |+ |rK0|(tM − tm),

we obtain

1
r (|rBK |+ |rK0|(tM − tm)) =

∫
D

〈W+ −W−, ND〉dD

+ (tM − tm)

∫
∂(rK0)

‖ν0‖∗d∂(rK0) + |∂(rBK)|K .
(3.43)

Now we apply (3.34) to the set E consisting on the union of E+ = E ∩ {t > h}
translated by the vector (0, tM ), E− = E ∩{t 6 h} translated by the vector (0, tm)
and the vertical filling in between the two sets. We reason as before to get

1
r (|E|+ |rK0|(tM − tm)) 6

∫
D

〈W+ −W−, ND〉dD

+ (tM − tm)

∫
∂D

‖ν0‖∗d∂D0 + |∂E|K .
(3.44)

From (3.43) and (3.44) we get

|∂E|K > |∂(rBK)|K + 1
r (|E| − |rB|).

Let f(ρ) = |∂(ρBK)|K + 1
ρ (|E| − |ρB|). Since ρBK has mean curvature 1

ρ ,
Theorem 3.16 guarantees that the Wulff shape ρBK is a critical point of A− 1

ρ | · |
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for any variation. Therefore |∂(ρBK)|′K − 1
ρ |ρBK |′ = 0 where primes indicates the

derivative with respect to ρ. Hence we have

f ′(ρ) = − 1
ρ2 (|E| − |ρBK |).

So the only critical point of f corresponds to the value ρ0 so that |ρ0BK | = |E|.
Since the function ρ 7→ |ρBK | is strictly increasing and takes its values in (0,+∞),
we obtain that f(ρ) is a convex function with a unique minimum at ρ0. Hence we
obtain

|∂E|K > f(r) > f(ρ0) = |∂(r0BK)|K ,
which implies (3.33). �

4. Regularity of sets with prescribed mean curvature

4.1. Regularity of sets with prescribed mean curvature.
4.1.1. Sets with prescribed mean curvature. Consider an open set Ω ⊂M , and

an integrable function f ∈ L1
loc(Ω). We say that a set of locally finite K-perimeter

E ⊂ Ω has prescribed K-mean curvature f in Ω if, for any bounded open set B ⊂ Ω,
E is a critical point of the functional

(4.1) PK(E,B)−
∫
E∩B

f dH1.

If S = ∂E ∩ Ω is a Euclidean Lipschitz surface then S has prescribed K-mean
curvature f if it is a critical point of the functional

(4.2) AK(S ∩B)−
∫
E∩B

f dH1,

for any bounded open set B ⊂ Ω.
If E has boundary S = ∂E ∩ Ω of class C2, standard arguments imply that E

has prescribed K-mean curvature f in Ω if and only if HK = f , where HK is the
K-mean curvature

HK = 〈DZπK(νh), Z〉,
and νh is the outer horizontal unit normal, see [72]. Since by [72, Lemma 2.1]
the Levi-Civita connection D and the pseudo-hermitian connection ∇ coincide for
horizontal vector fields, we obtain that

HK = 〈DZπK(νh), Z〉 = 〈∇ZπK(νh), Z〉.

It is important to remark that the mean curvature HK strongly depends on the
choice of νh. When K is centrally symmetric, πK(−u) = −πK(u) and so the mean
curvature changes its sign when we take −νh instead of νh. When K is not centrally
symmetric, there is no relation between the mean curvatures associated to νh and
−νh.

A set E ⊂ H1 with Euclidean Lischiptz boundary has locally finiteK-perimeter:
we know that it has locally bounded sub-Riemannian perimeter by Proposition 2.14
in [36] and we can apply the perimeter estimates in § 2.3. Letting H2 be the
Riemannian 2-dimensional Hausdorff measure, the Riemannian outer unit normal
N is defined H2-a.e. in ∂E, and it can be proven that

(4.3) PK(E, V ) =

∫
∂E∩V

||Nh||K,∗ dH2.
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We say that a set E of locally finite K-perimeter in an open set Ω ⊂ H1 has
constant prescribed K-mean curvature if there exists λ ∈ R such that E has pre-
scribed K-mean curvature λ. This means that E is a critical point of the functional
E 7→ PK(E,B)− λ|E ∩B| for any bounded open set B ⊂ Ω.

Our next result implies that Euclidean Lipschitz isoperimetric boundaries (for
the K-perimeter) have constant prescribed K-mean curvature.

Proposition 4.1. Let E ⊂ H1 be a bounded set with Euclidean Lipschitz bound-
ary. Assume that E a critical point of the K-perimeter for variations preserving
the volume of E up to first order. Let Ω ⊂ H1 be an open set so that Ω ∩ S0 = ∅
and PK(E,Ω) > 0. Then E has constant prescribed K-mean curvature in Ω.

Proof. Since the K−perimeter of E in Ω is positive there exists a horizontal
vector field U0 with compact support in Ω so that

∫
E
divU0 dH1 > 0. Let {ψs}s∈R

be the flow associated to U0 and define

(4.4) H0 =
d
ds |s=0AK(ψs(S))

d
ds |s=0|ψs(E)|

.

Let W any vector field with compact support in Ω and associated flow {ϕs}s∈R.
Choose λ ∈ R so that W − λU0 satisfies

d

ds

∣∣∣∣
s=0

|ϕs(E)| − λ
d

ds

∣∣∣∣
s=0

|ψs(E)| = 0.

This means that the flow of W − λU0 preserves the volume of E up to first order.
By our assumption on E we get

Q(W − λU0) = 0,

where Q is defined in (4.5). Now Lemma 4.2 implies Q(W ) = λQ(U0) and, from
the definition of H0, we get

Q(W ) = λQ(U0) = λH0
d

ds

∣∣∣∣
s=0

|ψs(E)| = H0
d

ds

∣∣∣∣
s=0

|ϕs(E)|.

This implies that E is a critical point of the functional E 7→ |∂E|K −H0|E| and so
it has prescribed K-mean curvature equal to the constant H0. �

Lemma 4.2. Let E ⊂ H1 be a bounded set with Euclidean Lipschitz boundary
S. Let Ω ⊂ H1 be an open set such that Ω ∩ S0 = ∅. Let U be a vector field with
compact support Ω and {ϕs}s∈R the associated flow. Then the derivative

(4.5) Q(U) =
d

ds

∣∣∣∣
s=0

AK(ϕs(S))

exists and is a linear function of U .

Proof. For every s ∈ R, the set ϕs(E) has Euclidean Lipschitz boundary and
so it has finite K-perimeter. By Rademacher’s Theorem, the set

B = {p ∈ S : S is not differentiable at p}

has H2-measure equal to 0.
For any p ∈ S \B we take the curve σ(s) = ϕs(p). For every s ∈ R the surface

ϕs(S) is differentiable at σ(p) and the vector field W (s) = ((Ns)h)σ(s), where Ns
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is the outer unit normal to ϕs(∂E), is differentiable along the curve σ. Let us
estimate the quotient

(4.6) ||W (s+ h)||K,∗ − ||W (s)||K∗

h
.

Writing W (s) = f(s)Xσ(s) + g(s)Yσ(s) we have ||W (s)||K,∗ = ||(f(s), g(s))||, where
|| · || is the planar asymmetric norm associated to the convex set K. We have∣∣||W (s+ h)||K,∗ − ||W (s)||K∗

∣∣ 6 ||(f(s+ h)− f(s), g(s+ h)− g(s))||
6 C

(
|f(s+ h)− f(s)|+ |g(s+ h)− g(s)|

)
,

for a constant C > 0 that only depends on K. The derivates of f and g can be
estimated in terms of the covariant derivative D

dsW = D
ds (Ns)h along σ. Since∣∣∣∣Dds (Ns)h

∣∣∣∣ 6 ∣∣divϕs(S)(U)
∣∣

we get an uniform estimate on the derivatives of f and g independent of p. So the
quotient (4.6) is uniformly bounded above by a constant independent of p.

To compute the derivative of AK(ϕs(S)) at s = 0 we write

AK(ϕs(S)) =

∫
S

(
||(Ns)h||K,∗ ◦ ϕs

)
Jac(ϕs) dH2

The uniform estimate of the quotient (4.6) allows us to apply Lebesgue’s dominated
convergence theorem and Leibniz’s rule to compute the derivative of AK(ϕs(S)),
given by ∫

S

d

ds

∣∣∣∣
s=0

((
||(Ns)h|| ◦ ϕs

)
Jac(ϕs)

)
dH2.

Given a point p ∈ (S r B) ∩ supp(U), since supp(U) ⊂ Ω and Ω ∩ S0 = ∅ we
get (Nh)p 6= 0 and so

D

ds

∣∣∣∣
s=0

||(Ns)h||K,∗(σ(s)) =
D

ds

∣∣∣∣
s=0

〈(Ns)h, πK((Ns)h)〉(σ(s))

= 〈D
ds

∣∣∣∣
s=0

(Ns)h, (Nh)p〉+ 〈(Nh)p, (dπK)

(
D

ds

∣∣∣∣
s=0

(Ns)h

)
〉.

Since
D

ds

∣∣∣∣
s=0

(Ns)h =
D

ds

∣∣∣∣
s=0

N − 〈D
ds

∣∣∣∣
s=0

N,T 〉T,

and
D

ds

∣∣∣∣
s=0

N =

2∑
i=1

〈Np,∇eiU〉 ei,

where ei is an orthonormal basis of Tp(∂E), we get that
D

ds

∣∣∣∣
s=0

||Ns||K,∗

is a linear function L(U) of U . �

Remark 4.3. Proposition 4.1 can be applied to isoperimetric regions in H1 with
Euclidean Lipschitz boundary. Of course, the regularity of isoperimetric regions in
H1 is still an open problem.
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4.1.2. Intrinsic Euclidean Lipschitz graphs on a vertical plane in H1. We denote
by Gr(u) the intrinsic graph (Riemannian normal graph) of the Lipschitz function
u : D → R, where D is a domain in a vertical plane. Using Euclidean rotations
about the vertical axis x = y = 0, that are isometries of the Riemannian metric g, we
may assume that D is contained in the plane y = 0. Since the vector field Y is a unit
normal to this plane, the intrinsic graph Gr(u) is given by {expp(u(p)Yp) : p ∈ D},
where exp is the exponential map of g, and can be parameterized by the map

Φu(x, t) = (x, u(x, t), t− xu(x, t)).

The tangent plane to any point in S = Gr(u) is generated by the vectors
Φu

x = (1, ux,−u− xux) = X + uxY − 2uT,

Φu
t = (0, ut, 1− xut) = utY + T

and the characteristic direction is given by Z = Z̃/|Z̃| where

(4.7) Z̃ = X + (ux + 2uut)Y.

A unit normal to S is given by N = Ñ/|Ñ | where

Ñ = Φu
x × Φu

t = (ux + 2uut)X − Y + utT

and Jac(Φu) = |Φu
x × Φu

t | = |Ñ |. Therefore the horizontal projection of the unit
normal to S is given by Nh = Ñh/|Ñ |, where Ñh = (ux+2uut)X−Y. Observe that
J(Z) = −νh.

We also assume that S = Gr(u) is an H-regular surface, meaning that Ñh and
Z̃ in (4.7) and are continuous. Hence also (ux + 2uut) is continuous.

Remark 4.4. Let γ(s) = (x, t)(s) be a C1 curve in D then
Γ(s) = (x, u(x, t), t− xu(x, t))(s) ⊂ Gr(u)

is also C1 and
Γ′(s) = x′X + (x′ux + t′ut)Y + (t′ − 2ux′)T.

In particular horizontal curves in Gr(u) satisfy the ordinary differential equation
(4.8) t′ = 2u(x, t)x′.

From (2.15), the sub-Finsler K-area for a Euclidean Lipschitz surface S is

AK(S) =

∫
S

‖Nh‖K,∗dS,

where ‖Nh‖K,∗ = 〈Nh, π(Nh)〉 with π = (π1, π2) = πK and dS is the Riemannian
area measure. Therefore when we consider the intrinsic graph S = Gr(u) we obtain

A(Gr(u)) =
∫
D

〈Ñh, π(Ñh)〉 dxdt

=

∫
D

(ux + 2uut)π1(ux + 2uut,−1)− π2(ux + 2uut,−1) dxdt.

Observe that the K-perimeter of a set was defined in terms of the outer unit normal.
Hence we are assuming that S is the boundary of the epigraph of u.

Given v ∈ C∞
0 (D), a straightforward computation shows that

(4.9) d

ds

∣∣∣
s=0

A(Gr(u+ sv)) =

∫
D

(vx + 2vut + 2uvt)Mdxdt,
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where

(4.10) M = F (ux + 2uut),

and F is the function

(4.11) F (x) = π1(x,−1) + x
∂π1
∂x

(x,−1)− ∂π2
∂x

(x,−1).

Since (ux + 2uut) is continuous and π is at least C1 the function M is continuous.

4.2. Characteristic curves are C2. Here we prove our main result, that
characteristic curves in an intrinsic Euclidean Lipschitz H-regular surface with con-
tinuous prescribed K-mean curvature are of class C2. The reader is referred to
Theorem 4.1 in [42] for a proof of the the sub-Riemannian case. The proof of
Theorem 4.5 depends on Lemmas 4.6 and 4.7.

Theorem 4.5. Let K be a C2
+ convex set in R2 with 0 ∈ int(K) and || · ||K

the associated left-invariant norm in H1. Let Ω ⊂ H1 be an open set and E ⊂ Ω
a set of prescribed K- mean curvature f ∈ C0(Ω) with an Euclidean Lipschitz and
H-regular boundary S. Then the characteristic curves of S ∩ Ω are of class C2.

Proof. By the Implicit Function Theorem for H-regular surfaces, see Theo-
rem 6.5 in [36], given a point p ∈ S, after a rotation about the vertical axis, there
exists an open neighborhood B ⊂ H1 of p such that B ∩ S is the intrinsic graph
Gr(u) of a function u : D → R, where D is a domain in the vertical plane y = 0,
and B ∩ E is the epigraph of u. The function u is Euclidean Lipschitz by our as-
sumption. Since Gr(u) has prescribed continuous mean curvature f , from equation
(4.9) we get

(4.12)
∫
D

(vx + 2vut + 2uvt)M + fv dxdt = 0,

for each v ∈ C∞
0 (D). The function M is defined in (4.10). By Remark 4.3 in

[42] implies that (4.12) holds for each v ∈ C0
0 (D) for which vx + 2uvt exists and is

continuous.
Let Γ(s) be a characteristic horizontal curve passing through p whose velocity

is the vector field Z̃ defined in (4.7), that only depends on ux + 2uut. Since S
is H-regular the function ux + 2uut is continuous and Γ(s) is of class C1. Let us
consider the function F defined in (4.11) and define

g(s) = (ux + 2uut)Γ(s).

Hence F (g(s)) = M(s). The function F is C1 for any convex set K of class C2
+

and, from Lemma 4.6, we obtain that F ′(x) > 0 for each x ∈ R. Therefore F−1

is also C1 and g(s) = F−1(M(s)). Thanks to Lemma 4.7 we obtain that M is C1

along Γ and we conclude that also g is C1 along Γ. So Z̃ is C1 and the curve Γ
is C2. �

Lemma 4.6. Let K ⊂ R2 be a convex body of class C2
+ such that 0 ∈ int(K).

Then the function F defined in (4.11) is C1 and F ′(x) > 0 for each x ∈ R.

Proof. Parameterize the lower part of the boundary of the convex body K
by a function φ defined on a closed interval I ⊂ R. The function φ is of class C2
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in I̊ and the graph becomes vertical at the endpoints of I. As K is of class C2
+ we

have φ′′(x) > 0 for each x ∈ R. Take x ∈ R, then we have

π(x,−1) = N−1
K

(
(x,−1)√
1 + x2

)
,

where NK is the outer unit normal to ∂K. Let ϕ(x) ∈ I̊ be the point where
(ϕ(x), φ(ϕ(x))) = π(x,−1).

Therefore, if we consider the normal NK of the previous equality we obtain
(φ′(ϕ(x)),−1)√
1 + (φ′(ϕ(x)))2

=
(x,−1)√
1 + x2

.

Hence φ′(ϕ(x)) = x and so ϕ is the inverse of φ′, that is invertible since φ′′(x) > 0
for each x ∈ R. Notice that

F (x) = π1(x,−1) + x
∂π1
∂x

(x,−1)− ∂π2
∂x

(x,−1)

= ϕ(x) + xϕ′(x)− φ′(ϕ(x))ϕ′(x) = ϕ(x),

since φ′(ϕ(x)) = x. Hence we obtain

F ′(x) = ϕ′(x) =
1

φ′′(ϕ(x))
> 0

for each x ∈ R. �

Lemma 4.7. Let Ω ⊂ H1 be an open set and E ⊂ Ω a set of prescribed K-mean
curvature f ∈ C0(Ω) with Euclidean Lipschitz and H-regular boundary S. Then the
function M defined in (4.10) is of class C1 along characteristic curves. Moreover,
the differential equation

d

ds
M(γ(s)) = f(γ(s))

is satisfied along any characteristic curve γ.

Proof. Let Γ(s) be a characteristic curve passing through p in Gr(u). Let
γ(s) be the projection of Γ(s) onto the xt-plane, and (a, b) ∈ D the projection
of p to the xt-plane. We parameterize γ by s → (s, t(s)). By Remark 4.4 the
curve s → (s, t(s)) satisfies the ordinary differential equation t′ = 2u. For ε small
enough, Picard-Lindelöf’s theorem implies the existence of r > 0 and a solution
tε :]a− r, a+ r[→ R of the Cauchy problem

(4.13)

{
t′ε(s) = 2u(s, tε(s)),

tε(a) = b+ ε.

We define γε(s) = (s, tε(s)) so that γ0 = γ. Here we exploit an argument similar to
the one developed in [65]. By Theorem 2.8 in [82] we gain that tε is Lipschitz with
respect to ε with Lipschitz constant less than or equal to eLr. Fix s ∈]a− r, a+ r[,
the inverse of the function ε → tε(s) is given by χ̄t(−s) = χt(−s) − b where χt is
the unique solution of the following Cauchy problem

(4.14)

{
χ′
t(τ) = 2u(τ, χt(τ))

χt(a+ s) = t.

Again by Theorem 2.8 in [82] we have that χ̄t is Lipschitz continuous with respect
to t, thus the function ε→ tε is a locally bi-Lipschitz homeomorphisms.
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We consider the following Lipschitz coordinates

(4.15) G(ξ, ε) = (ξ, tε(ξ)) = (s, t)

around the characteristic curve passing through (a, b). Notice that, by the unique-
ness result for (4.13), G is injective. Given (s, t) in the image of G using the inverse
function χ̄t defined in (4.14) we find ε such that tε(s) = t, therefore G is surjective.
By the Invariance of Domain Theorem [5], is a homeomorphism. The Jacobian of
G is defined by

(4.16) JG = det

(
1 0

t′ε
∂tε
∂ε

)
=
∂tε
∂ε

(s)

almost everywhere in ε. Any function ϕ defined on D can be considered as a
function of the variables (ξ, ε) by making ϕ̃(ξ, ε) = ϕ(ξ, tε(ξ)). Since the function
G is C1 with respect to ξ we have

∂ϕ̃

∂ξ
= ϕx + t′ε ϕt = ϕx + 2uϕt.

Furthermore, by [28, Theorem 2 in Section 3.3.3] or [50, Theorem 3], we may apply
the change of variables formula for Lipschitz maps. Assuming that the support of
v is contained in a sufficiently small neighborhood of (a, b), we can express the
integral (4.12) as

(4.17)
∫
I

( ∫ a+r

a−r

((
∂ṽ

∂ξ
+ 2ṽ ũt)M̃ + f̃ ṽ)

∂tε
∂ε

dξ
)
dε = 0,

where I is a small interval containing 0. Instead of ṽ in (4.17) we consider the
function ṽh/(tε+h − tε), where h is a small enough parameter. Then we obtain

∂

∂ξ

(
ṽh

(tε+h − tε)

)
=
∂ṽ

∂ξ

h

(tε+h − tε)
− ṽh

t′ε+h − t′ε
(tε+h − tε)2

=
∂ṽ

∂ξ

h

(tε+h − tε)
− 2ṽh

u(ξ, tε+h(ξ))− u(ξ, tε(ξ)

(tε+h − tε)2
,

that tends to (
∂tε
∂ε

)−1(
∂ṽ

∂ξ
− 2ṽũt

)
a.e. in ε,

when h goes to 0. Putting ṽh/(tε+h − tε) in (4.17) instead of ṽ we gain∫
I

(∫ a+r

a−r

h∂tε
∂ε

(tε+h − tε)

(
∂ṽ

∂ξ
+ 2ṽ (ũt −

ũ(ξ, ε+ h)− ũ(ξ, ε)

(tε+h − tε)
)

)
M̃ + f̃ ṽ dξ

)
dε = 0.

Using Lebesgue’s dominated convergence theorem and letting h→ 0 we have

(4.18)
∫
I

(∫ a+r

a−r

∂ṽ

∂ξ
M̃ + f̃ ṽ dξ

)
dε = 0.

Let η : R → R be a positive function compactly supported in I and for ρ > 0 we
consider the family ηρ(x) = ρ−1η(x/ρ), that weakly converge to the Dirac delta
distribution. Putting the test functions ηρ(ε)ψ(ξ) in (4.18) and letting ρ → 0 we
get

(4.19)
∫ a+r

a−r

ψ′(ξ)M̃(ξ, 0) + f̃(ξ, 0)ψ(ξ) dξ = 0,



50 MANUEL RITORÉ

for each ψ ∈ C∞
0 ((a − r, a + r)). Since ux + 2uut is continuous, M in (4.10) is

continuous, thus also M̃ . Hence thanks to Lemma 4.8 we conclude that M is C1

along γ, thus by Remark 4.4 is also C1 along Γ.
Since M is C1 along the characteristic curve, we can integrate by parts in

equation (4.19) to obtain∫ a+r

a−r

(
−M̃ ′(0, ξ) + f̃(0, ξ)

)
ψ(ξ) dξ = 0,

for each ψ ∈ C∞
0 ((a− r, a+ r)). That means that M satisfies the equation

d

ds
M(γ(s)) = f(γ(s))

along characteristic curves. �

Lemma 4.8 ([42, Lemma 4.2]). Let J ⊂ R be an open interval and g, h ∈ C0(J).
Let H ∈ C1(J) be a primitive of h. Assume that∫

J

ψ′g + hψ = 0,

for each ψ ∈ C∞
0 (J). Then the function g − H is a constant function in J . In

particular g ∈ C1(J).

Remark 4.9. Let K be a convex body of class C2
+ such that 0 ∈ K. Following

[72] we consider a clockwise-oriented P -periodic parameterization γ : R → R2 of
∂K. For a fixed v ∈ R we take the translated curve s→ γ(s+v)−γ(v) = (x(s), y(s))
and we consider its horizontal lifting Γv(s) to H1 starting at (0, 0, 0) ∈ H1 for s = 0,
given by

Γv(s) =

(
(x(s), y(s),

∫ s

0

y(τ)x′(τ)− x(τ)y′(τ)dτ

)
.

The Pansu-Wulff shape associated to K is defined by

SK =
⋃

v∈[0,P )

Γv([0, P ]).

In [72, Theorem 3.14] it is shown that the horizontal liftings Γv, for each v ∈ [0, P ),
are solutions for HK = 1, therefore SK has constant prescribed K-mean curvature
equal to 1. Since the curves Γv have the same regularity as ∂K, the C2 regularity
result for horizontal curves obtained in Theorem 4.5 is optimal.

Corollary 4.10. Let K be a C2
+ convex set in R2 with 0 ∈ int(K) and || · ||K

the associated left-invariant norm in H1. Let Ω ⊂ H1 be an open set and E ⊂ Ω
a set of prescribed K-mean curvature f ∈ C0(Ω) with C1 boundary S. Then the
characteristic curves in S r S0 are of class C2.

Proof. Since S is of class C1, in the regular part SrS0 the horizontal normal
νh is a nowhere-vanishing continuous vector fields, thus S r S0 is an H-regular
surface. In particular a C1 surface is Lipschitz, thus S r S0 verifies the hypotheses
of Theorem 4.5 and the characteristic curves in S r S0 are of class C2. �

Remark 4.11. When S is of class C1 the proof of Lemma 4.7 is is much easier.
Indeed the solution tε of the Cauchy Problem (4.13) is differentiable in ε, thus the
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function ∂tε/∂ε satisfies the following ODE(
∂tε
∂ε

)′

(s) = 2ut(s, tε(s))
∂tε
∂ε

,
∂tε
∂ε

(a) = 1.

That implies that
∂tε
∂ε

(s) = e
∫ s
a
2ut(τ,tε(τ)))dτ > 0.

Since the Jacobian JG defined in (4.16) is equal to ∂tε/∂ε > 0 the change of
variables G(ξ, ε) is invertible. Hence the rest of the proof of Lemma 4.7 goes in the
same way as before.

4.3. The sub-Finsler mean curvature equation. Given an Euclidean Lip-
schitz boundary S whose characteristic curves in S r S0 are of class C2, for each
point p ∈ S r S0 we can define the K-mean curvature HK of S by

(4.20) HK = 〈DZπK(νh), Z〉 = 〈∇ZπK(νh), Z〉,

where νh is the outer horizontal unit normal to S. This definition was given in [72]
for surfaces of class C2.

Proposition 4.12. Let Ω ⊂ H1 be an open set and E ⊂ Ω a set of prescribed
K- mean curvature f ∈ C0(Ω) Euclidean Lipschitz and H-regular boundary S. Then
HK(p) = f(p) for each p ∈ S r S0.

Proof. By the Implicit Function Theorem for H-regular surfaces, Theorem 6.5
in [36], given a point p ∈ S, after a rotation about the t-axis, there exists an open
neighborhood B ⊂ H1 of p such that B ∩ S is the intrinsic graph of a function
u : D → R where D is a domain in the vertical plane y = 0. The function u is
Euclidean Lipschitz by our assumption. We set B ∩S = Gr(u). We assume that E
is locally the epigraph of u.

Let Γ(s) be a characteristic curve passing through p in Gr(u) and γ(s) its
projection on the xt-plane. The characteristic vector Z defined in (4.7) is given by

Z =
X + (ux + 2uut)Y

(1 + (ux + 2uut)2)
1
2

.

Since S is H-regular, Z and the horizontal unit normal

νh =
(ux + 2uut)X − Y

(1 + (ux + 2uut)2)
1
2

are continuous vector fields. By Lemma 4.7 we have that M = F (ux+2uut) defined
in (4.10) satisfies the differential equation

d

ds
M(γ(s)) = f(γ(s))

along the characteristic curves. Therefore we obtain

d

ds
M(γ(s)) = F ′(ux + 2uut)

d

ds

[
(ux + 2uuy)(γ(s))

]
=

1

φ′′(ux + 2uut)

d

ds

[
(ux + 2uuy)(γ(s))

]
,
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As in proof of Lemma 4.6, we parametrize the lower part of the boundary of
the convex body K by a function φ defined on a closed interval I ⊂ R. Again by
Lemma 4.6 we have

πK(x,−1) = (ϕ(x), φ(ϕ(x)),

where ϕ is the inverse function of φ′. Furthermore the K-mean curvature defined
(4.20) is equivalent to

HK = 〈DZπK(ux + 2uut,−1), Z〉

=
〈D
ds

[
ϕ(ux + 2uut)Xγ + φ(ϕ(ux + 2uut))Yγ

]
, Z〉

1 + (ux + 2uut)2

=
ϕ′(ux + 2uut)

d

ds
(ux + 2uut)

(
1 + φ′(ϕ(ux + 2uut))(ux + 2uut)

)
1 + (ux + 2uut)2

=
1

φ′′(ux + 2uut)

d

ds

[
(ux + 2uut)(γ(s))

]
.

Hence we obtain HK = d
dsM(γ(s)) and so HK(p) = f(p) for each p ∈ S r S0. �

The following result allows us to express the K-mean curvature HK in terms
of the sub-Riemannian mean curvature HD.

Proposition 4.13. Let K ⊂ R2 be a convex body of class C2
+ such that 0 ∈

int(K) and πK = N−1
K . Let κ be the strictly positive curvature of the boundary

∂K. Let Ω ⊂ H1 be an open set and E ⊂ Ω a set of prescribed K-mean curvature
f ∈ C0(Ω) with Euclidean Lipschitz and H-regular boundary S. Then, we have

HD(p) = κ(πK(νh))f(p) for each p ∈ S r S0,

where HD(p) = 〈DZνh, Z〉 is the sub-Riemannian mean curvature, νh be the hor-
izontal unit normal at p to S r S0 and Z = J(νh) be the characteristic vector
field.

Proof. By Proposition 4.12 we have HK(p) = f(p) for each p ∈ S r S0. We
remark that Theorem 4.5 implies that HK is well-defined.

Let γ : (−ε, ε) → S r S0 be the integral curve of Z passing through p, namely
γ′(s) = Zγ(s) and γ(0) = p. Let νh(s) = −J(Zγ(s)) be the horizontal unit normal
along γ and let

π(νh(s)) = π1(νh(s))Xγ(s) + π2(νh(s))Yγ(s).

Noticing that ∇X = ∇Y = 0 we gain
∇
ds

∣∣∣
s=0

π(νh(s)) =
d

ds

∣∣∣
s=0

π1(νh(s))Xγ(0) +
d

ds

∣∣∣
s=0

π2(νh(s))Yγ(0).

Setting νh = aX + bY we obtain

(4.21) ∇
ds

∣∣∣
s=0

π(νh(s)) = (dπ)(a,b)

(
∇
ds

∣∣∣
s=0

νh(s)

)
,

where

(dπ)(a,b) =


∂π1
∂a

(a, b)
∂π1
∂b

(a, b)

∂π2
∂a

(a, b)
∂π2
∂b

(a, b)

 .
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Moreover, by Corollary 1.7.3 in [78] we get πK = ∇h, where h is a C2 function.
Thus by Schwarz’s theorem the Hessian Hess(a,b)(h) = (dπ)(a,b) is symmetric, i.e.
(dπ) = (dπ)∗. Equation (4.21) then implies

HK = 〈∇Z πK(νh), Z〉 = 〈∇Zνh, (dπ)
∗
νh
Z〉 = 〈∇Zνh, (dπ)νh

Z〉.
Finally, by Lemma 4.14 we get

HK =
1

κ(πK(νh))
〈∇Zνh, Z〉.

Hence we obtain 〈DZνh, Z〉 = κ(πK(νh)), since DZνh = ∇Zνh. �

Lemma 4.14. Let K ⊂ R2 be a convex body of class C2
+ such that 0 ∈ int(K)

and NK be the Gauss map of ∂K. Let κ be the strictly positive curvature of the
boundary ∂K. Let S be an H-regular surface with horizontal unit normal νh and
characteristic vector field Z = J(νh). Then we have

(dπ)νh
Z =

1

κ
Z and (dπ)νh

νh = 0,

where (dπ)νh
is the differential of πK = N−1

K .

Proof. Let α(t) = (x(t), y(t)) be an arc-length parametrization of ∂K such
that ẋ2(t) + ẏ2(t) = 1. Let νh = aX + bY be the horizontal unit normal to S, with
a = cos(θ) and b = sin(θ) and θ ∈ (−π

2 ,
π
2 ). Notice that θ = arctan( ba ). Then we

have
πK(a, b) = N−1

K ((a, b)).

Let ϕ : (−π
2 ,

π
2 ) → R be the function satisfying

πK(cos(θ), sin(θ)) = (x(ϕ(θ)), y(ϕ(θ))).

If we consider the normal NK of the previous equality we obtain
(cos(θ), sin(θ)) = (ẏ(ϕ(θ)),−ẋ(ϕ(θ))).

Therefore we have
θ = arctan

(
− ẋ
ẏ
(ϕ(θ))

)
for each θ ∈ (−π

2 ,
π
2 ). That means that ϕ is the inverse of the function arctan(− ẋ

ẏ (t)),
that is invertible since

d

dt
arctan(− ẋ

ẏ (t)) = ẋÿ − ẏẍ = κ(t) > 0.

Let Z = J(νh) = −bX + aY be the characteristic vector field, then we have
(dπ)(a,b) = (dπ)∗(a,b) and

(dπ)∗(a,b)Z =

 −b∂π1
∂a

+ a
∂π2
∂a

−b∂π1
∂b

+ a
∂π2
∂b

 ,

where
π1(a, b) = x(ϕ(arctan( ba ))), π2(a, b) = y(ϕ(arctan( ba ))).

Thus we get

(dπ)∗(a,b)Z = ϕ′(arctan( ba )))Z =
1

κ(ϕ(θ))
Z.
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A similar straightforward computation shows that (dπ)νh
νh = 0. �

5. Cones

5.1. The first variation formula and a stationary condition. In this
section we present some consequences of the first variation formula. We assume
that the Heisenberg group H1 is endowed with the sub-Finsler structure associated
to a convex set K of class C2

+ with 0 ∈ int(K). Recall that, given a surface S ⊂ H1

of class C1, its singular set S0 is composed of those points of S where the tangent
plane is horizontal. The regular part of S is S r S0.

Theorem 5.1 (Theorem 3.1 in [72]). Let S be an oriented surface of class C1

such that the regular part S r S0 is of class C2. Consider a C2 vector field U with
compact support on S, normal component u = 〈U,N〉, and associated flow {ϕs}s∈R.
Let η = π(νh), where νh is the horizontal unit normal to S. Then we have

(5.1) d

ds

∣∣∣∣
s=0

AK(ϕs(S)) =

∫
S\S0

HKu dS −
∫
S\S0

divS(uη
>) dS,

where divS is the Riemannian divergence on S and the superscript > indicates the
projection over the tangent plane to S. The quantity HK = 〈∇Zπ(νh), Z〉, for
Z = −J(νh), is the K-mean curvature of S.

Using Theorem 5.1 we can prove the following necessary and sufficient condition
for a surface S to be AK-stationary. When a surface S of class C1 is divided into
two parts S+, S− by a singular curve S0 so that S+, S− are of class C2 up to the
boundary, the tangent vectors Z+, Z− can be chosen so that they parameterize the
characteristic curves (i. e., horizontal curves en the regular part of S) as curves
leaving from S0, see Corollary 3.6 in [12] . In this case η+ = π(νh) = π(J(Z+))
and η− = π(J(Z−)).

Corollary 5.2. Let S be an oriented surface of class C1 such that the singular
set S0 is a C1 curve. Assume that SrS0 is the union of two surfaces S+, S− of class
C2 meeting along S0. Let η+, η− the restrictions of η to S+ and S−, respectively.
Then S is area-stationary if and only if

(1) HK = 0, and
(2) η+ − η− is tangent to S0.

In particular, condition HK = 0 implies that SrS0 is foliated by horizontal straight
lines.

Proof. We may apply the divergence theorem to the second term in (5.1) to
get

d

ds

∣∣∣∣
s=0

AK(ϕs(S)) =

∫
S\S0

HKu dS −
∫
S0

u 〈ξ, (η+ − η−)>〉 dS,

where ξ is the outer unit normal to S+ along S0. Hence the stationary condition
is equivalent to H = 0 on S r S0 and 〈ξ, η+ − η−〉 = 0. The latter condition is
equivalent to that η+ − η− be tangent to S0.

That HK = 0 implies that S r S0 is foliated by horizontal straight lines was
proven in Theorem 3.14 in [72]. �
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Since ν+ = J(Z+), ν− = J(Z−), where Z+ and Z− are the extensions of
the horizontal tangent vectors in S+, S−, we have that the second condition in
Corollary 5.2 is equivalent to

(5.2) π(J(Z+))− π(J(Z−)) is tangent to S0.

So a natural question is, given a C2
+ convex body K containing 0 in its interior,

and a unit vector v ∈ S1, can we find a pair of unit vectors Z+, Z− such that (5.2)
is satisfied? If such vectors exist, how many pairs can we get? The answer follows
from the next result.

Lemma 5.3. Let K be a convex body of class C2
+ such that 0 ∈ int(K). Given

v ∈ R2 r {0}, let L ⊂ R2 be the vector line generated by v. Then, for any u ∈ ∂K,
we have the following possibilities

(1) The only w ∈ ∂K such that w − u ∈ L is w = u, or
(2) There is only one w ∈ ∂K, w 6= u such that w − u ∈ L.

The first case happens if and only if L is parallel to the support line of K at u.

Proof. Let T be the translation in R2 of vector u. Then T (L) is a line that
meets ∂K at u. The line T (L) intersects ∂K only once when L is the supporting
line of T (K) at 0; otherwise L intersects ∂K just at another point w 6= u so that
w − u ∈ L. �

Remark 5.4. We use Lemma 5.3 to understand the behavior of characteristic
curves meeting at a singular point p ∈ S0. Let Z+, Z− be the tangent vectors to
the characteristic lines starting from p. Let ν+, ν− be the vectors J(Z+), J(Z−),
and L the line generated by the tangent vector to S0 at p. The condition that S is
stationary implies that η+−η− ∈ L. If w = η+ and u = η− are equal then ν+ = ν−

are orthogonal to L, which implies that Z+, Z− lie in L. This is not possible since
characteristic lines meet tranversaly the singular line, again by Corollary 3.6 in
[12].

Hence η+ 6= η− and η+ is uniquely determined from η− by Lemma 5.3. Obvi-
ously the roles of η+ and η− are interchangeable.

L

T (L) = L+ u

0

w = η+

ν+

Z+

u = η−

ν−Z−

∂K
u = w

ν+ = ν−

Figure 11. Geometric construction to obtain w = η+ from u =
η− so that the stationary condition is satisfied. The case ν+ = ν−

cannot hold.
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5.2. Examples of entire K-perimeter minimizing horizontal graphs
with one singular line. Remark 5.4 implies that Z− can be uniquely determined
from Z+ when S is a stationary surface. Let us see that this result can be refined to
provide a smooth dependence of the oriented angle ∠(v, Z−) in terms of ∠(v, Z+).
We use complex notation for horizontal vectors assuming that the horizontal dis-
tribution is positively oriented by v, J(v) for any v ∈ Hr {0}.

Lemma 5.5. Let K be a convex body of class C2
+ with 0 ∈ int(K). Consider

a unit vector v ∈ R2 and let L ⊂ R2 be the vector line generated by v. Then, for
any α ∈ (0, π) there exists a unique β ∈ (π, 2π) such that if Z+ = veiα, Z− = veiβ,
then π(J(Z+))− π(J(Z+)) belongs to L.

Moreover the function β : (0, π) → (π, 2π) is of class C1 with negative deriva-
tive.

Proof. We change coordinates so that L is the line y = 0. We observe that
Z+ = veiα implies that J(Z+) = vei(α+π/2). We define (x, y) : S1 → ∂K by

(x(α), y(α)) = N−1
K (vei(α+π/2)),

where NK : ∂K → S1 is the (outer) Gauss map of ∂K. The functions x, y are C1

since NK is C1. The point (x(α), y(α)) is the only one in ∂K such that the clockwise
oriented tangent vector to ∂K makes an angle α with the positive direction of the
line L. A line parallel to L meets ∂K at a single point only when α + π/2 = π/2
or α+ π/2 = 3π/2. Hence, for α ∈ (0, π), there is a unique β ∈ (π, 2π) such that

(x(β), y(β))− (x(α), y(α)) ∈ L.

Observe that, for α ∈ (0, π), we have dy/dα > 0 and, for β ∈ (π, 2π), we get
dy/dβ < 0. We can use the implicit function theorem (applied to y(β) − y(α)) to
conclude that β is a C1 function of α. Moreover

dβ

dα
=
dy/dα

dy/dβ
< 0,

as desired. �

Now we give the main construction in this section.
We fix a vector v ∈ R2 r {0} and the line Lv = {λv : λ ∈ R}. For every λ ∈ R,

we consider two half-lines, r+λ , r
−
λ ⊂ R2, extending from the point p = λv ∈ Lv with

angles α(λ) and β(λ) respectively. Here α : R → (0, π) is a non-increasing function
and β(λ) is the composition of α(λ) with the function obtained in Lemma 5.5.
Hence β(λ) is a non-decreasing function. The line Lv can be lifted to the horizontal
straight line Rv = Lv × {0} ⊂ H1 passing through the point (0, 0, 0), and the half-
lines r±λ can be lifted to horizontal half-lines R±

λ starting from the point (λv, 0) in
the line Rv.

The surface obtained as the union of the half-lines R+
λ and R−

λ , for λ ∈ R, is
denoted by Σv,α. Since any R±

λ is a graph over r±λ and
⋃

λ∈R(r
+
λ ∪ r−λ ) covers the

xy-plane, we can write the surface Σv,α as the graph of a continuous function uα :
R2 → R. Writing v = eiα0 , the surface Σv,α can be parametrized by Ψ : R2 → R3

as follows

(5.3) Ψ(λ, µ) =

{(
λeiα0 + µei(α0+α(λ)),−µλ sinα(λ)

)
, µ > 0,(

λeiα0 + |µ|ei(α0+β(λ)),−|µ|λ sinβ(λ)
)
, µ 6 0.
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Lv
α

2π − β(α)

Figure 12. The planar configuration to obtain the surface Σv,α.
Here α is a constant function and K is the unit disk D. Such
surfaces were called herringbone surfaces by Young [84] as they
are the union of horizontal rays that branch out of a horizontal
line.

Example 5.6. A special example to be considered is the sub-Riemannian cone
Σα, where α ∈ (0, π). The projection of Σα to the horizontal plane t = 0 is
composed of the line y = 0 and the half-lines starting from points in y = 0 with
angles α and −α. This cone can be parametrized, for s ∈ R, t > 0, by

(u, v) 7→ (u+ v cosα, v sinα,−uv sinα)
when y > 0, and by

(u+ v cosα,−v sinα, uv sinα)
when y 6 0. A straigthforward computation implies that Σα is the t-graph of the
function
(5.4) uα(x, y) = −xy + cotα y|y|.

Observe that

(5.5) lim
α→0

uα(x, y) =


+∞, y > 0,

0, y = 0,

−∞, y < 0,

so that the subgraph of Σα converges pointwise locally when α → 0 to a vertical
half-space.

The following rsult provides some properties of uα when α(λ) is a smooth func-
tion of λ.

Proposition 5.7. Let α ∈ Ck(R), k > 2, be a non-decreasing function. Then
i) uα is a Ck function in R2 \ Lv,

ii) uα is merely C1,1 near Lv when β 6= α+ π.
iii) uα is C∞ in any open set I of values of λ when β = α+ π on I.
iv) Σv,α is K-perimeter-minimizing when β = β(α).
v) The projection of the singular set of Σv,α to the xy-plane is Lv.

Proof. i), ii), iii) and v) are proven in Lemma 3.1 in [73].
We prove iv) by a calibration argument. We shall drop the subscript α to

simplify the notation. Let E be the subgraph of u and F ⊆ H1 such that F = E
outside a Euclidean ball centered at the origin. Let P = {(z, t) : 〈z, v〉 = 0},
P 1 = {(z, t) : 〈z, v〉 > 0} and P 2 = {(z, t) : 〈z, v〉 < 0}. We define two vector fields
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U1, U2 on P 1, P 2 respectively by vertical translations of the vectors π(νE)|P 1 = η+

and π(νE)|P 2 = η−. They are C2 in the interior of the half-spaces and extend
continuously to the boundary plane P . As div(U j)(z,t) coincides with the sub-
Finsler mean curvature of the translation of Σv,α passing through (z, t) as defined
in [72], and these surfaces are foliated by horizontal straight lines in the interior of
the half-spaces, by Theorem 3.14 in [72] we get

divU j = 0 j = 1, 2.

Here divU is the Riemannian divergence of the vector field U . We apply the
divergence theorem (Theorem 2.1 in [73]) to get

0 =

∫
F∩P j∩B

divU j =

∫
F

〈U j , νP j∩B〉|∂(P j ∩B)|+
∫
P j∩B

〈U j , νF 〉|∂F |.

Let C = P ∩ B̄. Then, for every p ∈ C, we have νP 1∩B = J(v) is a normal vector
to the plane P and νP 2∩B = −J(v), U1 = η+ and U2 = η−. Hence, by Lemma 5.5,
we get

〈U1, νP 1∩B〉+ 〈U2, νP 2∩B〉 = 〈η+ − η−, J(v)〉 = 0 p ∈ C.

Adding the above integrals we obtain

(5.6) 0 =
∑
j=1,2

∫
F

〈U j , νB〉d|∂B|+
∫
B∩int(Hj)

〈U j , νF 〉d|∂F |.

From the Cauchy-Schwarz inequality and the fact that |∂F | is a positive mea-
sure, we get that

(5.7)
∑
j=1,2

∫
B∩P j

〈U j , νF 〉d|∂F | 6 PK(F,B).

In particular, if we apply the same reasoning to E, equality holds and

(5.8) 0 =
∑
j=1,2

∫
E

〈U j , νB〉d|∂B|+ PK(E,B).

From (5.6), (5.7), (5.8) and the fact that F = E in the boundary of B, we get
PK(E,B) 6 PK(F,B),

as desired. �

The general properties of Σv,α when α is only continuous are given in the
following result.

Proposition 5.8. Let α : R → R be a continuous and non-decreasing function.
Then

i) uα is locally Lipschitz in Euclidean sense,
ii) Eα is a set of locally finite perimeter in H1, and

iii) Σv,α is K-perimeter-minimizing in H1.

Proof. i) and ii) are proven in [73], Proposition 3.2. Let

αε(x) =

∫
R
α(y)δε(x− y)dy

the usual convolution, where δ is a Dirac function and δε = δ(x/ε)
ε . Then αε is a

C∞ non-decreasing function and αε converges uniformly to α on compact sets of
R. By Lemma 5.5, βε = β(αε) is a C1 non-decreasing function. Since β is C1 with
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respect to α it follows the uniform convergence on compact sets of βε to a function
β̄.

Take F ⊂ H1 so that F = E outside a Euclidean ball centered at the origin.
We follow the arguments of the proof of iv) in Proposition 5.7 and define vector
fields div(U j

ε ) translating vertically π(νEε
), where Eε is the subgraph of Σαε

, to
obtain by the divergence theorem∑

j=1,2

∫
B∩int(P i)

〈U j
ε , νEε〉|∂Eε| =

∑
j=1,2

∫
B∩int(P i)

〈U j
ε , νF 〉|∂F |,

the left hand side is the K-perimeter of Eε, while the right hand side is trivially
bounded by the K-perimeter of F . Therefore

PK(Eε, B) 6 PK(F,B).

Since Eε converges uniformly in compact sets to E, we obtain the result. �

We study now with some detail the case when Σv,α is a C∞ surface.
Corollary 5.9. When α is constant, the surface Σv,α is a K-perimeter-

minimizing cone in H1 of class C1,1. The singular set is a horizontal straight line
and the regular part of Σv,α is a C∞ surface.

The following extends the already known result that in the sub-Riemannian
setting the surfaces Σv,π/2 are C∞.

Lemma 5.10. Let v ∈ R2 r {0} and α ∈ (0, π) be fixed. If K is centrally
symmetric with respect to O = 1

2η
++ 1

2η
− then β(α) = α+π, where η+ = π(J(veiα))

and η− = π(J(veiβ)).
Proof. Let K be centrally symmetric with respect to O. Then η− is the

symmetric point of η+. On the other hand, the convex body K − O is symmet-
ric with respect to the origin. Then the dual norm is even and, in particular,
πK−O(−ν+) = −πK−O(ν

+). Now, since a translation takes symmetric points of
K − O with respect to the origin to symmetric points of K with respect to O, we
get ν− = −ν+. This implies that β(α) = α+ π. �

The existence of a convex body K of class C2
+ such that 0 ∈ int(K) for which

Σv,α is C∞ is studied in Corollary 5.11 and Proposition 5.12.
Corollary 5.11. Let v ∈ R2 r {0} and α ∈ (0, π) be fixed. Then there exists

a convex body K of class C2
+ with 0 ∈ int(K) such that Σv,α is C∞.

Proof. To construct the convex bodyK, fix a point p ∈ {(x, y) : 〈(x, y), veiα〉 >
0} and O ∈ J(L) + p ∩ L, where L is the vector line generated by v. Then any K
of class C2

+ centrally symmetric with respect to O containing the origin such that
p ∈ ∂K and veiα⊥Tp∂K satisfies the hypothesis of Lemma 5.10, where η+ = p and
η− is the symmetric of η+ with respect to O. Thus, by (iii) in Proposition 5.7 we
get that Σv,α is C∞. �

Proposition 5.12. Given a convex body K of class C2
+ with 0 ∈ int(K), there

exists v ∈ R2 such that Σv,π/2 is C∞.
Proof. Let p and q be points in K at maximal distance. Then the lines

through p and q orthogonal to q − p are support lines to K. Taking v = q − p and
setting p = η+ we have q = η−, while the vectors ν+ and ν− are over the line L(v),
that is, Z+ Z− make angles π/2 and 3π/2 with L(v). �
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For fixed v ∈ R2, we define the surface Σ+
v,α as the one composed of all the

horizontal half-lines R+
λ and R−

λ ⊆ R2 extending from the lifting of the point
p = λv ∈ Lv, λ > 0, to H1. The surface Σ+

v,α has a boundary composed of two
horizontal lines and its singular set is the ray L+

v = {λv : λ > 0}. We present some
pictures of such surfaces.

Figure 13. The surface Σ+
π/3,π/6 associated to the norm || · ||D,

where D is the unit disk. The singular set corresponds to the
purple ray of angle eiπ/3.

Figure 14. The surface Σ+
π/3,π/6 associated to the p-norm with

p = 1.5. The left part of the figure coincides with the left part of
Figure 13, while the angle β is bigger. Notice that also the height
has increased.

5.3. Area-Minimizing Cones in H1. We proceed now to construct examples
of K-perimeter minimizing cones in H1 with an arbitrary finite number of horizontal
half-lines meeting at the origin. The building blocks for this construction are liftings
of circular sectors of the cones considered in Corollary 5.9.

We first prove the following result.

Lemma 5.13. Let K be a convex body of class C2
+ such that 0 ∈ int(K). Let

u,w ∈ S1, θ = ∠(u,w) > 0. Then there exists v ∈ S1 such that the vector line
Lv generated by v splits the sector determined by u and w into two sectors of
oriented angles α and β such that α + β = θ. Moreover, the stationary condition
π(J(u))− πK(J(w)) ∈ Lv is satisfied.
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Figure 15. The surface Σ+
π/3,π/6 with β = α+π. There existence

of K is granted by Corollary 5.11.

Proof. Let νu = J(u), νw = J(w) and ηu = π(νu), ηw = π(νw), ηu 6= ηw since
π is a C1 diffeomorphism. Thus there exists a unique line L̃ passing through ηu
and ηw and L = L̃− ηu is a straight line passing though the origin. Notice that L̃
splits ∂K in two connect open components ∂K1 and ∂K2. There exist two points
η1 ∈ ∂K1 and η2 ∈ ∂K2 such that L + η1 (resp. L + η2) is the support line at η1
(resp. η2). Setting v1 = N∂K(η1) and v2 = N∂K(η2) we gain that vi for i = 1, 2
is perpendicular to L. Without loss of generality we set that −J(v1) belongs to
the portion of plane identified by the θ and −J(v2) belongs to the portion of plane
identified by the 2π − θ. Then we set v = −J(v1). Notice that v splits θ in two
angles β = ∠(u, v), α = ∠(v, w) with θ = α+ β and L = Lv. �

Now we proceed with the construction inspired by the sub-Riemannian con-
struction in [49]. For k > 3 consider a fixed angle θ0 and family of positive ori-
ented angles θ1, . . . , θk such that θ1 + · · · + θk = 2π. Consider the planar vectors
u0 = (cos(θ0), sin(θ0)) and

ui = (cos(θ0 + θ1 + · · ·+ θi), sin(θ0 + θ1 + · · ·+ θi)), i = 1, . . . , k.

Observe that uk = u0. For every i ∈ {1, . . . , k} consider the vectors ui−1, ui and
apply Lemma 5.13 to obtain a family of k vectors vi in S1 between ui−1 and ui.
We lift the half-lines Li = {λvi : λ > 0} to horizontal straight lines passing through
(0, 0, 0) ∈ H1, and we also lift the half-lines

λvi + {ρui−1 : ρ > 0}, λvi + {ρui : ρ > 0},
to horizontal straight lines starting from (λvi, 0). This way we obtain a surface

CK(θ0, θ1, . . . , θk)

with the following properties

Theorem 5.14. The surface CK(θ0, θ1, . . . , θk) is K-perimeter-minimizing cone
which is the graph of a C1 function.

Proof. CK(θ0, θ1, . . . , θk) is a cone by construction. It is an entire graph since
it is composed of horizontal lifting of straight half-lines in the xy-plane that covered
the whole plane without intersecting themselves transversally. The K-perimeter-
minimizing property follows in a similar way to from Proposition 2.4 in [49]. That
it is the graph of a C1 function is proven like in Proposition 3.2(4) in [49]. �
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A particular example of area-minimizing cones are those who uses the sub-
Riemannian cones Cα restricted to the circular sector with θ ∈ (−α, α) as as model
piece of the cone. Taking K = D, k > 3, and the angle α = π/k, we define

C(k) = CD

(π
k
,
2π

k
, . . . ,

2π

k

)
.

Let us denote by uk the functions in R2 whose graph is C(k). The behavior when
k tends to infinity of uk in a disk is analyzed in the following result.

Proposition 5.15. The sequence uk converge to 0 uniformly on compact sub-
sets of R2. Moreover, the sub-Riemannian area of uk converges locally to the
sub-Riemannian area of the plane t = 0. Moreover the sub-Riemannian area of uk
converges to the one of the plane t = 0.

Proof. Since uk is obtained by collating some rotated copies of uα, where
α = π/k, we can estimate the height of uk by the height of uα. By (5.4), using
polar coordinates (r, θ), where θ ∈ [−α, α] and r < r0, we get

|uα| 6 2r20| sin(π/k)|
on D(r0) = B(0, r0). The claim follows since limk→∞ sin(π/k) = 0.

The sub-Riemannian area of the graph of uk over D(r0) is given by

AD(uk, r0) =

∫
D(r0)

‖∇uk + (−y, x)‖dxdy.

Since the sub-Riemannian perimeter is rotationally invariant, we can decompose
the above integral as k times the area of the cone Cα in the circular sector with
θ ∈ (−α, α) and r < r0. By (5.4), it is immediate that

‖∇uk(x, y) + (−y, x)‖ = 2|y| sin−1(α).

A direct computation shows that

AD(uk, r0) =
4πr30
3

1− cosπ/k

(π/k) sinπ/k
.

Then AD(uk, r0) tends to 2πr30
3 as k → +∞. �

Figure 16. The cone C(4). The singular set is composed of
the red rays of angle 0, π/2, π, (3π)/2, while the rays of angles
π/4, (3π)/4, (5π)/4), (7π)/4, where two pieces of the construction
meet, are depicted in cyan.
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Figure 17. The cones C(8) and C(16). They are depicted at the
same in this Figure and the previous one. As the number of angles
increases, the cone produces more oscilations of smaller height.
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