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Abstract

Stimulus artifact is one of the main limitations when considering electrically-evoked

compound action potential for clinical applications. Alternating stimulation (aver-

age of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stim-

ulation pulses) is an effective method to reduce stimulus artifact when evoked po-

tentials are recorded. In this paper we extend the concept of alternating stimulation

by combining anodic-cathodic and cathodic-anodic recordings with a weight in gen-

eral different to 0.5. We also provide an automatic method to obtain an estimation

of the optimal weights. Comparison with conventional alternating, triphasic stimu-
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lation and masker-probe paradigm shows that the generalized alternating method

improves the quality of electrically evoked compound action potential responses.

Key words: Electrically Evoked Compound Action Potential, stimulus artifact

reduction, quality assessment, Gaussian Mixture Model, alternating stimulation,

triphasic stimulation, masker-probe paradigm.

1 Introduction

Most modern cochlear implant systems include a sub-system for recording elec-

trically evoked compound action potentials (ECAPs). This subsystem provides

a stimulation pattern at certain electrodes and records the electrical activity

at some other electrode. The recording system integrated into the implantable

device includes the amplification of the input signal, analog-to-digital conver-

sion, encoding, storage and data transfer to an external system, where recorded

data can be processed (Brown, 1998; Dillier, 2002; Frijns, 2002).

The recording system is intended to measure the compound action potential

associated with the synchronous firing of the neurons in the spiral ganglion

evoked by the electrical stimulation. However, in addition to the compound

action potential, recordings also contain artifact coming from different sources.

Two different kinds of artifact can be considered: random artifact and syn-

chronized artifact. The random artifact has various possible origins, such as

neural or muscular activity of the subject, external electrical interference or

internal noise in the acquisition sub-system. The random artifact can be effec-

tively reduced with the well-known ensemble averaging method, by averaging

a number of responses (Regan, 1989). The synchronized artifact is mainly due

to the stimulus applied to evoke the response. Typically, the stimulus artifact
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is a peak followed by a decay response whose amplitude and time constant

depend on the type of stimulation pulses, electrical properties of the tissues,

electrode design and the filtering characteristics of the preamplifier stage of

the recording system.

Stimulus artifact is an important source of distortion in ECAP recordings since

the stimulation pulses require voltages typically in the range of 1-5 V and the

smallest ECAP value that can reliably be measured has an amplitude of about

100 µV (Eisen, 2004). Stimulus artifact is synchronous or coherent with the

stimulation pulses and cannot be removed by ensemble averaging. In addition,

stimulus artifact overlaps the evoked response in both the time and frequency

domains, such that conventional time windowing and frequency filtering are

incapable of removing stimulus artifact without distorting the evoked response.

The most commonly used methods to reduce stimulus artifact in ECAP record-

ing are based on different types of stimulation pulses. Of these approaches,

three techniques are particularly worthy of mention:

• The masker probe paradigm (Brown, 1990; Miller, 2000) takes advantage

of the refractory properties of the cochlear nerve. The response is obtained

by combining three different stimulus pulses: the masker pulse (presented

at the start of the measurements), the probe pulse (presented after a short

delay) and the masker-probe pulse (consisting in both pulses). With the

nerve in a refractory state due to the masker, the recording corresponding

to the masker-probe pulse consists of the stimulus artifact and a portion of

response to the masker stimulus. This template is subtracted from the orig-

inal response to the probe pulse. The recorded response to the masker alone

is added to the previous subtraction to cancel the response to the masker in
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the masker-probe pulse. This method therefore relies on the linearity of the

system to obtain the biological response to the probe pulse. One of the main

disadvantages of this method is that more measurements are necessary for

each result. Additionally, the condition for the success of the method, that

all nerves must be in a refractory state, is hardly ever met.

• Various authors have shown that the residual charge can be reduced by

introducing a third phase to the stimulus (Schoesser, 2001; Frohne, 2005;

Sainz, 2005). The effectiveness of this technique, based on stimulation with

triphasic pulses, relies on the choice of the amplitude of the first phase rela-

tive to the second one. The amplitude of the third phase is automatically set

in order to make the total charge introduced into the cochlea equal to zero

and minimize stimulus artifact. Setting up the optimal percentage between

the first and second phases is a difficult task that depends on several fac-

tors (including stimulation level, stimulated and measured electrode, etc.).

Thus, setting up the optimal percentage requires expert supervision. One

additional disadvantage of this method is that because of the third phase

the first minimum (wave N1) of the ECAP signal may not register.

• Alternating stimulation (Eisen, 2004) provides a response that is obtained

as the average of recordings using anodic-cathodic (ak) and cathodic-anodic

(ka) biphasic pulses as stimulation. Under this approach, the biological re-

sponse is assumed to be independent of the polarity of the first phase of

the stimulation pulse (i.e. similar for ak and ka stimuli), even though neural

responses to each stimulus polarity are not necessarily equal in amplitude

or latency (Miller, 2000) and it has been shown that the auditory nerve

has polarity-dependent sensitivity and responds with polarity-dependent

latency in cats and guinea pigs (Miller, 1998). On the other hand, the stim-

ulation artifact is assumed to change its polarity when ak or ka pulses are
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used. This method therefore relies on the linearity of the system to reduce

stimulus artifact and preserve the biological response.

In this paper we extend the concept of alternating stimulation. Instead of

using similar weights, 0.5 for ak and 0.5 for ka registers, they are combined

using different weights: α and (1−α) for the ak and ka registers, respectively.

Non linearities due to the electrode-tissue interface, the recording system, etc.

(Geddes, 1997; Ragheb, 1990) make 0.5 sub-optimal for artifact reduction.

Thus, the α weight can be selected in order to minimize stimulus artifact, and

this generalized alternating method can provide better artifact reduction than

the conventional alternating method. Note that ak, ka and conventional al-

ternating responses are particular cases of the generalized alternating method

for α = 1, α = 0 and α = 0.5, respectively.

For the selection of the optimal value of α, an automatic method is desirable,

in order to avoid supervised processing of the ECAP responses and to provide

a systematic procedure when the ECAP responses are used for research and

clinical applications. In this paper we propose an automatic method for the

estimation of α. Estimating α relies on an automatic assessment of the quality

of the ECAP responses. The automatic assessment of the quality is based on a

Gaussian Mixture Model, generated from a set of supervised ECAP responses

(Botros, 2006). This method provides an automatic assessment of the quality

for a new input response. Finally, the optimal value of α is selected as the one

providing the highest quality.

The rest of the paper is organized as follows. Section 2 describes data acquisi-

tion procedure for ECAP recording. Section 3 describes the conventional and

generalized alternating methods, and analyzes the potential improvement that
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can be achieved by the generalized alternating method over a set of ECAP

responses supervised by an expert. Section 4 presents the procedure for the

automatic assessment of quality and some validation experiments. In section 5

we present validation experiments for the proposed method to automatically

calculate the optimal value of α. In section 6 we analyze the improvement pro-

vided by the generalized alternating method over a set of unsupervised ECAP

responses, including comparisons with conventional alternating stimulation,

masker-probe paradigm and triphasic methods. Finally, main contributions

and conclusions are summarized in section 7.

2 Data acquisition and data reduction

In this section we describe the hardware used for recording the ECAP re-

sponses and its configuration. We also describe the data reduction process

applied to represent each register.

2.1 Data acquisition

ECAP responses have been recorded from cochlear implant users wearing the

MedEl PULSARCI100 device (Schoesser, 2005). This cochlear implant system

includes an ECAP Recording System which allows different types of stimuli

to be presented at some electrodes and allows the evoked response (recorded

at some other electrode) to be stored in an internal memory. By means of a

telemetry system the collected data are transferred to an external system for

subsequent processing. The ECAP registers used in this study were recorded

from 59 patients, with a wide age range (from 6 months to 74 years). The

6
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ECAP Recording System allows different configurations to be used for stimu-

lation and recording. The stimulation pattern used in this work has been set

up in alternating mode, using ak and ka biphasic pulses, with durations of

each phase of between 30 and 45 µs, and amplitudes under 1200 µA.

2.2 Data reduction

ECAP recordings are achieved with a blanking amplifier (input of the amplifier

is in short-circuit for 125 µs after the beginning of the stimulation pulse). An

adaptive Σ∆ modulator, at fs=1.2MHz, converts the signal from analog to

digital (Zierhofer, 2000; Gray, 1987). Each recording is a sequence of 2048

bits (representing a register of approximately 1.7 ms). The demodulation of

the signal generates a prediction signal to obtain a multilevel recovered signal.

Since the signal is over-sampled by a factor of R, a low pass filter with cut-off

frequency of (1/R)·fs can be applied to average the last R samples in order to

recover the signal. The recovered signal can then be under-sampled by taking

one of each R/2 samples. Thus, each response can be efficiently represented

with 102 samples at a sampling frequency of 60 kHz (R=40). Considering only

the time interval where the evoked response is present (approximately 70-980

µs), each evoked response is a vector of only 57 samples.

In the data acquisition performed in this study, for each recording we recorded

50 responses for each, ak and ka, bipolar stimulation modes. After representing

each response as a 57 components vector, the ak and ka vectors were averaged.

Thus, for each recording (initially represented as 50 ak and 50 ka sequences

of 2048 bits) we obtain two 57-component vectors, one to represent the ak

response and the other for the ka response.
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3 Conventional and generalized alternating stimulation

In order to study the potential benefit of the generalized alternating method,

we analyzed the effect of using a value of α other than 0.5 on a database

containing 102 ECAP recordings. The optimal value of α was assigned to each

recording by a researcher experienced in ECAP measurements obtained with

different cochlear implant systems and also in other electrically evoked objec-

tive responses. We use αE to represent the value assigned by the expert. Figure

1 shows the distribution of αE for this supervised database. The distribution

of αE presents a mean value and standard deviation of 0.42 and 0.22, respec-

tively. Even though α=0.5 (conventional alternating) is a reasonable value for

most recordings (better than α=0 or α=1), the best option would be a specific

adaptation of α to each ECAP recording.

Figure 2 represents four instances of ECAP registers (in these plots the am-

plitude has been normalized in order to allow comparisons). In each plot, the

responses are represented for different values of α (α=0 or ak stimulation; α=1

or ka stimulation; α=0.5 or conventional alternating stimulation; and α=αE

or generalized alternating method). When comparing the plots, we find that

some recordings are greatly affected by the value of α, while others are only

slightly affected. We also observe how the artifact distorts the amplitude of

the evoked response: sometimes the artifact reduces the amplitude (see reg-

ister with α=0 in the bottom-left panel) and sometimes it increases it (see

register with α=0 in the bottom-right panel). Additionally, the artifact reduc-

tion achieved with the α proposed by the expert is better than that for the

conventional alternating method.
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We propose obtaining the optimal value of the α weight as the one that pro-

vides the best artifact reduction and therefore the one that maximizes quality.

The assignment of α in the supervised database was performed by optimizing

quality according to an expert criterion. In the next section we propose a novel

method to obtain a measure of the quality (QA) automatically. This method

will be used later for the automatic calculation of the optimal α value.

4 Automatic assessment of the quality in ECAP responses

4.1 Method description

Assessment of the quality of ECAP responses is based on a Gaussian Mixture

Model or GMM (Zhuang, 1996; Hedelin, 2000; Falk, 2004; Dharanipragada,

2006). The GMM developed in this work is obtained from a set of K supervised

registers {
xk} (k = 1, 2, ..., K) each with a quality Qk assigned by an expert.

A Gaussian probability density function p(
x|k) is assigned to each supervised

register. This way, the expected value of the quality Q for a new input register


x is obtained from this GMM as:

QA(
x) = E[Q(
x)] =
K∑

k=1

QkP (k|
x) (1)

where P (k|
x) is the probability of each Gaussian k given the input vector 
x,

given by the Bayes rule:

P (k|
x) =
p(
x|k)P (k)

p(
x)
(2)

9
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where p(
x|k) is the probability density function of the Gaussian k evaluated

at the input vector 
x; P (k) is the a-priori probability of the Gaussian k; and

p(
x) is the a-priori probability density of the input vector 
x, which can be

estimated in the GMM as:

p(
x) =
K∑

k=1

p(
x|k)P (k) (3)

The probability P (k) can be considered equal for all the Gaussians (since

each Gaussian comes from one supervised register). We may therefore consider

P (k) = 1/K.

The general expression of the probability density function of the Gaussian

p(
x|k) is:

p(
x|k) =
1

(2π)N/2(|Σk|)1/2
exp

(
−(
x − 
µk)

t(Σ−1
k )(
x − 
µk)

2

)
(4)

where 
µk is the mean of the Gaussian k (
µk = 
xk); Σk is the covariance matrix

of the Gaussian k; the argument of the exponential is a matrix product; (
x)t

represents the transposed of 
x; Σ−1
k is the inverse of the matrix Σk; and |Σk|

is the determinant of Σk. Since all the Gaussians have been generated from

a set of supervised vectors (
x1, 
x2, . . . , 
xK), the probability density functions

can be simplified by considering spherical covariance matrices common to all

the Gaussians. In this case, equation (4) can be expressed as:

p(
x|k) =
1

(2πσ2)N/2
exp

(
−||
x − 
xk||2

2σ2

)
(5)
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Page 10 of 29 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

where σ2 is the variance assigned to all the components of all the Gaussians.

With these considerations, QA(
x) can be estimated as:

QA(
x) =

∑K
k=1 Qk exp

(
− ||	x−	xk||2

2σ2

)
∑K

k=1 exp
(
− ||	x−	xk||2

2σ2

) (6)

The value of σ2 must be large enough to allow the set of supervised vectors

(
x1, 
x2, . . . , 
xK) to generalize quality estimate for a new input vector. On the

other hand, it must be small enough not to smooth the quality estimate ex-

cessively. There is a trade-off between the generalization capability and the

smoothing of the probabilities. In the limit when σ2 → 0, the quality assigned

to the input vector is that of the nearest Gaussian:

lim
σ2→0

QA(
x) = Qkn with kn = min
k=1..K

−1(||
x − 
xk||2) (7)

and in the limit when σ2 → ∞, all the input vectors are assigned with the

average quality:

lim
σ2→∞

QA(
x) =
K∑

k=1

Qk (8)

The optimal value of σ2 is the lowest value that remains generalization-capable

and it depends on the dimensionality of the representation space (N) and on

the number of supervised vectors (K) included in the definition of the qual-

ity. When N decreases, the distances ||
x− 
µk||2 are smaller, and a smaller σ2

value can be used without losing generalization capability. When K increases,

a smaller value of σ2 can be also used without losing generalization. Obviously,

as the number of supervised vectors increases the automatic quality estimate

becomes more consistent. However, the difficulties involved in supervising a

large number of registers must also be taken into account. It is therefore rec-
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ommendable to reduce the number of dimensions N in the representation

space.

Through Principal Components Analysis or PCA (Jackson, 1991) the dimen-

sionality of the representation space can be reduced, keeping the best com-

promise between the number of components and the mean square error. The

registers are approximated as:


x ≈
NB∑
n=1

bn
en where bn =< 
x,
en > (9)

where <, > denotes the inner product and 
en (n = 1, ..., NB) are the NB first

eigenvectors from the Principal Component Analysis. Thus, each register 
x is

represented by a set of NB parameters 
b = {b1, ...bNB
}, i.e. by a vector of NB

components. Finally, since the quality of a register is assessed according to the

shape of the wave (rather than the amplitude), it is necessary to normalize

the vectors:


B =

b

||
b|| =

b√

<
b,
b >
(10)

In summary, the quality assigned to a new register 
x, represented as a nor-

malized vector 
B with NB coefficients, is based on a model of K Gaussians

obtained from K supervised registers {
xk} (k = 1, 2, ..., K) represented as K

normalized vectors ( 
B1, 
B2,..., 
BK), each with a quality assigned by an expert

(Q1, Q2,...,QK). This quality is obtained as:

QA(
x) =

∑K
k=1 Qk exp (− || 	B− 	Bk||2

2σ2 )∑K
k=1 exp (− || 	B− 	Bk||2

2σ2 )
(11)
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4.2 Data description

In order to establish the set of Gaussians in the GMM, we used 102 recordings

from 34 subjects (3 from each subject), acquired in alternating mode. For

each recording, we have obtained 9 registers using α = 1
8
· i (i = 0, 1, ..., 8),

with a total of 918 registers. After the data reduction described in section 2,

registers 
x are represented by a vector of 57 components, each corresponding

to a sample, with a sample period of 16.67µs. Through a reduction in the

representation space, each vector is represented as a vector of 7 components

(NB=7), 
Bk. This process includes PCA (with a mean square error under

0.5%) and normalization of the vectors in the reduced representation space.

The eigenvalues of the PCA performed over these 918 registers allow random

vectors to be generated. Consequently, we extended the training database to

3000 vectors (K=3000). Each vector has been assessed by the expert, assigning

a quality in the range of 0-10. The assessment was performed by a single

expert in order to obtain a consistent quality assignment. Additionally, the

assessment criterion and the assignment of quality were supervised by several

experts. The random extension of the training database aims to keep the

number of registers uniform for each assigned quality.

The variance associated with the Gaussians for obtaining the quality auto-

matically was set up with a value of σ2 = 0.001, considering the value of the

mean square distance between each vector and its nearest neighbor for the set

( 
B1,... 
BK):

E[|| 
Bk − 
Bn(k)||2] = 0.00086

where n(k) = min
k′ �=k

−1(|| 
Bk − 
Bk′||2) (12)

13
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Figure 3 shows instances of registers with different quality values assigned by

the expert. An ECAP register is considered to be ideal if:

• It presents flat behavior after the evoked potential.

• The waves N1 and P2 can easily be identified.

• The amplitude can reliably be measured.

4.3 Validation of the quality estimated automatically

In order to validate the proposed method for calculating the quality of an

ECAP register automatically, we performed a linear regression analysis be-

tween the quality provided by the automatic method (QA) and the quality

assigned by the expert (QE). Figure 4 represents QA versus QE for the 3000

ECAP vectors considered in the estimation of QA (training set). The qualities

QA and QE are slightly different, due to the effect of smoothing associated

with the use of a non-null variance (various ECAP training vectors contribute

to the assigned value QA). The linear regression analysis shows an evident

statistical dependence (p <1e-16), and a high correlation coefficient (r=0.996)

between the expert and automatic quality estimates.

With a view to validating the proposed method, QA and QE were compared

for a set of 75 new ECAP recordings. These recordings were obtained from

25 new subjects (different from those considered when generating the training

database). Each recording was used to generate 9 ECAP registers, using α =

1
8
· i (i = 0, 1, ..., 8). The expert assigned a quality QE to each of these 675

registers. Figure 5 shows the linear regression analysis performed between the

automatic quality, QA, and the quality assigned by the expert, QE , for these

14
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675 registers.

The regression analysis indicates a clear statistical dependence between both

quality estimates (p <1e-16). The correlation coefficient is also high (r=0.992),

although it is slightly lower than that for the training set. This high correla-

tion between QA and QE over the validation set indicates that the automatic

method proposed provides a consistent estimate of the quality of the registers.

5 Automatic optimization of α

The quality estimate QA allows the optimal α value to be calculated auto-

matically. The optimal α value is the one that maximizes the quality of the

register 
xα = (α
xak + (1 − α)
xka):

αA = max
α

−1[QA(α
xak + (1 − α)
xka)] (13)

and it can be estimated by calculating the quality QA(
xα) for a set of values

of α dense enough in the interval [0,1].

In order to analyze the consistency of the proposed automatic procedure of op-

timization of α, the values of αA and αE (provided by the automatic procedure

and the expert, respectively) were compared. Figure 6 represents αA versus

αE for the 102 ECAP recordings included in the training set (up) and for the

75 recordings included in the validation set (down). The regression analysis

shows a significant statistical dependence for both estimates of α (p <1e-16 in

both cases) and high correlation coefficients (r=0.975 for the training set and

r=0.973 for the validation set). In addition, the regression line (y = ax + b) is

near to the identity in both cases (a=0.97 and b = 0.009 for the training set

15
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and a=0.94 and b = 0.029 for the validation set).

These results show that the automatic estimate of the weight αA, is consistent

with the expert-based estimate. The automatic proposed method therefore

provides a good estimate of the optimal α value in the generalized alternating

stimulation method.

6 Comparison of generalized alternating stimulation with other

methods

The proposed generalized alternating method has been compared with conven-

tional alternating, masker-probe paradigm and triphasic stimulation. Because

of the time required to acquire masker-probe and triphasic pulses, more data

is available for conventional alternating stimulation than for the other arti-

fact reduction methods. For this reason, three different sets of recordings were

defined for the comparisons: set A (including 2296 recordings in conventional

alternating stimulation), set B (including 158 recordings obtained with the

masker-probe paradigm) and set C (including 34 recordings with triphasic

stimulation). Set A includes registers acquired in amplitude growth mode,

with a stimulation level from 0µA to a level close to the highest level com-

fortably tolerated by the patient. In sets B and C, the registers were acquired

with a high stimulation level close to the highest level comfortably tolerated

by the patient. Table 1 compares the quality provided by the different artifact

reduction methods for these three sets, including average automatic quality

and standard deviation. The proposed method is found to provide the high-

est average quality for the three sets of recordings. The quality improvement

with respect to conventional alternating is assured by the method, as the op-
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timal value of αA is selected with a quality criterion. However, improvement

is also achieved with respect to masker-probe and triphasic pulse methods. It

should also be noted that the quality improvement with generalized alternat-

ing compared with conventional alternating, masker-probe or triphasic pulses

is similar to the improvement provided by these methods with respect to ak

or ka stimulation.

In order to analyze the statistical significance of the improvement achieved

by the proposed generalized alternating method with respect to the others,

matched pair Student t-test was applied. The p-values (probability of the null

hypothesis that the proposed and the reference method provide the same qual-

ity) are smaller than 8e-14 in both, set A and set B. The p-values in set C are

higher because fewer registers were involved (p <3e-4). The quality improve-

ment achieved with the proposed method is therefore statistically significant

in the three sets of ECAP recordings (p <0.05).

Regarding the time increment associated with the proposed generalized stim-

ulation method, it should be noted that the acquisition time is exactly the

same as in the case of conventional alternating stimulation, since ak and ka

recordings are necessary in both cases. In order to apply generalized alternat-

ing stimulation, the quality of the registers must be automatically assessed for

different α values. In the experiments performed in this study, we considered

241 values of α in the interval [0 1]. The computation of the quality for these

241 registers (in order to obtain the optimal α for 1 recording) takes 675ms

with a MATLAB implementation running on a laptop computer with a Pen-

tium 4 CPU at 2.80GHz, which is a reasonable processing time (smaller than

the acquisition time).
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7 Conclusions

This work proposes a generalization of the alternating stimulation method in

order to reduce stimulation artifact of Evoked Compound Action Potentials

recorded in cochlear implant users. With the aim of minimizing the stimulus

artifact, the recordings acquired with bipolar stimulation (anodic/cathodic

and cathodic/anodic) are combined according to a weight α. We also verified

that, although the conventional method (α=0.5) of alternating stimulation

provides an acceptable artifact reduction, the optimal α value is not necessarily

equal to 0.5 and for some recordings it can be very different.

An expert-based automatic method is also proposed in order to assess the

quality of the ECAP responses. This method can be used to automatically

obtain the optimal value of α. The method was developed using 102 recordings

supervised by an expert and validated with a set of 75 supervised recordings

corresponding to different patients, with the proposed method being found to

provide consistent results in both quality assessment and the estimation of α.

The automatic generalized alternating stimulation method has been compared

with conventional alternating stimulation (over 2296 registers), masker-probe

paradigm (over 158 registers) and triphasic stimulation (over 34 registers).

The results show that the proposed generalized alternating stimulation method

provides better quality registers than ak, ka, masker-probe paradigm, triphasic

or conventional alternating stimulation.

This paper presents an automatic method for applying the proposed gener-

alized alternating method in order to improve the quality of the compound

action potentials. Since the automatic quality assessment method is based on
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a training set of registers supervised by an expert, its effectiveness relies on

expert supervision. However, when the training set is ready, an automatic

portable method is available. In addition, the procedure for automatic qual-

ity assessment is a useful tool for the development of new methods to reduce

stimulus artifact. The use of a criterion based on maximum quality enables

the limitations associated with other criteria to be avoided.
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set A set B set C

(N=2296) (N=158) (N=34)

Method µQA
σQA

µQA
σQA

µQA
σQA

ak stim. 1.26 1.93 1.51 2.21 2.77 2.76

ka stim. 1.12 1.93 1.49 2.29 2.42 2.85

conv. alt. 2.63 2.80 3.09 3.04 5.28 3.05

mask. probe - - 3.69 3.29 - -

triphasic - - - - 5.83 3.13

gen. alt. 5.75 2.91 5.87 3.24 7.43 2.26
Table 1

Comparison of different methods of artifact reduction for different sets of registers.

Mean and standard deviation of QA (µQA
and σQA

, respectively) are shown.
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Fig. 1. Distribution of the optimal weight αE (proposed by an expert) for the 102

recordings of the supervised database.
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Fig. 2. Four ECAP registers from the supervised database applying the weights

α = 0 (ka), α = 1 (ak), α = 0.5 (conventional alternating) and α = αE (generalized

alternating).
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Fig. 3. Instances of ECAP registers (normalized amplitude versus time in µs) with

different quality units assigned by the expert, in the range 0-10.
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Fig. 4. Linear regression analysis (y = ax + b) between the automatic quality (QA)

and the expert quality (QE) for the 3000 ECAP vectors considered in the estimation

of QA. The values of p (probability associated with the null hypothesis of statistical

independence), r (correlation coefficient), a and b (slope and y-intercept of the

regression line, respectively) are indicated.
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Fig. 5. Linear regression analysis (y = ax + b) between the automatic quality (QA)

and expert quality (QE) for the 675 ECAP vectors considered in the validation

set. The values of p (probability associated with the null hypothesis of statistical

independence), r (correlation coefficient), a and b (slope and y-intercept of the

regression line, respectively) are indicated.
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Fig. 6. Linear regression analysis (y = ax + b) between the automatic α (αA) and

the estimated α (αE) for the 102 ECAP recordings included in the training set (up)

and for the 75 ECAP recordings included in the validation set (down). The values

of p (probability associated with the null hypothesis of statistical independence),

r (correlation coefficient), a and b (slope and y-intercept of the regression line,

respectively) are indicated.
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