Unit 7 | Population Genetics

Population Genetics

Analysis of genetic composition of populations and the evolutionary forces that promote changes; it connects evolutionary processes with concepts of genetic inheritance

Estimation of Frequencies

Allelic frequency: proportion of alleles of a particular locus in a population under study.

Genotypic frequency: proportion of different genotypes for a particular locus in a population under study.

Estimation of Frequencies

Allelic frequencies

MN group phenotypes

- 50 Individuals MM
- 20 Individuals MN
- 30 Individuals NN
- 100 TOTAL

$$
\begin{aligned}
& \operatorname{frec}(M)=\frac{(2 \times 50)+20}{200}=0.6 \\
& \operatorname{frec}(N)=\frac{(2 \times 30)+20}{200}=0.4
\end{aligned}
$$

Genotypic frequencies
$\begin{array}{ll}\operatorname{frec}(M M)=\frac{50}{100}= & \mathbf{0 . 5} \\ \operatorname{frec}(M N)=\frac{20}{100}= & \mathbf{0 . 2} \\ \operatorname{frec}(N N)=\frac{30}{100}= & \mathbf{0 . 3}\end{array}$

Estimation of Frequencies

Problem 1. In a human population of 1200 individuals, analysis for the MN system blood group revealed the existence of 365 M individuals, 556 MN individuals and 279 N individuals. What are the genotypic and allelic frequencies in this population for the MN locus?

$$
\begin{aligned}
& D=\text { Frequency of the } L^{M} L^{M} \text { genotype }=365 / 1200=0.304 \\
& H=\text { Frequency of the } L^{M} L^{N} \text { genotype }=556 / 1200=0.463 \\
& R=\text { Frequency of the } L^{N} L^{\mathrm{N}} \text { genotype }=279 / 1200=0.233
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}=0.304+1 / 2 \quad 0.463=0.5355 \\
& \mathrm{q}=0.233+1 / 20.463=0.4645
\end{aligned}
$$

$$
[\text { Remember that } \mathrm{p}+\mathrm{q}=1 \text {, and that } \mathrm{q}=1-\mathrm{p}] \text {. }
$$

Hardy-Weinberg Equilibrium

Natural Population: group of individuals belonging to the same species that live in the same geographic area and are able to reproduce among them

Panmictic Population: is a theoretical concept of population where the number of individuals is infinite and the mating is random (panmixia/panmixis)

The population is the unit of evolution

ASSLIMPTIONS OF
HARDY-WEINBERG EQLILIBRIUM

2. No Mutation
3. No Migration

Hardy-Weinberg Equilibrium

$$
\begin{gathered}
(p+q)=1 \\
(p+q)^{2}=1 \\
p^{2}+2 p q+q^{2}=1
\end{gathered}
$$

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

Problem 2. In a human population in Hardy-Weinberg equilibrium, the frequency of individuals affected by an autosomal recessive disease is 4 per 10000 individuals. What would be the allelic and the genotypic frequencies in this population?

The frequency of sick people is 4 per 10000 inhabitants. Thus:
$\mathrm{q}^{2}=$ frequency of recessive homozygotes $=4 / 10000=0.0004 ;$
$\mathrm{q}=$ frequency of the allele $\mathrm{a}=0.02(\sqrt{0.0004})$
And, therefore, p (frequency of the A allele) would be: $1-q=1-0.02=0.98$
With these allelic frequencies, the equilibrium genotypic frequencies would be:

$$
\begin{aligned}
& \mathrm{p}^{2}=\text { frequency of } \mathrm{AA}=0.9604 \\
& 2 \mathrm{pq}=\text { frequency of } \mathrm{Aa}=0.0392 \\
& \mathrm{q}^{2}=\text { frequency of } \mathrm{aa}=0.0004
\end{aligned}
$$

Evolutionary Factors

Systematic deviation of $\mathrm{H}-\mathrm{W}$ equilibrium: direction and scale of change are predictable

- Mutation
- Selection (differential reproductive success | fitness)
- Migration

Random deviation of H-W equilibrium: direction of change is not predictable and the change of allelic frequencies is random

- Genetic drift
- Endogamy (consanguinity)

Mutation

- Primary source of variation
- Changes allelic frequencies (some alleles change to different allelic forms)
- Generally, its influence on allelic frequencies is low

Mutation

Mutation

Problema 3. At a certain locus the mutation rate of $\mathrm{A} \rightarrow \mathrm{a}$ is 10^{-6}, the rate of reverse mutation being negligible. What will be the frequency of A after 10, 100 and 100,000 generations of mutation, if we start from an initial frequency of 0.5 ?

$$
\mathrm{p}_{\mathrm{t}}=\mathrm{p}_{0}(1-\mathrm{u})^{\mathrm{t}}
$$

Therefore, in the problem at hand, given that $\mathrm{p}_{0}=0.5$ and $\mathrm{u}=10^{-6}$, after 10 generations, the frequency of A will be:
$\mathrm{p}_{10}=0.5(1-10-6)^{10}=0.499995$
In 100 generations: $\mathrm{p}_{100}=0.5(1-10-6)^{100}=0.4999995$
In 100,000 generations: $p_{100,000}=0.5(1-10-6)^{100,000}=0.4524$

Mutation

$$
\begin{array}{lc}
\begin{array}{l}
\text { A }-\underline{u}->a \\
\text { A <---- a }
\end{array} & \begin{array}{c}
\text { Mutation rates } \\
\text { (direct \& reverse) }
\end{array} \\
& \\
& \mathrm{p}_{\mathrm{e}}=\mathrm{v} /(\mathrm{u}+\mathrm{v}) \\
& \mathrm{q}_{\mathrm{e}}=\mathrm{u} /(u+\mathrm{v})
\end{array}
$$

Selection

- Represents differential reproduction of individuals
- Alleles with differential reproductive success (fitness)
- Relies on each environment
- Can cause drastic changes in allelic frequencies
- Is adaptative, reduces the genetic variability

Selection

After one generation of selection, in a sufficiently large population and with random mating, if we apply the general model of natural selection, expected relative genotypic frequencies will be:
w = fitness

Estimation of reproductive success of a genotype ($\mathrm{w}=1$ for the genotype with higher reproductive success. In proportion for the rest of genotypes)
s=selection coefficient

$$
s=1-w
$$

Frecuency of genotype AA: p^{2} wAA/ W
Frecuency of genotype Aa: 2pqwAa/ W
Frecuency of genotype aa: q^{2} waa/ W
Where W (average fitness of all three genotypes) $=p^{2} w A A+2 p q w A a+q^{2} w a a$

And, therefore,
$p^{\prime}=p^{2} w A A+1 / 22 p q w A a$
$q^{\prime}=q^{2} w a a+1 / 22 p q w A a$

Selection

Problema 4. In a large population of insects with random mating, the progeny produced on average by individuals belonging to each of the three possible genotypic classes for a locus with two alleles (A and a) have been analyzed and the following results have been obtained:

Genotype

AA
 Aa

aa
a) What is the value of fitness in each case?
b) Being the frequency of allele $A(p)$ equal to 0.6 , what will be its frequency in the next generation?

Fitness of AA (wAA): $150 / 150=1$
Fitness of Aa (wAa): $120 / 150=0.8$
Fitness of aa (waa): 75/150 $=0.5$

Average number of descendants

150
120
75
Frequency of genotype AA: $\mathrm{p}^{2} \mathrm{wAA} / \mathrm{w}$
Frequency of the genotype Aa: $2 p q w A a / W$
Frequency of genotype aa: q^{2} waa/ w

w

Where (average biological efficacy of the three genotypes) $=p^{2} w A A+2 p q w A a+q^{2}$ waa $=(0.6)^{2} x(1)+2(0.6) x(0.4) x(0.8)+(0.4)^{2} x(0.5)=0.36+0.384+0.08=0.824$
[Given that $\mathrm{p}=0.6$ and $\mathrm{q}=0.4$]

Thus:

Frequency of genotype AA: $\mathrm{p}^{2} \mathrm{wAA} \neq 0.36 / 0.824=0.437$
Frequency of genotype Aa: 2pqwAa $W=0.384 / 0.824=0.466$
Frequency of genotype aa: q^{2} waa/w $0.08 /=0.824=0.097$
And, therefore,

$$
\begin{aligned}
& \mathrm{p}=0.437+1 / 20.466=0.67 \\
& \mathrm{q}=0.097+1 / 20.466=0.33
\end{aligned}
$$

Migration

$$
p_{1}=\underbrace{(m P)}_{\begin{array}{c}
\text { Original/initial } \\
\text { situation of } \quad 1 \\
\text { Population II } \quad 1-m) p_{0} \\
\text { Poportion from } \\
\text { Population I }
\end{array}}=p_{0}-m\left(p_{0}-P\right)
$$

Migration

Number of generations (t) needed for a particular change in frequencies due to migration:

$$
(1-m)^{t}=\left(p_{t}-P\right) /\left(p_{0}-P\right)
$$

Migration

Problema 5. In a population that maintains its size constant over generations, the frequency of an allele at an autosomal locus at a given time is 0.4 . The rate of migration into that population from a neighboring population where the frequency of that allele is 0.6 is 20%.
a) What will be the frequency of this allele one generation later?
b) And after 5 generations?
c) Will there ever come a time when, under these conditions, the gene frequencies will not change?
a) $p_{1}=p_{0}-m\left(p_{0}-P\right)=0,4-0,2(0,4-0,6)=0,44$
b) $(1-m)^{t}=\left(p_{t}-P\right) /\left(p_{0}-P\right) \rightarrow(1-0,2)^{5}=\left(p_{5}-0,6\right) /(0,4-0,6) \rightarrow p_{5}=0,534$
c) Yes, when allelic frequencies of both populations are equal and reach 0.6 (allelic frequency of donor population). There is still gene flow but without modification of frequency.

Genetic Drift

- It is the result of a random "sampling".
- Allelic frequencies change randomly and the genetic composition of the new population can significantly change.
- Loss of variability.

5 rabbits reproduce

2 rabbits reproduce

Genetic Drift

- The effect is more drastic when the number of "sampled" individuals is low.

Originating population

Endogamy

- The cross between related individuals (endogamy) causes consanguinity
- Increases homozygosity and reduces genetic variability
- Reduces the adaptativity of individuals

Genealogía de la casa de los Habsburgo en España

Other H-W equilibrium deviations

Sex-linked genes: allelic frequencies are different in each sex. So it is the inheritance.

Equilibrium genotypic frequencies

- Homogametic sex (XX|ZZ) coincident with those of autosomal genes, since an allele of each parental is inherited.
- Heterogametic sex (XY|ZW) coincident with p and q values, since there is only a single copy of this allele (corresponding to a single X|W chromosome).

Sex determination XY

Frequency of males with dominant phenotype (hemizygous for dominant allele): p Frequency of males with recessive phenotype (hemizygous for recessive allele): q
Frequency of females with dominant phenotype: p^{2}
Frequency of heterozygous females: 2pq
Frequency of females with recessive phenotype: q^{2}

Progress of allelic frequencies
 for a sex-linked gene

From a population of 100% normal men and 100% daltonic women, calculate the frequency of the allele responsable for daltonism after 6 generations.

Generation	XY	$\mathrm{X}^{d} \mathrm{X}^{d}$
G0	$\mathrm{qx}(0)=0.00$	$\mathrm{qxx}(0)=1.00$
G1	$\mathrm{qx}(1)=1.00$	$\mathrm{qxx}(1)=0.50$
G2	$\mathrm{qx}(2)=0.50$	$\mathrm{qxx}(2)=0.75$
G3	$\mathrm{qx}(3)=0.75$	$\mathrm{qxx}(3)=0.63$
G4	$\mathrm{qx}(4)=0.63$	$\mathrm{qxx}(4)=0.69$
G5	$\mathrm{qx}(5)=0.69$	$\mathrm{qxx}(5)=0.66$
G6	$\mathrm{qx}(6)=0.66$	$\mathrm{qxx}(6)=0.60$

Frequency q

Equilibrium is reached after several generations

Other H-W equilibrium deviations

Linked genes: equilibrium may not be reached (linkage desequilibrium)

Alleles do not segregate independently (inherited together more often than expected)

Other H-W equilibrium deviations

Linkage

Other H-W equilibrium deviations

A beneficial mutation (X) occurs on chromosome 4:

Genetic
 Hitchhiking

Natural selection increases the frequency of the mutation X as well as the linked gene versions P, Q, and R :

REPRODUCTION with RECOMBINATION

Over time, recombination reduces the association between X and P, Q, and R :

