wo 20207198787 A1 |0 00000 Y000 OO0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
08 October 2020 (08.10.2020)

(10) International Publication Number

WO 2020/198787 Al

WIPO I PCT

(51) International Patent Classification:
A61B 5/0484 (2006.01)

(21) International Application Number:
PCT/AU2020/050311

(22) International Filing Date:
30 March 2020 (30.03.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

2019901078 29 March 2019 (29.03.2019) AU

(71) Applicants: AUSTRALIAN HEARING SERVICES
[AU/AU]J; Level 5, 15 University Avenue, Macquarie Uni-
versity, New South Wales 2109 (AU). UNIVERSITY OF
GRANADA [ES/ES]; University of Granada, Technology
Transfer Office, Gran Via de Colon 48, 3rd Floor, ES-18071
Granada (ES).

(72) Inventors: SEGURA LUNA, Jose Carlos; c/o Univer-
sity of Granada, Technology Transfer Office Gran Via
de Colon 48, 3rd Floor, ES-18071 Granada (ES). DE
LA TORRE VEGA, Angel; c/o University of Grana-
da, Technology Transfer Office Gran Via de Colon 48,
3rd Floor, ES-18071 Granada (ES). VALDERRAMA
VALENZUELA, Joaquin Tomas, c/o Australian Hearing
Services, Level 5, 16 University Avenue, Macquarie Uni-
versity, New South Wales 2109 (AU).

Agent: FAL PATENTS PTY LTD; Level 14 / 114
William Street, Melbourne, Victoria 3000 (AU).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(54) Title: METHOD FOR FLEXIBLE DECONVOLUTION OF AUDITORY EVOKED POTENTIALS

FIGURE 2

5.0+

201
1.0
054

0.2
0.1
0.21

Amplitude (pV)

0.51
1.0
201

vy

Vertex

positive i

50 L] ] T L]

10 20 50 10

20

50 100 200 500 1000

Latency (ms)

(57) Abstract: The invention generally relates to a method and system of estimating the transient auditory evoked potential ('AEP')
responses of a subject, the method comprising: generating a digital auditory stimulus signal consisting of at least one auditory stimulus
type, presenting the at least one auditory stimulus type to a subject via a transducer; recording an electroencephalogram signal ('EEG')
including the neural response of the subject to the at least one auditory stimulus type; synchronizing the digital auditory stimulus
signal with the recorded EEG; and deconvolving the overlapping AEP responses of the subject from the EEG by applying an iterative
randomized stimulation and averaging ('IRSA") technique, wherein the step of applying an IRSA technique is performed with matrix

operations in the representation spaces of the AEP and the EEG.
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METHOD FOR FLEXIBLE DECONVOLUTION OF AUDITORY EVOKED POTENTIALS
FIELD

[0001] The present invention is generally directed to a system and method for flexible

deconvolution of auditory evoked potentials.
BACKGROUND OF THE INVENTION

[0002] Auditory evoked potentials (AEPs) are a set of low-amplitude voltage waves that
represent the synchronous activity of neurons in different stages of the auditory pathway in
response to a sound stimulus. The recording of AEPs has at least two important applications.
Firstly, evaluation of the morphology of these waves allows investigation of the neural
structures that encode and process the sounds we perceive, which in turn helps our
understanding of the working of the auditory system. Secondly, AEPs are widely used in the
clinic as a physiological measure of the state of an auditory system, which in turn allows
evaluation of subjects that cannot provide a reliable behavioural response to a sound stimulus,

like newborns or adults with dementia.

[0003] Figure 1 shows three different transient AEPs: [left] auditory brainstem responses
(ABR); [centre] middle latency responses (MLR); and [right] cortical auditory evoked potentials
(CAEP). The main components of the ABRs are waves |, lll and V, representing neural activity
from the cochlea, brainstem and midbrain, respectively. The MLR components originate from
the thalamus, the medial geniculate body and primary auditory cortex. In CAEPs, the P-N;-

P2 complex is elicited in the primary and secondary auditory cortex.

[0004] The recording process of AEPs consists of placing surface electrodes on different
positions on the head of a subject and presenting a large number of repetitions of a specific
auditory stimulus to the subject, typically using insert earphones. The signal recorded at the
electrodes is known as electroencephalogram (EEG), and includes the neural response to the
stimulus (the signal of interest) and noise artefacts of different nature (electrophysiological,
electromagnetic, electronic, myogenic, etc.). Since the signal-to-noise ratio (SNR) of the signal
of interest in the raw EEG is very low (usually around -20 or -30 dB), it is a common practice
to (1) filter the EEG within the frequency range in which the AEPs are present (ABRs: [100-
3000] Hz; MLRs: [10-300] Hz; CAEPs: [1-30] Hz), and (2) average the segments of the EEG

that contain the signal of interest to increase the SNR of the response.

[0005] The conventional method of stimulation consists of delivering the auditory stimuli
periodically, i.e. with a fixed inter-stimulus interval (ISI). The conventional stimulation method

has the important limitation that the ISI must be greater than the duration of the AEP to avoid
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contamination of the recording by adjacent responses; otherwise it would not be possible to
recover the overlapping AEP. Taking into account that the typical duration of ABR, MLR and
CAEP signals is around 10 ms, 100 ms, and 400 ms respectively (see Figure 1); ABRs, MLRs
and CAEPs cannot be recorded with the conventional method at rates higher than 100 Hz, 10

Hz, and 2.5 Hz, respectively.

[0006] However, the recording of these AEPs at faster rates (when the evoked responses are
overlapping) presents several advantages. First, the possibility of obtaining transient AEPs
without limiting to a minimum ISI provides a large degree of flexibility when designing research
audiology experiments. Second, the recording of AEPs at high stimulus rates allows evaluation
of the auditory system under a stressed condition (also known as “neural adaptation”), which
can provide useful clinical information (e.g. subjects with autism spectrum disorders tend to
manifest a deficit in neural adaptation). Further, recording transient AEPs in conditions in
which the neural responses are overlapping is critical to understand and measure the neural

response of the auditory system to more ecologically valid stimuli, like real running speech.

[0007] The mathematical process that disentangles overlapping responses is known as
deconvolution. One characteristic of deconvolution algorithms is that the I1SI must not be fixed,
rather it must present a certain amount of dispersion from a periodic presentation, also known

as jitter.

[0008] Moreover, it is also common that conventional electrophysiology experiments present
a single type of stimulus, and it is assumed that all stimuli evoke a response with the same
morphology (time-invariant assumption). However, some experiments may require the
assumption of a multi-response model in which different types of stimuli evoke different types
of responses. For example, if two different auditory stimuli types are presented simultaneously
(e.g. clicks at 80 and 30 dBHL), it is reasonable to assume that each type of stimulus would
evoke a different type of neural response. Deconvolution of overlapping responses with
different morphology (multi-response deconvolution) is not possible with most existing

deconvolution methods.

[0009] In addition, since ABR, MLR and CAEP components represent the neural activity of
different stations of the ascending auditory pathway, it would be desirable to have a
representation of these components in a single plot (like the diagram shown in Figure 2), rather
than separated in three different signals (as exemplified by Figure 1). Unfortunately, since
each portion of the response is characterized by a different latency and bandwidth (i.e. ABR

components contain frequencies in the range 100-3000 Hz, MLRs in 10-300 Hz, and CAEP in
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1-30 Hz), obtaining a real signal like the one shown in Figure 2 is not straightforward when

using existing processing methods.
The EEG model

[0010] The digital EEG y(n) recorded in an evoked-potential recording procedure is usually

modelled as a convolutional process:
y(n) =s(n) *x(n) + ne(n) M

where n is the index of the samples (withn € {0, ... , N — 1}, N being the number of samples
of the EEG); s(n) is the stimulation signal consisting of one impulse at the beginning of each
stimulation event; x(n) represents the evoked response to each stimulus (with x(n) null for
n > (J — 1), ] being the length of the evoked response); ny,(n) represents the noise affecting
the EEG; and the asterisk (*) represents convolution. If the stimulation signal contains K

events at the samples m,,, the stimulation signal can be written as:

s(n) = Y=g 6(n—my) @)

Where &(n) is the unitary impulse at n = 0. Taking into account that x(n) * §(n —my) =

x(n —my), the EEG can be rewritten as:

y(n) = TEZgx(n—my) +no(n) ©)
Overlapping responses — 40 Hz-ASSR

[0011] The 40 Hz-ASSR is a steady state evoked response resulting from overlapping MLRs
presented at 40 stimuli per second (Galambos et al., 1981 - Ref 8; Bohorquez et al., 2008 -
Ref 4).

[0012] Figure 3 shows the effect of using an ISI lower than the averaging window using
synthesized signals. The first signal shows MLR signals evoked by stimuli whose ISl is 333
ms (stimulus rate of 3 Hz, i.e. 3 stimuli per second). The top signal shows the instants in which
the stimuli are presented. This example shows that the responses do not overlap because the

ISI is longer than the averaging window (100 ms in MLRs).

[0013] At 8 Hz (second signal, with ISI = 125 ms) the responses do not overlap; however, at

rates greater than 10 Hz (with I1SIs lower than 100 ms) the responses do overlap.

[0014] These examples show that overlapping responses result in a periodic signal (of a

period equal to the stimulus period) in which the original response is contaminated with
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adjacent responses. Depending on the stimulus rate, this contamination can be constructive
or destructive. Figure 3 shows that the stimulus rate of 40 Hz produces a constructive
interference that makes that the resulting signal presents a greater amplitude than the original
one, which may facilitate neural response detection. This constructive interference is a
consequence of the Na-Pa component overlapping with the Nb-Pb component of the adjacent
response, resulting in a greater-amplitude signal (Galambos et al., 1981 - Ref 8; Bohorquez
et al., 2008 - Ref 4). This auditory evoked potential evoked by a stimulus rate of 40 Hz is
known as 40 Hz auditory steady-state response (ASSR). In contrast to transient responses,
which are analysed in the time domain, ASSR signals are typically analysed in the frequency

domain.

[0015] The main limitations of the 40 Hz-ASSR are that:

while steady-state signals are useful in neural response detection, they do not show the
neural activity of the different generators (as transient responses do), and therefore, they
cannot be used to determine the site of lesion or to understand how a specific section of the
auditory pathway responds to a stimulus;

the stimulus sequence is fixed to this particular stimulus rate (40 stimuli per second),
and therefore it lacks the flexibility required in the design of some specific research and clinical
tests; and

since the neural generators cannot be determined in steady-state signals, it could be the
case that these signals are driven by a stimulus artefact (rather than by a neural response),

potentially leading to a misleading analysis.
Deconvolution methods

[00186] A number of mathematical processes have been developed to estimate the transient
evoked response x(n) from a stimulus signal s(n) whose ISl is lower than the duration of the
evoked response (i.e., the neural responses are overlapping). As mentioned earlier, these
methods require a certain amount of jitter (or variation in the I1SI distribution). The most relevant
methods are: continuous loop averaging deconvolution (CLAD, Bohorquez and Ozdamar,
2006 - Ref 5), quasi-periodic sequence deconvolution (QSD, Jewett et al., 2004 - Ref 11),
maximum length sequences (MLS, Eysholdt and Schreiner, 1982 - Ref 7), and least-squares
deconvolution (LS, Bardy et al., 2014a - Ref 1). The general approach of these methods is
outlined below.

[0017] The EEG model presented in equation (1) can also be presented in the frequency

domain as

Y(f) = SUf) = X(F) + No(f) (3a)
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and the evoked response can be estimated in the frequency domain by working out equation
(3b)

_ Y0 | o)
x(n =38+ (3b)

[0018] Finally, the transient evoked response can be converted back to the time domain by
applying the Inverse Fourier Transform to X(f), i.e. x(n) = IFFT{X()}.

[0019] The CLAD, QSD, MLS and LS algorithms describe different methods to obtain a
stimulus signal s(n) that minimize the possibility of obtaining frequency components near zero,

which would significantly increase the noise in the deconvolution process, as shown in the

term NOU)/S(}C) in equation (3b).

[0020] One important common limitation of these methods is that, since stimulus signals must
accomplish several constraints to avoid increasing noise in the deconvolution process,
generating efficient sequences is a sensitive process which may reduce flexibility when
designing certain experiments, particularly when the ISl is significantly lower than the duration

of the evoked response and the amount of jitter is small.

[0021] From the aforementioned methods, only the LS algorithm allows multi-response

deconvolution.

ADJAR-Level 1 and randomised stimulation and averaging (RSA)

[0022] ADJAR-Level 1 (Woldorff, 1993 - Ref 20) and randomized stimulation and averaging
(RSA, Valderrama et al., 2012 - Ref 14) provide an estimate of the response by synchronous
averaging of the EEG:

Aps 1 — .

R() = TRy G +my) @)
withj € {0, ..., ] — 1}. When the length of the response ] is smaller than the minimum IS, this
estimation is only affected by the noise, and averaging a large enough number of responses

provides an accurate estimate.

[0023] The limitation of these methods is that if the responses are overlapping, the
interference associated with adjacent responses degrades the estimation, and the estimated

response is not reliable.

ADJAR-Level 2 and iterative randomized stimulation and averaging (IRSA)




WO 2020/198787 PCT/AU2020/050311

[0024] With a similar approach, ADJAR-Level 2 (Woldorff, 1993 - Ref 20) and iterative
randomized stimulation and averaging (IRSA, Valderrama et al., 2014a - Ref 15) aim to
overcome the effect of the aforementioned interference. The main idea of IRSA is that the
interference can be estimated using the estimated response X(j) and therefore, a more
accurate response can be iteratively estimated by averaging a modified EEG in which the
interference associated with adjacent responses is suppressed. By using the estimated
response at iteration i, %;(j), an interference-free EEG for the k" stimulus (i.e. in which the

interference from all the stimuli except the k" stimulus is suppressed) can be derived as:
Vi) = y(n) = T 2o pren R0 — 1) ®)

and the evoked response can be estimated at iteration i + 1 by averaging the EEG portions

without interference:
~ . 1 _ .
X)) = ;Zz’i:é Vit U = 1my) ®)

[0025] Applying this approach, each iteration provides a better estimate of the evoked
response, and a more accurate suppression of the interference is therefore obtained in the
next iteration. As a result, the effect of the interference caused by overlapping responses is

minimized iteratively.

[0026] In general, an evoked-potential recording session involves a large number of stimuli
and a long EEG. Therefore, this existing IRSA technique can be unpractical, because at each
iteration i, kK EEGs should be calculated (each one including the k" response and suppressing
all the others), leading to a large amount of computation. However, the computation can be
simplified, on the basis that suppressing all except one response is equivalent to suppressing

all responses and then adding one:
Vii(n) = y() Tt Rin —my,) + 2:(n —my) = () + 2(n —my) (N

where r,(n) = y(n) — s(n) * X; (n) represents the residual of the EEG, i.e. the recorded
EEG minus the EEG expected from the estimated response X;(n) and the stimulation

sequence s(n). With this definition, the IRSA can be reformulated as:

o leaket. . 1 ket n 1 ket s .
()= ;ZIIE:(} (G +m) + ;ZIIE:(} Z(n—my +my) + ;ZIIE:(} (G +m) + 2:() ®

or, if z;(j) is defined as the averaged residual:

7 () = = K231 +my) ©)
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the iterative estimation of the response can be written as:
2in1() = z() + %() (10)

[0027] Even though this procedure usually converges to a stable solution, it has been found
that the ADJAR-Level 2 and IRSA algorithms are sometimes unstable, depending on the
distribution of the ISI in the stimulation sequence, and in this case the solution tends to oscillate
(Woldorff, 1993 - Ref 20; Valderrama et al., 2014a - Ref 14). The risk of oscillation particularly
increases for narrow IS distributions. Including a convergence control parameter («, in the

range [0,1]) was found to be a simple solution in order to avoid this instability:
i1 (D =%2,0) +a-z() 1

[0028] According to Valderrama et al. (2014a - Ref 14), a small enough a guarantees

convergence and stability of the algorithm, but requires more iterations to reach convergence.

[0029] The limitations of ADJAR-Level 2 are that many authors have reported this method to
be difficult to implement, and that it does not include the convergence parameter a, which may

result in uncontrolled instability issues.

[0030] The shared limitation of IRSA and ADJAR-Level 2 is their high computational load,
because every iteration requires computations involving the whole EEG [equation 11]. The
computational complexity increases linearly with the number of iterations, and is also
influenced by the EEG length (N) and the product of response length times the number of
stimuli (/ x K). Therefore, an evoked potential recording procedure including a large number
of stimuli (and therefore a long EEG) and requiring a large number of iterations in IRSA, implies
a prohibitive computational complexity that conventional IRSA difficult to be applied or

unpractical in most clinical and research applications.

[0031] Taking into account the previous derivations, the IRSA algorithm / technique can be

summarized as follows:

1. [Initialization:

ol =0 il == S w4 Fi=0... -1 (3

gl = d f S aaa iy Y= 0 -0 {13

3. Residual estimation
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rind =yl — N {r—wngl ¥a=0,. N -1 {14}
4. Averaged-residual estimation:
q R
gt — N i mg) Fi=00.. .. -1 {15
L Jr‘ i ERYR N2 N > Y . K

Rty
5. Steps 2 to 4 are repeated until convergence.
[0032] The energy of the averaged residual tends to decrease with the iterations, and different
convergence criteria can be applied (for example, a minimum reduction of the averaged
residual energy, or a relative reduction of the averaged residual energy with respect to that of

the previous iteration). In this the present case a predefined number of iterations was used.

[0033] It can be noted that z,(j) in IRSA corresponds to the estimation provided by RSA. The
computational complexity increases linearly with the number of iterations, and is also
influenced by the EEG length (N) because of equation (14) and the product of the response
length times the number of stimuli (f x K) because of equations (14) and (15). The
computational cost associated to equation (13) is negligible compared to that of the other
equations. Therefore, an evoked potential recording procedure including a large number of
stimuli (and therefore a long EEG) and requiring a large number of iterations in IRSA, implies
a prohibitive computational complexity that makes conventional IRSA difficult to apply or

unpractical in most applications.

[0034] Documentation detailing aspects of the IRSA technique include: Valderrama, et al.,
(2016 - Ref 17); Valderrama, et al., (2014a - Ref 15); Valderrama, et al., (2014b - Ref 16);
Valderrama, et al., (2012 - Ref 14).

Comprehensive representation of AEPs

Cortical ERPs and brainstem FFRs recorded in the same stimulus sequence

[0035] Bidelman (2015 - Ref 3) proposed a stimulus paradigm for concurrent recording of the
auditory brainstem frequency following response (FFR) and cortical event-related potentials
(ERPs). This stimulus uses a clustered stimulus presentation and variable 1SI, as presented

in Figure 4.

[0036] The limitations of this technique are that (1) the steady-state response of the early
components of the auditory pathway do not provide information of their neural generators [i.e.,
the neural activity of the cochlea, brainstem and midbrain cannot be determined]; and (2) early,

middle and late components of the auditory pathway are not shown in a single plot.
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Simultaneously-evoked auditory potentials (SEAP) with FFRs and CAEPs

[0037] Slugocki et al. (2017 - Ref 13) also combined the use of FFRs and CAEPs to
simultaneously measure cortical and subcortical auditory-evoked activity. The SEAP stimulus
consists of a pure-tone carrier of 500 Hz that has been amplitude-modulated at the sum of 37
and 81 Hz (depth 100%). The authors show that SEAP elicits a 500 Hz FFR (showing activity
of the inferior colliculus); a 80 Hz FFR (subcortical activity); a 40 Hz FFR (primary auditory
cortex); mismatch negativity (MMN) and P3a and the N1-P2 complex (secondary auditory

cortex).

[0038] Similarto Bidelman (2015 - Ref 3), one important limitation of this method is that FFRs
do not provide information of their neural generators, and therefore, the activity of the
subcortical neural stations cannot be determined. For example, they claim that the 500 Hz
FFR shows activity from the inferior colliculus, but, similar to the 40 Hz ASSR, it is very likely
that the 500 Hz ASSR has multiple generators (not only activity from the midbrain), and that
the steady-state signal is the result of the sum of different components from different

overlapping responses.

Simultaneous recording of brainstem, middle and late responses using deconvolution

[0039] Holt and Ozdamar (2014 - Ref 10, 2016 - Ref 9) used the CLAD deconvolution method
to record the impulsive response of the auditory pathway at increasing stimulus rates. Figure
5 shows grand-averages at different stimulus rates in which the ABR wave V; the MLR

components N,, P,, N,; and the CAEP P,-N;-P, complex can be identified.

[0040] The main limitation of this approach is that representing the deconvolved signals in the
linear time domain prevents the early components to be correctly analysed. For example, the
ABR wave V can be observed in all traces, but this type of presentation does not provide a

good resolution for the remaining ABR components.

Logarithmic representation of AEPs

[0041] Michelini et al. (1982 - Ref 12) proposed a non-linear samples reduction of the digitized
response and its representation in the logarithmic time-axis to efficiently display all
components of the ascending auditory pathway in a single plot. Figure 6 shows an example

of an AEP after sample reduction and representation in the logarithmic time-scale.

[0042] The main drawback of this method is that the proposed non-linear sample reduction

process is done arbitrarily without any supporting physiological model, and that this process
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does not implement a latency-dependent filtering like the one proposed in the present

invention.

Comprehensive recording of AEPS by projecting over a base of functions.

[0043] Valderrama et al. (2017 - Ref 18) presented an abstract in the IERASG conference
(Warsaw, May 2017) projecting the averaged response over a base of sinc functions uniformly
distributed in the logarithmic time scale and then reconstructing the signal from the projected
space provides a latency-dependent filtering appropriate to represent the activity of the main

stations of the auditory pathway from the cochlea to the auditory cortex in a single plot.

Least-squares deconvolution

[0044] Bardy et al. (2014b - Ref 2) used the least-squares deconvolution algorithm to
deconvolve overlapping CAEPs evoked by different stimuli. Results show that multi-response
deconvolution is successfully achieved with this algorithm. As mentioned earlier, the search
of efficient stimulus sequences can be arduous and may constrain the flexibility of some

experiments.

Split-IRSA

[0045] Valderrama et al. (2016 - Ref 17) updated the IRSA formulation to allow multi-response
deconvolution in ABR and MLR signals. This was used to prove that (1) wide jittered
stimulation sequences could incur in a violation of the time invariant assumption; and that (2)
the neurons of the auditory pathway are not only influenced by short-term adaptation (the
influence that the previous stimulus has on each response), but also by long-term adaptation,
i.e. the morphology of each response is also influenced by the overall stimulus rate of several

previous stimuli.

[0046] Similar to IRSA, the limitation of Split-IRSA is the high computational load, as each
iteration involves operations processing the whole EEG, which constrains the applicability of
this method.

Objective

[0047] Despite the advances in deconvolution technologies are exemplified above it remains
desirable to provide a further alternative or improved method of deconvolving AEP
responses which may allow for one or more of:

deconvolution of overlapping AEP responses;

deconvolution of overlapping responses which present different morphologies

10
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representation of the main neural components from the cochlea to the auditory
cortex in a single plot;

improved computational efficiency when compared with existing deconvolution
methodologies; and

providing a useful alternative to existing deconvolution methodologies.

[0048] The reference in this specification to any prior publication, or information derived from
it, or to any matter which is known, is not, and should not be taken as an acknowledgement
or admission or any form of suggestion that the prior publication, or information derived from
it, or known matter forms part of the common general knowledge in the field of endeavour to

which this specification relates.
SUMMARY

[0049] According to a first aspect of the invention, there is provided a method of estimating
the transient auditory evoked potential (AEP’) responses of a subject, the method comprising:
generating a digital auditory stimulus signal consisting of at least one auditory stimulus
type;
presenting the at least one auditory stimulus type to a subject via a transducer;
recording an electroencephalogram signal (‘(EEG’) including the neural response of the
subject to the at least one auditory stimulus type;
synchronizing the digital auditory stimulus signal with the recorded EEG; and
deconvolving the overlapping AEP responses of the subject from the EEG by applying
an iterative randomized stimulation and averaging (‘IRSA’) technique,
wherein the step of applying an IRSA technique is performed with matrix operations in

the representation spaces of the AEP and the EEG.

[0050] Optionally, the IRSA technique comprises the steps of: (a) initialisation, (b) response
updating, and (c) averaged-residual estimation in which the steps of (b) response updating
and (c) averaged-residual estimation are repeated until convergence and wherein steps (a)-

(c) are performed using matrix operations.

[0051] Optionally, the least one auditory stimulus type includes a stimulus type having a
jittered inter-stimulus interval less than the duration of the resulting auditory evoked potential
to be detected.

[0052] Optionally, the at least one auditory stimulus type is selected from the group consisting
of:

standard auditory stimuli such clicks and tone-bursts; and

11
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complex auditory stimuli like multi-pattern stimuli, speech-like stimuli, or natural speech

stimuli.

[0053] Optionally, the method comprises applying more than one auditory stimulus type, such

that the different stimulus types evoke different AEP responses.

[0054] Optionally, the step of applying the IRSA technique comprises performing iterative
matrix operations in segments limited to the duration of the AEP, rather than the duration of
the EEG (that is, performing matrix operations in the representation space of the AEPs rather

than in the representation space of the EEG).

[0055] Optionally, the step of applying the IRSA technique comprises configuring the matrix
operations according to the symmetric-Toeplitz properties of generated matrices to thereby

reduce the computational effort required to deconvolve the AEP responses.

[0056] Optionally, the step of applying the IRSA technique comprises calculating the matrix
product used when implementing the iterations of the IRSA technique as a convolution.

[0057] Optionally, the method further comprises the step of calculating the autocorrelation of
the digital auditory stimulus signal either as a cross-correlation or as a sum for all stimuli of

the digital auditory stimulus signal.

[0058] Optionally, the step of applying the IRSA technique comprises calculating an averaged
residual as either the normalised cross-correlation of the EEG and the digital auditory stimulus

signal or as a sum for all stimuli of the digital auditory stimulus signal.

[0059] Optionally, the method comprises:

applying more than one auditory stimulus type, such that the different stimulus types
evoke different AEP types; and

adapting the IRSA technique to deconvolve more than one AEP type (‘multi-response

deconvolution’) in its matrix formulation.

[0060] Optionally, the method comprises performing an orthonormal transformation of the
representation space, and performing IRSA operations in the transformed representation

space.

[0061] Optionally, the step of applying an orthonormal transformation results in a transformed

representation space of reduced dimensions.
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[0062] Optionally, IRSA operations are performed in the transformed representation space
derived from a matrix performing any one of the following steps: low-pass filtering; band-pass

filtering; decimation; latency dependent filtering; or latency dependent decimation.

[0063] Optionally, IRSA operations are performed in the reduced representation space
derived from an orthonormal matrix performing latency dependent filtering and latency

dependent decimation.

[0064] Optionally, the method is used to estimate AEP responses to complex auditory stimuli,
including multi-pattern stimuli, speech-like stimuli or natural speech stimuli, either in a single-

response or multi-response approach.

[0065] Optionally, the method is used to estimate one or more of auditory brainstem
responses, middle latency responses, or cortical auditory evoked potentials to complex
auditory stimuli, including multi-pattern stimuli, speech-like stimuli or natural speech stimuli,

either in a single-response or multi-response approach.

[0066] Optionally, the method is used to simultaneously estimate auditory brainstem
responses, middle latency responses, and cortical auditory evoked responses to complex
auditory stimuli, such as multi-pattern stimuli, speech-like stimuli or natural speech stimuli,

either in a single-response or multi-response approach.

[0067] Optionally, the method is used to estimate one or more of auditory brainstem
responses, middle latency responses, or cortical auditory evoked potentials, either in a single-

response or multi-response approach.

[0068] Optionally, the method is used to simultaneously estimate auditory brainstem
responses, middle latency responses, and cortical auditory evoked responses, either in a

single-response or multi-response approach.
[0069] Optionally, the method further comprising graphically representing the estimated AEP.
[0070] Optionally, the method is performed at least in part on a computer.

[0071] According to a second aspect of the invention, there is provided a system configured
to estimate the auditory evoked potential responses of a subject by implementing a method
according to the first aspect of the invention, the system comprising:

a data processor,

a memory in data communication with the data processor;
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wherein the system is configured to implement a method according to a first aspect of

the invention.

[0072] According to a third aspect of the invention, there is provided a computer program
comprising instructions to make a computer carry out a method according to a first aspect of
the invention.

[0073] According to a fourth aspect of the invention, there is provided a computer-readable
storage medium comprising program instructions capable of making a computer carry out a

method according to a first aspect of the invention.

[0074] According to a fifth aspect of the invention, there is provided a transmissible signal
comprising program instructions capable of making a computer carry out a method according

to a first aspect of the invention.

[0075] Throughout this specification and the claims which follow, unless the context requires
otherwise, the word “comprise” and variations thereof such as “comprises” and “comprising”,
will be understood to include the inclusion of a stated integer or step or group of integers or

steps but not the exclusion of any other integer or step or groups of integers or steps.
BRIEF DESCRIPTION OF THE FIGURES
[0076] FIGURE 1 shows an example of transient ABR, MLR and CAEP signals

[0077] FIGURE 2 shows a diagram (not a real response) demonstrating the main neural
components of the ascending auditory pathway from the cochlea (ABR wave |) to the auditory

cortex (P1-N1-P2 complex).

[0078] FIGURE 3 shows resulting ASSRs from a synthesized experiment at different ISIs. The

40 Hz-ASSR produces a constructive interference that facilitates neural response detection.

[0079] FIGURE 4 shows a schematic illustration of the clustered stimulus paradigm for

simultaneously recording auditory brainstem FFRs and cortical ERPs.
[0080] FIGURE 5 show grand-average AEP signals at different stimulus rates.

[0081] FIGURE 6 shows AEPs after sample reduction and representation in the logarithmic

time-scale.

[0082] FIGURE 7 shows functions of the basis with K,;,. =10 samples/decade, before

orthonormalization, using f; = 25 kHz. The plots in the left include all the functions in the base.
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The plots in the right include a detail of three functions. The time axis is represented in linear

scale in the top plots, and in logarithmic scale in the bottom plots.

[0083] FIGURE 8 shows functions of the basis with K,,. = 10 samples/decade, after
orthonormalization, using f; = 25 kHz. The plots in the left include all the functions in the base.
The plots in the right include a detail of three functions. The time axis is represented in linear

scale in the top plots, and in logarithmic scale in the bottom plots.

[0084] Figure 9 shows signal x,, (in blue) generated with a basis using K,,. = 15
samples/decade and contaminated with AGWN, and the latency dependent low-pass filtered
signal V' V;x (in red). From top to bottom, the whole signal (interval [0 ms - 400 ms]), and

detail for different time intervals: [0.4 ms - 4 ms], [4 ms - 40 ms] and [40 ms - 400 ms].

[0085] Figure 10 shows synthesized signal generated with a basis using Kg.. =15
samples/decade, and signals resulting from projecting it with VTV using more than 15
samples/decade in the transformation for dimensionality reduction. The SNR associated to
the difference between the reference signal (with K;,. = 15 samples/decade) and the
projected signals was 39.20 dB, 47.34 dB, 51.09 dB and 55.07 dB for K,,. = 20, 30, 40 and

50 samples/decade respectively.

[0086] FIGURE 11 shows portions of clean and noisy synthesized EEGs. In red, the
stimulation signal; in blue the clean EEG (left panel) and the noisy EEG (right panel).

[0087] Figure 12 shows the original response and responses provided by IRSA after 50
iterations. In the left panel, the results of the conventional IRSA and matrix IRSA. In the right
panel, the responses provided by matrix IRSA projected with VIV, and those provided by

matrix IRSA performed in the reduced representation space.

[0088] Figure 13 shows the original response and responses provided by IRSA after 10000
iterations. In the left panel, the response provided by matrix IRSA projected with V'V, and
those provided by matrix IRSA performed in the reduced representation space. In the right

panel, difference between both results.

[0089] FIGURE 14 shows AEP responses estimated from real EEGs - comparison of
responses estimated with 50 iterations. Left panel: comparison of conventional-IRSA and
matrix-IRSA. Right panel: comparison of matrix-IRSA after projection with V'V, and matrix-

IRSA performed in the reduced representation space.
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[0090] FIGURE 15 shows AEP responses estimated from real EEGs. Comparison of
responses estimated with 10000 iterations using matrix-IRSA and projection and matrix-IRSA-

red. Right panel shows the difference between both results.

[0091] FIGURE 16 shows AEP responses estimated from real EEGs. Comparisons of the
responses estimated with different resolutions in the dimensionality reduction. The responses
for Kgec = 70 samples/decade were used as reference in the comparison presented in Table
8.

[0092] FIGURE 17 shows a comparison of responses estimated with 10000 iterations using
real EEGs. Left panel: matrix-IRSA estimated responses using the standard and fast versions.
Right panel: matrix-IRSA responses estimated in the reduced representation space using the

standard and fast versions.

[0093] FIGURE 18 shows the difference between the responses estimated with the standard
and the fast versions of matrix-IRSA. Left panel: for estimations in the complete representation

space. Right panel: for estimations in the reduced representation space.
DETAILED DESCRIPTION

[0094] In broad terms, the invention relates to a method of estimating the auditory evoked
potential responses of a subject by deconvolving overlapping AEP responses applying an
IRSA technique, , and an apparatus configured to deconvolve an overlapping AEP responses
applying an IRSA technique. The method of deconvolving an overlapping AEP responses may
provide for reduced computation when compared to similar existing technologies. Within the
broader concepts, embodiments of the above methods and apparatuses are described and

defined below.

Matrix representation of the IRSA procedure

[0095] The signals involved in the convolutional model of the EEG and the equation (1) can

be represented using a matrix notation:
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which can written in a compact form as:
Y = Sx + n,. 17)

where y, n and Sx are N-component column vectors, x is a J-component column vector and
S is a matrix with N rows and J columns (an NxJ matrix). It should be noted that s(n) is null
for all the samples except for those corresponding to a stimulation event (at samples my),

and therefore, most of the elements in the stimulation matrix S are null.
[0096] Similarly, equation (4) can be rewritten in matrix notation as:
g==8Ty=5 Sy ==ST (18)
=g Y=ok¥ K=%

where S7 is the transposed of matrix S, and Sk is defined from S including transposition and
normalization. The last equation provides the RSA solution in matrix notation. With these

definitions, IRSA can easily be formulated with matrix notation:

1, Ro =0 z5=Sgy (initialisation) (20)
2. R =%, +az;_4 (updated response estimation) @21
3. r; =y — S%; (residual estimation) 22)
4, 7y = SkIy (average-residual estimation) 23)

(steps 2 to 4 are repeated until convergence)
[0097] Using the matrix representation, steps 3 and 4 can be compacted into one step:

zj = SgIy = SkY = Zo — SkSK; (23)
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where Rq is a ] x ] square matrix resulting of the product of matrices S and S. The matrix R,

can also be obtained as the normalized autocorrelation matrix of the stimulation sequence

s(n):

el = 1w dd =2 v {.]I‘— HIEEEE ?s 0 24)
where R¢(j) is the autocorrelation function of s(n), and can be estimated as:

() =30} s)s(n—j)  Viyj €{0,..,) — 1} (25)
And therefore R, can be estimated as:

i) =l —j2l)  Vi=0,..J-1 (26)

Matrix implementation of IRSA algorithm

[0098] The proposed combination of steps 3 and 4 using equation (23) provides an important
reduction of the computational complexity of IRSA. The conventional IRSA requires an
operation involving all the EEG and all the stimuli in order to calculate r;(n), and then an
operation involving all the signal r;(n), (with the same duration of the EEG) and all the stimuli,
in order to calculate z;(j). In contrast, the matrix based formulation of IRSA do not require
calculating r;(n) since z;(j) is directly estimated from z,(j), r.(j) and ;(j). Additionally, the
estimation of z;(j) only involves the matrix operation R X; with a / X J matrix, and a summation
of vectors with |/ elements, where the vector z; and the matrix R, are used at all the iterations

and can therefore be computed just once at the beginning of the algorithm.

[0099] With these considerations in mind, the matrix implementation of the IRSA algorithm is

the following:

1. Initialisation
20() =0 2() =Tk y(+m) n() =3I lsms—j) Rozo R}  27)
2. Response updating:

R, =%, taz;, (28)
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3. Averaged-residual estimation
Z, =1, + Rsﬁi (29)
4. Steps 2 and 3 are merged until convergence.

[0100] According to the previous formulation, the matrix implementation of the IRSA algorithm
requires an initialization (where two J-dimension vectors, £, and z,, and a / x | matrix R, are
estimated) and an iterative procedure, involving matrix and vector operations in a J-
dimensional space. It should be noted that the matrix implementation of IRSA is
mathematically equivalent to the conventional IRSA. However, the computational complexity
is substantially smaller, because there are computations involving the whole EEG only at
initialization (i.e. estimation of z, and R,), and the computations at the iterations just involve
matrix or vector operations with dimensionality /. In other words, the computational complexity
of the iterations depends on the length of the response (J) but not on the length of the EEG
(N) nor the number of stimuli (K), and this provides a very efficient implementation of the IRSA

algorithm even for experiments with a large number of stimuli or long EEGs.
Dimensionality reduction

Matrix formulation of IRSA in a transformed representation space

[0101] IfV is an orthonormal transformation of the J-dimension representation space (i.e. V is
a /x| square matrix whose rows are the components of J orthonormal functions or
orthonormal vectors), the IRSA algorithm can equivalently be the IRSA algorithm can

equivalently be implemented in the original or in the transformed representation space:

RE=VR,=0 zl=Vz, RY=VRVT (30)
RV =RV, +az,_, (31)
z¥ = z¥ + RV&Y (32)

and the recovered evoked response after convergence can be transformed back to the original

representation space by applying the inverse matrix of the orthonormal transformation:
2 =VTra? (33)

[0102] Since the orthonormal matrix verifies that V'V =1, it is easy to demonstrate that the
IRSA algorithm provides identical results when it is implemented either in the original or in the

transformed representation spaces:
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VTz? =vTzy — VT RYRY = VTVzy — VIVR,VTVR; = Iz — RJIR; =7 — RR; = 7 (34)

Responses contained in a subspace: dimensionality reduction

[0103] If the orthonormal transformation V is selected in a way that some components are
expected to be null when it is used for representing an evoked response, then a reduced
transformation matrix V. can be defined by excluding those rows corresponding to components
with null amplitude. In this case, if the dimensionality of V. is J,. x J, with J.. < J, the application
of V. to a vector (or function, or signal) reduces its dimensionality from J to /. components. A
typical example of this dimensionality reduction can be found in low-pass filtering in the
frequency domain. In this example, the orthonormal transformation would be the fast Fourier
transform (FFT), the inverse transformation would be the inverse-FFT (iFFT), and the low-
pass filtering in the frequency domain could be equivalently implemented by canceling those
components with frequency above the cut-off frequency in the frequency domain, or by
truncating the orthonormal transformation and applying the truncated FFT to the signal (which
provides only the components expected to be non-null in the frequency domain) and then
applying the truncated iFFT to this reduced representation domain (which provides the filtered

signal in the time domain).

[0104] A substantial difference between the complete V and the reduced V. orthonormal
transformations is that V is invertible (V=* = VT), but not V. In fact, the product VTV, (which
is a J x J matrix ) applied to a vector (or function, or signal) is a projector that provides a
vector that is an element of the original J-dimension representation space but is contained in
a subspace with dimension J,.. In other words, V;TV,. # I, or equivalently, in general x = V,TV,x

(while the original and the recovered vectors are equal if V is invertible).

[0105] The interesting advantage of the reduced transformation V. is that, if a vector x (or
function, or signal) belongs to the J,-dimension reduced subspace (for example, ifx is a signal
with components only below the cut-off frequency), even though V7V, = I, the equivalence
x = VTV x is verified (in the example of the low-pass filtering, if x only contains low frequency
components and the effect of applying VTV. consists in a removal of high frequency
components, TV.x and x are identical because x contains no high frequency components to

be removed).

Matrix IRSA algorithm in a reduced representation space

[0108] Let's suppose the matrix IRSA formulation described with equations (27), (28), (29)
assuming evoked responses that can be represented in a reduced representation space, i.e.

evoked responses verifying that x = VT /.x using a reduced orthogonal transformation V. with

20



WO 2020/198787 PCT/AU2020/050311

J- < J. The evoked response in the reduced representation space x;’r can be used to recover

the evoked response:

VI =V =% {35)

k3

and therefore, the IRSA algorithm can be formulated in the reduced representation space.
According to equation (28),

the evoked response at iteration i in the reduced representation space is obtained as:
X =x alle o =5+ ezl {36
and the averaged residual in the reduced representation space is, at iteration i:
g, = Vg =V — V. RX, (A7)

N

[0107] Taking into account that &; = VTV,R; (because R;is assumed to be appropriately
represented in the reduced representation space), the averaged residual in the reduced

representation space can be rewritten as:

2 = Vi — ¥V RVTVX, (38

and if we define the normalized correlation matrix in the reduced representation space as:
=V RT 3%

(which is a Jr x Jr matrix), the averaged residual in the reduced representation space can be

estimated as:
25 =y - BT {4n

[0108] In summary, the matrix IRSA procedure can be formulated in the reduced

representation space according to the following algorithm:

1. Initialization:

Ll d N — i AN —
xpift =4 il =

W=V =0 oz =V BY = VALVT &g RY) 321

2. Response updating:

L O T S AN -~
XU =x" o, {43y
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3. Averaged-residual estimation:

B =gy — Rirx {44

4. Steps 2 and 3 are repeated until convergence.

5. The recovered evoked response after convergence is transformed back to the

original representation space:
i = VI (43)

[0109] There are two important differences between both matrix implementations of IRSA. On
the one hand, the solutions provided by both algorithms are different because in the last
algorithm the recovered evoked response is forced to be contained in the subspace of reduced
dimensionality. For example, if dimensionality reduction implied a low-pass filtering, the
implementation in the reduced representation space would provide a low-pass filtered
solution, while the other implementation would provide a non-filtered solution (that would
contain, for example, high frequency components associated to noise). On the second hand,
the steps involved in the iterative process (steps 2 and 3) require matrix operations with R;® ,
which is a J,. X J,. matrix, and with vectors of dimension J,.. If the dimensionality of the reduced
representation space I significantly smaller than that of the original representation space (i.e.

if /. « J) the computation involved in the algorithm decreases significantly.

Matrix IRSA constrained to a subspace

[0110] Inthe previous derivation, the evoked response was assumed to belong to the reduced
subspace (i.e. x = ¥TV.x). A different situation could be considered if the matrix IRSA
algorithm is applied in a subspace defined by a truncated orthonormal transformation V; not
verifying the previous assumption (i.e. x # VI V;x). In that case, the step from equation (37) to
equation (38) is not valid. The resolution of the IRSA algorithm constrained to the subspace
defined by V, can be obtained by estimating X; in the complete representation space and then
projecting it over the subspace (V{ V;&;). However, this algorithm would require operations in
a /-dimension representation space (not in a J;- dimension subspace). A relevant question is
whether the resolution in the subspace is equivalent or not to the resolution in the complete
representation space followed by projection into the subspace, because if they are equivalent,
a lot of computation can be saved even when the condition x = V] V;x is not verified. However,
if they are not equivalent, the implementation in the reduced representation space requires
the condition x # VIV, x. Both procedures would be equivalent if V;z; can be obtained in the

reduced representation space, or if the following condition is verified:
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Vizo — Vifk, = g3t — B0 {463

or equivalently, if:

Vi, = Ao

[0111] In order to analyze this condition, the dimensionality reduction V; will be represented
as a truncated orthonormal matrix, i.e. a matrix containing J; orthonormal vectors (or
functions), with J; < J, representing the J; components of the reduced representation space.
This way, the complete orthonormal matrix V can be decomposed into two matrices (the

projector over the reduced space V; and the projector over its orthogonal complement V,):

{ow vi o) PO
v v-r{ {1
V= wT,:l = \"E;i_‘ + (:3 =¥+ ¥ {385
0
x’,: ; C U 3 vi’;_ 1
Verifying:
ViV =1 wlw=0 W= (49}
With this decomposition of the orthogonal transformation, VR X; can be expanded as:
VB = VERVT VY = (07 + I R.0F + ¥ + 1%, (543}

where two terms were omitted because of equation (49). Finally, the term V;R¢ &k; can be

written as:

ViR%; = AUl £ VR VTR (323

and comparing this decomposition with equation (47), it is clear that the condition is verified if
the last term is null, i.e., if either V;RV; is null or if)“(i"2 iis null. In general, VR,V is never null
for an IRSA problem (because it requires that the autocorrelation function rg(j) only contains
a non-null value at j = 0, and in this case, the IRSA algorithm makes non-sense because
RSA is appropriate). The second option (ﬁi"z = V,%; null) requires that the projection of the
response over the orthogonal complement is null, which is equivalent to the condition x =

VIV x.
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[0112] Therefore, in order to perform the matrix IRSA algorithm in a reduced representation
space given by V;, the condition x = V'V, x (or equivalently V, x = 0) is required. Otherwise,

the term Vlevgﬁi"z would introduce a bias in the estimated solution.

[0113] In general, the dimensionality reduction is associated to the cancellation of some
components in the response, for example, because of low-pass filtering (some spectral
components could be removed if they are not expected to be present in the response), or
because of the expected duration of the response (components after a given latency are
assumed to be null). Ifthe response is expected to be contained in the reduced representation
space, the matrix IRSA algorithm can be performed in the reduced representation space.
However, the reduced dimensionality matrix IRSA algorithm cannot be used to remove, for
example, the stimulation artefact, because this contribution is expected to be observed in the
response (in spite of its non-biological origin), and ignoring it in the reduced representation

space produces a bias in the estimated response.
Selecting an appropriate representation space

Dimensionality reduction for down-sampling

[0114] The objective of the transformation ;. is to reduce the dimensionality without removing
any component expected to be present in the response. In the case of a response without
components above a cut-off frequency B, according to the sampling theorem, the response
can be down-sampled (or decimated) at a sampling frequency f; > 2B, and the reduction of
the sampling frequency can be interpreted as a dimensionality reduction. Before decimation,
a low-pass filtering is usually applied in order to remove high frequency components
associated to noise (to prevent aliasing caused by noise). The low-pass filter can be used for
both the decimation (or dimensionality reduction) and the interpolation (or reconstruction of

the response at the original sampling frequency from the decimated response).

[0115] The down-sampling procedure can easily be described with a matrix H,.. If r(l) is the
impulsive response of the low-pass filter and x(j) is the response to be filtered and down-

sampled, the low-pass filtered response is:
ril iy = Ry x e ldy = Z B{lvets — b (533
and if the decimation factor is m, the decimated response is:

a{d ) = wplde o) = S Ridpridf, -m—10) [RE S
:
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The low-pass filtering can be represented with matrix notation as:

= Hx {55}

where H is the ] x ] convolution matrix representing the filter (H(i; j) = h(i — j)):

:’l(.\ h_ l .?3‘,2 f{,j; I {01
21}

_ wmo fin By ... h o (56

1’?.9\ ,\'l.',;g & 1 .?1.9

vy by kg hls
2

wif— 1) )

(h(l) = h; as used for a compact notation). Similarly, the low-pass filtering and decimation
can be represented with matrix notation, where the decimation in a factor m is performed by

removing m — 1 rows of m in the matrix H:

n

x' = H.x {57}

1

where H, is the],. x ] matrix containing the rows J, x m (with ], =0,...,]J.— 1 and J. = J/m) of
the matrix H. For example, if the number of samples of the response is | = 12, and the

decimation factor is m = 3, then the matrix equation would be:

TR

and the matrix Hr provides both low-pass filtering and decimation, with a dimensionality

reduction fromj = 12to J, = 4.

[0116] The rows of the matrix H, define a basis of the reduced subspace, i.e. J, linearly
independent functions covering the reduced subspace. These functions can be

orthonormalized with the Gram—Schmidt process. Using the orthonormalized functions v; , the

transformation providing the dimensionality reduction is:

V.= ] {39}
Vi1,
[0117] This transformation can be used to obtain the reduced representation from the

response: x’ = V.x. It can be also used to recover the response in the original representation

from the reduced representation: x = V;7x"r, where VTV, # I (because V, is an incomplete
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orthonormal transformation) but x = V7 V,.x (because x is assumed to belong to the subspace:
since x contains no high frequency components, the sampling theorem guarantees that the

reduced representation can be used to recover the original response).

Frequency content of auditory responses

[0118] Auditory evoked response, including ABR, MLR and CAEP, is associated to the activity
of different elements of the auditory pathway. Each portion of the response is characterized
by a specific latency and bandwidth. Waves of ABR present latencies in the range 1 ms -
10ms, and contains components in the frequency band 100 Hz - 3000 Hz. MLR latencies are
in the range 10 ms - 100 ms with frequencies in the range 10 Hz - 300 Hz. CAEP latencies
are in the range 100 ms - 1000 ms and the frequency components are in the band 1 Hz - 30
Hz. These latencies and frequency bands determine the configuration of the recording
procedure when the responses are registered. For example, in order to record ABR, a band-
pass filter is applied to remove frequency components out of the band 100 Hz - 3000 Hz. This
filter allows sampling at a minimum sampling rate of 8 kHz or 10 kHz (typically ABRs are
recorded at 20 kHz or 25 kHz) and removes MLR and CAEP contributions (which allows the
use of an averaging window of 10 ms or 12 ms). When MLR is recorded, the EEG is band-
pass filtered for removing the components out of the range 10 Hz - 300 Hz. This filter removes
the ABR and CAEP contributions from the EEG, allowing the use of an averaging window of
100 ms and a sampling frequency of 800 Hz or 1 kHz (even though typical sampling
frequencies are 10kHz or 20 kHz for MLR). For CAEP recording, the EEG is filtered with a 1
Hz - 30 Hz band-pass filter and this evoked response could be recorded using a 1000 ms
window at a sampling frequency of 80 Hz or 100 Hz (even though typical sampling frequency
is 1 kHz or 2 kHz).

Latency specific filtering and down-sampling

[0119] According to these frequency bands, the matrix IRSA with dimensionality reduction
could be applied, for ABR recording, by band-pass filtering the EEG between 100 Hz and 3000
Hz and using a 10 ms window and a sampling frequency of 10 kHz, which corresponds to a
reduced dimension J,. of 100 components. Similarly, dimensionality reduction for MLR can be
achieved by filtering between 10 Hz and 300 Hz, down-sampling to 1 kHz and using a 100 ms
window, which provides a reduced dimension J, of 100 components. And finally, for CAEP,
filtering between 1 Hz and 30 Hz, down-sampling to 100 Hz and using a response window of
1000 ms provide a reduced dimension J, of 100 components. Therefore, an appropriate
filtering and downsampling allows a dimensionality reduction useful for a fast matrix IRSA.

This dimensionality reduction is specific for the type of response. However, as can be seen,
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the more central the potential, the later the response is, and the lower the frequency content
is. There is a progressive reduction of the frequency band necessary for representing the
evoked potentials that suggests some kind of latency-specific filtering. The matrix-based
filtering and down-sampling processes described with equations (56) and (57) provide an easy
procedure for implementing this latency-specific filtering, since each row of the filtering matrix
corresponds to a specific latency and provides the specific impulsive response (and therefore

the corresponding frequency response) around this latency.

[0120] The frequency response can therefore be modified at the different rows of the filtering
matrix in order to provide a latency dependent filtering. Similarly, the ratio of rows preserved
or discarded can also be modified consistently in order to provide a latency specific down-
sampling according to the latency specific frequency content. By using the matrix description
of the filtering and down-sampling processes, the reduction of the bandwidth and the down-
sampling factor can be progressively modified with the latency (instead of using a constant
configuration for each portion of the response). The progressive filtering and down-sampling
can also be applied for recovering simultaneously the potentials corresponding to the whole
auditory pathway (including ABR, MLR and CAEP) with a reduced dimensionality in the matrix
IRSA procedure. With a few hundreds of components in the reduced representation, a matrix
IRSA providing ABR, MLR and CAEP simultaneously can be performed, while performing the
matrix IRSA in the complete representation space would require, in this case, to deal with a
dimensionality /| = 10.000 (corresponding to 1000 ms for an appropriate representation of
CAEP and a minimum sampling frequency of 10 kHz for an appropriate representation of
BAER).

Design of the reduced transformation for latency dependent filtering and down-sampling

[0121] In order to perform the latency dependent filtering and down-sampling at K,;,. samples
per decade, a logarithmic compression of the time axis is performed and the signal to be
processed is then low-pass filtered and uniformly sampled in the compressed time axis. The

original response contains samples at the time values:

£y = i1, {60)
where j = 0,1,..,J— 1, and T; = 1/f; is the sampling period. The samples in the

compressed time axis can be related with the linear time with the equation:

o
{'\I— + ) — Ny logy (83 {61}

Aty = 15‘!!:‘.(‘ 1")‘?7‘10
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[0122] The constant g provides a linear behavior if ¢t /Ty << g and a logarithmic compression if
t/Ts > B. In order to provide at least one sample in the reduced representation for each

sample in the original representation, the following relation should be verified:

=1 {62)

which provides the value of p:

Ko
g = {63)

{10}

where [n() is the natural logarithm. The additive term of equation (61) sets a null index in the
compressed representation for the first sample in the original representation, i.e.j,.(0) = 0.

With this value of g, the equation (61) can be rewritten as:

o e 'ih}i’l()} _ P
sl = f\:!:-:( 23 ( 1»\ f\"’d@.; + 1) ‘ﬁ*}‘
[0123] Finally, for large enough values oft (i.e., when t = Ty > In(10)/Kg4ec), and increase of

a decade provides an increase of Ky.. samples in j.(t):

. 06 ity SRR TR LtE
A0 & Ko oz, ( —— = Ao g ( e
ey L Y dec {0 T, R ) foe DB 2 T Ko

) + Ko g (103 = {06 + K., (63)
and therefore, the constant K4, represents the number of samples per decade in the reduced
representation.

[0124] Due to the compression, the sampling period of the compressed time axis is not

constant. If we define T’;(¢) as the sampling period of the compressed representation (which

is a function of the latency ¢t), it can be estimated as:

= - —— L0

T 11} B S P 1 VR ,
ST - ( B LT (673
\ / J(\.dc:\:

}‘ K

and therefore, the sampling period and the sampling frequency in the compressed time-axis

are, respectively:
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[0125] The maximum sampling frequency (or the minimum sampling period) of the reduced

representation is obtained for the first sample (when t = 0):

e T8 =T, lim fliiy = — = f, {6

t—1{ £—=00 "

~3 ‘ et
»

and as the latency increases, the sampling frequency is decreasing and the sampling period
increasing according to equation (68). For large enough values of ¢ (when ¢/T; >

Kyec/In (10)), the sampling period and frequency can be approached as:
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and they depend on the latency t and the number of samples per decade K, but not on the
original sampling period. The bandwidth preserved at each latency depends on the local
sampling frequency and the low-pass filter (that should be included in order to remove high-
frequency components of the noise). The bandwidth is limited to f’; (t)/2 by the sampling

theorem, and a low-pass filter preserving a bandwidth B'(¢) = 0:45f'_(t) is reasonable and

easy to be implemented.

[0126] Table 1 shows the local sampling frequency f'.(t) and bandwidth B’(t) (assuming
B'(t) = 0:45f’_(t), as a function of the latency, for original sampling frequencies f; = 25 kHz
and f;, = 100 kHz, and using two different resolutions in the reduced representation space
(K4ee = 40 and K. = 60 samples per decade). As can be observed, the preserved bandwidth
depends on the original sampling frequency only for early latencies. According to the
bandwidth assumed for the different types of evoked potentials (minimum 3 kHz at 1 ms for
ABR, 300 Hz at 10 ms for MLR, 30 Hz at 100 ms for CAEP) a resolution of 40 samples per

decade would be enough for an appropriate representation of the different waves.
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Table 1
Koo = 40 samples/dec K gee = 60 samples/ides
F.=23kHz Fo= 1H0kHz f. =25 ke fo= 100 kHz

t pn By | g pe | B | s B

1ms 1. 2kHz 461 kHz | 145 kH: 6o66kHr | 128kHr 574kHz | 207kHz  9.30GkH:z
2 ms 643 kHr 29kHz | 799kHz 360kHz | 857 kHz 3283kHz | 11.3kHz S5.i9kHz
Fms 305kHy 1ATKkHz | 3.36kHz 151 kHr | 431 kHz  1.94kHz | 493k 223kHz
s o2 kHr 731 Hz P EkHz TR Mz | 230kHz 100kHz | 254 KMy 114 kHz
2 s 830 Hx 378 Hr %61 Hz 388 Hz P24 kHe 557 Hz {29kHy 379 Hrz
Siims 343 Hr 154 Hz 346 Hz 156 Bz 81t Hr 230 Hz 318 Hz 2331 Hz
100 ms 173 Hz 77.6Hz 173 Hz 780 Hz 2538 Hx {16 Hz 268 Hr 117 Hz
206 s 86.6 Hz 364 Hz 56,8 Hz 341 Hz {30 Hr 383 Hz 130 Hz SR6Hz
300 s 34,7 Hz 13 6Hz 347 Hz 1536 Hz S20Hz 234 Hz 32.1 Hz 234 Hx
1000 ms | 174 Hx 781 He 17.4 He TR2Hz 260 Hz {1.7 Hz 26.1 Hz 117 Hz

[0127] For the low-pass filtering of the original signal, a raised-cosine filter in the compressed
time axis is designed. The raised-cosine signal is commonly used in digital communications
because it provides an appropriate limitation of the bandwidth with a relatively short duration
in the impulsive response that can be controlled with a roll-off factor. The impulsive response
of the filter is scaled in order to provide a constant bandwidth in the compressed time axis
(and dependent on the latency according to the local sampling frequency f’;(t)), and is
sampled at the time instants ¢; of the original time representation. The sampling functions (i.e.,
the functions used to obtain each sample in the reduced representation) are stored as the
rows in the filtering and decimation matrix H,. Finally, the sampling functions are
orthonormalized with the Gram-Schmidt process in order to obtain an orthonormal basis for
the reduced representation space.

[0128] The vectors of the basis are arranged in a J, x J matrix, V., providing the reduced
representation (equivalent to a latency-dependent low-pass filtering and a down-sampling).
The V. matrix verifies that V.V, is a J, x J, identity matrix (because the sampling vectors are
orthogonal), and that VTV, is a J x ] square matrix providing a latency dependent low-pass

filtering.

Example of the basis for dimensionality reduction

[0129] The Figures 7 and 8 show the functions of the basis before and after the Gram-Schmidt
orthonormalization, respectively. The roll-off factor of the raised-cosine functions was a =
0: 25, and the sampling period was 0.9 of the raised-cosine symbol period. The sampling
frequency of the original representation was 25 kHz, and the reduced representation was
configured to provideK,.. = 10 samples/decade. The plots in the top represent the functions

of the basis versus the time in linear scale, while the plots in the bottom represent them as a
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function of the logarithmically scaled time. As observed in these plots, the basis provides a
non-uniform low-pass filtering and down-sampling, where the band-width and the sampling
rate decrease with the latency. For small latencies, the sampling tends to be uniform (sampling
frequency similar to the original 25 kHz). As the latency increases, the sampling tends to be
uniform in the logarithmically compressed time axis, with 10 samples per decade (for example,
10 samples between 1 ms and 10 ms, or between 5 ms and 50 ms). The detailed
representation of the sampling functions (plots in the right side of FIGURE 7) show the raised-
cosine function (in the logarithmically scaled time axis) centered at the position of each

sample.

[0130] The Gram-Schmidt orthonormalization (Figure 8) modifies both the shape and the
amplitude of the functions, in order to make viTv]- = §;; . Even though the position of the main
lobe of each sampling function corresponds to the latency of each sample, the shape is
affected by the orthonormalization process, mainly in the left-side of each function (because
orthonormalization has been performed starting at early latencies). The amplitude decreases

as the latency increases as a consequence of the normalization.

Latency dependent low-pass filtering

[0131] Figure 9 illustrates the latency dependent filtering provided by the reduced
representation. Using a basis V,. for reducing the representation from / = 10000 samples (at
fs = 25 kHz, time interval [0 - 400 ms]) to /- = 47 (with K., = 15 samples/decade), a synthetic
signal was generated using 47 random values in the reduced representation by transforming
them to the complete representation with = V7x”r. Additive Gaussian White Noise (AGWN)
at 15.2 dB was added to this synthetic signal (x,, = x + n). The noisy signal was then filtered
by transforming x,, to the reduced representation space, and then transforming the reduced
representation back to the original representation: £ = VT (V.x,,). Figure 9 shows both the
noisy signal x,,, and the recovered signal X. In the left side plots, the time is in linear scale,
while it is logarithmically scaled in the right side plots. The plots in the top represent the whole
time interval ([0 ms - 400 ms]), and the other plots represent a detail of different time intervals
([0.4 ms - 4 ms], [4 ms - 40 ms] and [40 ms - 400 ms]). As can be observed, the reduced
representation provides a latency dependent filtering, with a decreasing bandwidth as the
latency increases. Additionally, it can be observed that the representation using the
logarithmically scaled time-axis provides a more comprehensive visualization of the different

waves across the three decades.

[0132] The plots in Figure 10 illustrate that filtering a previously filtered signal has no

significant effect (or equivalently, using a resolution better than the required has no effect on
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the recovered signal). The original signal x,, generated with K;,. = 15 samples/decade, has
been projected with 4 different transformations %, = VTTyk(VT,kxO), (k = 1,2,3,4) generated
with K,;,. = 20,30,40,50 samples/decade. As expected, since the reduced subspaces are
included in the next ones as Kdec increases, the resulting recovered signals are identical to
the original one. This result, obvious in the case of filters with constant band-width (a band-
limited signal remains invariant when it is filtered with a band-width wider than that of the
signal), takes also place when latency-dependent low-pass filters are applied. The error
between the recovered and the original signal was measured, and SNR associated to this
error was greater than 40 dB (with error mainly associated to numerical accuracy and

truncation at the end of the signals).
Results

Results with synthetic signals - Configuration of the synthetic EEGs

[0133] The experiments with synthetic signals were performed with a sampling frequency fs
= 25 kHz. A known pseudo response was used, with a duration of 400 ms (10000 samples).
This pseudo response was that one used in Figures 3 and 4 (obtained by projecting a random
signal with VT,.l;. using a transformation ;. with 15 samples/decade). A number of stimuli was
generated with a random ISI following a uniform distribution between 30 ms and 100 ms. Three
EEGs were synthesized by convolution of the response with the stimulation signal, using
sequences of 2000 stimuli (duration of the EEG: 132 seconds, 3.30 millions of samples), 5000
stimuli (325 seconds, 8.14 millions of samples) and 10000 stimuli (649 seconds, 16.2 millions
of samples). The EEGs were contaminated with AWGN at -6 dB. Figure 11 represents a
portion of the clean and noisy EEGs used in the simulations. The EEGs are represented in

blue, while the stimulation signal is represented in red.

Results with synthetic signals - Comparison of the responses estimated with the different IRSA

implementations

[0134] Figure 12 compares the responses obtained with IRSA after 50 iterations with a
convergence control parameter « =0.1. In this simulation, the EEG was synthesized with
10000 stimuli (649 seconds and 16.2 millions of samples in the EEG). The left panel includes
the response provided by conventional IRSA and that provided by the matrix implementation
of IRSA. The right panel shows the response provided by matrix-IRSA projected using the
transformation V7V, and the response provided by matrix-IRSA performed in the reduced

representation space. The transformation reducing the dimensionality was prepared with 40
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samples/decade. The pseudo response used in the experiments for preparing the synthetic

EEG has been included as reference.

[0135] As can be observed, the conventional-IRSA and the matrix-IRSA provide
indistinguishable results. The difference between both responses is associated to the
accuracy of the numerical representation (the amplitude of the difference is around 10~5 the
amplitude of the response). As can be observed, the estimated response tends to the
reference, but 50 iterations are not enough to achieve convergence. The estimated signal is
affected by the noise (due to the noise added to the synthetic EEG). The comparison of the
estimated responses illustrates that conventional-IRSA and matrix-IRSA provide identical

results.

[0136] The projection using VTV, provides a latency-dependent filtering of the response (as
can be seen in the right panel). Again, 50 iterations seems to be insufficient. The response
obtained by projecting the result is very similar to that provided by matrix-IRSA in the reduced
representation space. In this case both responses are hardly distinguished even though the
amplitude of the difference is around 10~3 the amplitude of the response. The slight difference
between both procedures seems to be associated to accidental correlation between the noise
contaminating the signal and the stimulation sequence (which provides a small contribution to
the estimated response out of the reduced representation space that propagates the error as

described with equation (52)).

[0137] Figure 13 compares the results provided by matrix-IRSA after projection and those
provided by matrix-IRSA in the reduced representation space after 10000 iterations. The left
panel shows the response estimations together with the pseudo response (included as
reference), while the right panel shows the difference between both estimations. As can be
observed, after a large enough number of iterations, the estimated responses converged to
the pseudo response. Both estimates are again hardly distinguished, and the difference
between them is significantly smaller than the response, which illustrates that performing
matrix-IRSA and projecting the result in the subspace is equivalent to performing the matrix-

IRSA in the reduced subspace.

[0138] Table 2 evaluates the difference between the responses estimated by the different
IRSA implementations. The responses are compared in terms of energy ratio of the reference
response to the difference between both compared responses, expressed in dB (or,
equivalently, SNR associated to the comparison of both responses). Since the simulation
allows a comparison with the template used for preparing the synthetic EEGs, the responses

provided by the different IRSA implementations are firstly compared with the template. Due to
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the large execution time of the conventional IRSA, experiments were carried out with this
implementation only for 50 iterations. The experiments for 100000 iterations were carried out
only for the matrix-IRSA in the reduced representation space, in order to verify the
convergence of the responses after 10000 iterations (matrix-IRSA in the complete

representation space would be prohibitive for 100000 iterations).

Table 2 — Simulation results: Comparison of the responses estimated with the

different implementations of IRSA.

Experimental conditions:

50 iter. &) fter. 5 iter UK} iter 1000FH iter.
Comparison: 2000 stmudt | 5000 stimuli | 10000 sl | L0000 stirpudt | FO000 stimndi
conv~-iRSA vs. Template 1188 dB 117 4B i1.14dB - -
matrix-IRSA vs. Template 10.88 dB .17 dB {10448 2711 4B
matrfx-IRSA-proj va. Templame 1.30dB 11.385dB 1124dB 345 dB -
malix-IRS A-red vs. Templante 3538 11.37 dB 11.23dB 37T dB 3977 dB
malii-IRSA vs. conv-IRSA 301063 4B 331,09 dB 341 4B -
matix-1R8A-red vs. mattix-~IRSA-proj 5477 dB SG75 AR RERE 391t dB

[0139] The comparison of the responses provided by the different implementations of IRSA
with the template shows that (1) 50 iterations are not enough for convergence (the SNR
increases from 11 dB at 50 iterations to 27 dB or 39 dB at 10000 iterations); (2) 10000
iterations are enough for convergence (there is no increase of SNR from 10000 to 100000
iterations); (3) projection (either with matrix-IRSA-projection or with matrix-IRSA-red) provides
a latency dependent filtering that improves the quality of the response (at 10000 iterations the
latency dependent filtering increases the SNR from 27 dB to 39 dB); (4) the quality of the
responses provided by conventional IRSA and matrix-IRSA is identical (identical SNR when
compared with the template, and SNR associated to the difference close to 300 dB); (5) the
quality of the responses provided by matrix-IRSA-proj and matrix-IRSA-red is very similar
(very similar SNR when compared with the template, and SNR associated to the difference
greaterthan 50 dB); (6) in the case of 50 iterations, the increase in the number of stimuli does
not provide the expected improvement in the quality of the estimated responses (the expected
improvement is 4 dB when the number of stimuli increases from 2000 to 5000, 3 dB when it
increases from 5000 to 10000), because of the insufficient number of iterations (the error
associated to insufficient number of iterations is greater than that associated to the additive

noise in this condition).

[0140] The responses provided by conventional-IRSA and matrix-IRSA are essentially
identical, as reflected by so large SNR (around 300 dB in all the comparisons). This small
difference is caused by the accuracy in the internal numerical representation. The error
between both IRSA procedures is much smaller than the error between the estimated

responses and the template (approximately 11 dB after 50 iterations, and 27.11 dB after 10000
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iterations), and therefore the responses provided by both implementations can be assumed to

be identical.

[0141] The latency dependent filtering provides and evident improvement of quality (an
increase of 12 dB in the response estimations in this simulation). This improvement is the
result of a reduction of the noise associated to the latency dependent filtering, which removes
noise components with frequency above the cut-off frequency associated to each latency and
preserves the frequency components of the estimated response (because the pseudo
response was generated with 15 samples/decade and the latency dependent filtering was
defined with 40 samples/decade and therefore the response is not expected to be distorted

by this latency dependent filtering).

[0142] The SNR associated to the comparison of matrix-IRSA after projection and matrix-
IRSA performed in the reduced representation space is lower, but it is also very high (always
higher than 50 dB). As discussed previously, the small differences are probably associated to
accidental correlations between the noise and the stimulation signal, which propagates a
difference between both estimations procedures according to equation (52). In any case, with
so large SNR, in practice both results can be assumed to be identical, since the error between
the estimated responses and the template is significantly greater and the associated SNR
significantly lower (about 11 dB after 50 iterations, and close to 40 dB at convergence) than
those corresponding to the comparison of both IRSA estimations (more than 50 dB at 50

iterations and close to 60 dB at 10000 iterations).

Results with synthetic signals - Comparison of the execution time for the IRSA

implementation

[0143] Table 3 shows the results of the simulations in terms of computational load. The
execution time for the different procedures (using a desktop computer with an Intel-Core i7-
3770 CPU, 3.40 GHz, 8.00 GB RAM) are compared in this Table. The execution time was
measured in different conditions in order to observe the influence of the EEG length or the
number of iterations. The EEG length (associated to the number of stimuli in these
experiments) increases all the execution times (initialization, iterations and total execution
time) in conventional IRSA. Similarly the time required for the initialization increases with the
EEG length for matrix-IRSA and matrix-IRSA-red. However, the time required for each
iteration is not affected by the EEG length in the matrix implementations of the algorithm, as
expected from the formulation. The time required for each iteration is almost constant in the
case of matrix-IRSA (there are some fluctuations associated to the computer dedication to the

algorithms, since the computer was running other processes simultaneously). The time
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required for each iteration of matrix-IRSA-red was not accurately measured for 50 iterations
because of its short duration and the small number of iterations. For a large number of
iterations, the execution times for matrix-IRSA-red are more reliable (as can be observed in
the Table for 10000 and 100000 iterations).

[0144] A reasonable estimation based on IRSA (with a small convergence control parameter)
requires several thousands of iterations. If the execution times for 10000 iterations are
compared, one can observe that the conventional IRSA algorithm would require a prohibitive
execution time (the execution time in this case, 23690 s, or approximately 6h:35’, was
estimated from the results for 50 iterations). The matrix implementation of IRSA reduces the
execution time to 487.9 s (approximately 8 minutes), and therefore, the execution time is
reduced in a factor 50. The matrix-IRSA performed in the reduced representation space
provides the response in less than 10 s, which corresponds to an additional reduction of the
execution time in a factor 50 (the reduction was around 2500 with respect to the conventional
IRSA). It is remarkable that most of the execution time of matrix-IRSA-red is devoted to the
initialization, while most of the execution time of matrix-IRSA and conv-IRSA is devoted to the
iterations, and therefore, the improvement in the execution time is more important as more
iterations are performed. Obviously, the reduction of the execution time of the matrix-IRSA-
red with respect to the matrix-IRSA is associated to the reduction of the dimensionality (in this
case, from ] = 10000 samples when the algorithm is performed in the complete

representation space to ], = 110 samples in the reduced representation space).

[0145] Table 3 shows the results of the simulations in terms of computational load. The
execution time for the different procedures (using a desktop computer with an Intel-Core i7-
3770 CPU, 3.40 GHz, 8.00 GB RAM) are compared in this Table. The execution time was
measured in different conditions in order to observe the influence of the EEG length or the
number of iterations. The EEG length (associated to the number of stimuli in these
experiments) increases all the execution times (initialization, iterations and total execution
time) in conventional IRSA. Similarly the time required for the initialization increases with the
EEG length for matrix-IRSA and matrix-IRSA-red. However, the time required for each
iteration is not affected by the EEG length in the matrix implementations of the algorithm, as
expected from the formulation. The time required for each iteration is almost constant in the
case of matrix-IRSA (there are some fluctuations associated to the computer dedication to the
algorithms, since the computer was running other processes simultaneously). The time
required for each iteration of matrix-IRSA-red was not accurately measured for 50 iterations

because of its short duration and the small number of iterations. For a large number of
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iterations, the execution times for matrix-IRSA-red are more reliable (as can be observed in
the Table for 10000 and 100000 iterations).

Table 3 - Simulation results: Execution time required for the different implementations
of IRSA.

Procedure stinull flerations Lins Fiter Lra
cy-TRSA 2008 30 G 1e8 s D467 s 23353«
sraatrix-IRSA 200 30 4307« 532ms 69 5
matrix-IRSA-red 2000 S0 4.525s Q148 ms 4535
cotiv-IRSA 5000 aQ 3 1.176s 5028 s
matrix-IRSA SO0 NS 44808 317 ms 7365
matrix-IRSAred 3000 3 54273 Q188 mx S14s
conv-IRSA 10000 50 62 s 2,369 % 1195
matrix- IS A 1O{R)3 S0 Q.612s  S1.9ms 12,25
matrii-IRSAved 10000 30 HL 245 Q0162 ms 0.3
conv-IRSA Q0 FO0{KY L2 s 2369 236890«
matrix-IRSA 10060 10006 98G5 478 mis 487.9 5

natrix-ERSAred 10000 HHIO0 G828 308 us 9.87 s
matx-ISA-d 100 100000 | 1040s 383 us 11.0s

[0146] A reasonable estimation based on IRSA (with a small convergence control parameter)
requires several thousands of iterations. If the execution times for 10000 iterations are
compared, one can observe that the conventional IRSA algorithm would require a prohibitive
execution time (the execution time in this case, 23690 s, or approximately 6h:35’, was
estimated from the results for 50 iterations). The matrix implementation of IRSA reduces the
execution time to 487.9 s (approximately 8 minutes), and therefore, the execution time is
reduced in a factor 50. The matrix-IRSA performed in the reduced representation space
provides the response in less than 10 s, which corresponds to an additional reduction of the
execution time in a factor 50 (the reduction was around 2500 with respect to the conventional
IRSA). It is remarkable that most of the execution time of matrix-IRSA-red is devoted to the
initialization, while most of the execution time of matrix-IRSA and conv-IRSA is devoted to the
iterations, and therefore, the improvement in the execution time is more important as more
iterations are performed. Obviously, the reduction of the execution time of the matrix-IRSA-
red with respect to the matrix-IRSA is associated to the reduction of the dimensionality in this
case, from J = 10000 samples when the algorithm is performed in the complete

representation space to /., = 110 samples in the reduced representation space).

Results with real EEGs - Recording session

[0147] The evaluation of the proposed IRSA optimizations using real EEGs was based on an
AEP experiment in which 4 different stimulation rates were configured. The stimulation signal
was prepared using a uniform distribution of ISI between 500 and 800 ms (for an average
stimulation rate of 1.53 Hz), between 300 and 600 ms (for 2.22 Hz), between 100 and 300 ms
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(for 5.00 Hz) and between 30 and 100 ms (for 15.38 Hz). The number of stimuli used for each
configuration was increased with the stimulation rate (from 1500 stimuli at the slowest rate to
20000 stimuli at the fastest rate). The stimulation consisted in a sequence of rarefaction clicks
presented at the instants defined by the stimulation sequence. The clicks were delivered
diotically through ER-3A insert earphones at 60 dB HL. The recording electrodes were located
at the upper forehead (F,, active), at the mastoids (Tp9 and Tp10, references 1 and 2) and at
the middle forehead (Fpz, ground). The EEGs were recorded using a BioSemi instrumentation
pre-amplifier (BioSemi V.B., Amsterdam, Netherlands), with a [1-3000] Hz bandwidth and a
sampling frequency of 16384 samples per second. The [Fz-Tp9] and [Fz-Tp10] were averaged
to obtain a single EEG. Eye-blink artifacts were suppressed with the iterative template
matching and suppression (ITMS), an algorithm that detects, models and suppresses blink-
artifacts from a single-channel EEG (Valderrama et al., 2018 - Ref 19). Table 4 summarizes
the configurations involved in this EEG recording session. Since one of the objectives of the
inventors was the evaluation of the optimization procedures proposed for the IRSA algorithm,

only one subject (male, 33 years) was considered in these experiments.

Table 4: Configuration of the EEG recording session.

K EEG lengih EEG length

Configuration iS1 aver stiny rate  (stimully  (seconds) {samples)
i SOHY - SO0 ms 133 Hz 1500 996 (6.2 - 107

2 30 - 600 ms 222 Hz 2000 924 1544 - 100

3 1O - 366 s 300 Hz SO00 {021 1672 - 168

4 30 - 100 ms 15.38 Hz 2006 1322 2066108

Results with real EEGs - Comparison of the responses estimated with the different IRSA

implementations

[0148] The EEGs have been processed with different versions of the IRSA algorithm,
including conventional IRSA, matrix-IRSA and matrix-IRSA performed in a reduced
representation space. The length of the response was set to 1 second (J = 16384 samples)
and the convergence parameter for IRSA was set to « = 0.02 in order to avoid oscillations in
the iterative algorithm. The dimensionality reduction was prepared with 40 samples per
decade, and the dimension of the reduced representation space was /. =119. The
conventional and matrix implementations of IRSA have been compared for 50 iterations, and
the matrix implementations (in the complete representation space and in the reduced
representation space) have been compared for both 50 and 10000 iterations. The matrix-IRSA
in the reduced representation space has also been performed for 100000 iterations in order

to verify convergence.
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[0149] Figure 14 shows the response estimations provided by different IRSA implementations
after 50 iterations. The time axis is logarithmically scaled in order to clearly show the different
evoked potentials, including three decades between 1 ms and 1 s. The waves of the evoked
potentials are indicated in the plots, including ABRs (waves LI III, V), MLRs (waves
Ng, Py, Ny, P,, Ny, P,) and CAEPs (waves P;, Ny, P,). The different plots correspond to different
IS| configurations (or average stimulation rates), and the change in the latency and amplitude
of the waves can be appreciated as the stimulation rate increases. The left panel compares
the responses estimated with conventional IRSA and matrix-IRSA, while the right panel
compares those estimated with matrix-IRSA followed by projection with TV, and matrix-IRSA
performed in the reduced representation space. When the responses of the left and right
panels are compared, a reduction of the noise can be appreciated as a consequence of the
latency dependent filtering. On the other hand, the responses provided by conv-IRSA and
matrix-IRSA, as well as those provided by matrix-IRSA-proj and matrix-IRSA-red, were found
to be hardly distinguishable. Figure 15 shows the responses provided by matrix-IRSA-proj and
matrix-IRSA-red after 10000 iterations (conventional IRSA for so many iterations is prohibitive
and was not computed). In this Figure the amplitudes of the estimated responses are larger
than those obtained for 50 iterations because convergence requires several thousands of
iterations (50 iterations are clearly insufficient). The right panel of Figure 15 represents the
difference between matrix-IRSA-proj and matrix-IRSA-red. It can be appreciated that the
difference is small (the vertical scale for the responses is 1uV/div, while the scale for the
differences is 0.02uV /div).

Table 5: Results with real EEGs: Comparison of the responses estimated with the

different implementations of IRSA.

Compaed Conli grrgtion 30 HLEEY
yathuods IS Omsy  stiroudt BEG dvatos | iteratdus dorations
T A00-800 150 3 & REAREDR
conv-IRS A 20300 200D 924 5 3 -
¥E, 30 R-ARY O 300 LA RS 51348 -
matnx-IRS8 A 4 3G-HM O 20080 1323 % 3¥17 48
Averag 386.04 dB -
T SDO-sRY 1500 QY 5 37648 3adaB
matrix-1IHS8A-proj | 2 300-600 2000 424 g 451748 3722 dB
Vi, 3 H-300 M0 3 340348 265548
matrix-IRSA-red | 4 30300 20000 f322 5 4834 4R 3568dB
Average 46,5348 3287 dB

[0150] Table 5 compares the responses estimated by conv-IRSA and matrix-IRSA (for 50
iterations) and those estimated by matrix-IRSA-proj and matrix-IRSA-red (for 50 and 10000
iterations). As in the case of the simulations, conventional and matrix implementations

provides identical results (SNR associated to the comparisons around 300 dB, probably due
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to the numerical precision). However, the comparison of matrix-IRSA-proj and matrix-IRSA-
red provides a SNR lower than that observed in the simulations (46 dB in average for 50
iterations, 33 dB in average for 10000 iterations). The difference between both methods is
small, and is probably associated to accidental correlation between the noise and the
stimulation sequence that propagates the error according to equation (52). In order to verify
convergence, the response estimations after 50, 10000 and 100000 iterations have been
compared in Table 6. The comparison of responses for 50 and 10000 iterations (with SNR
around 3 dB) reveals that convergence is not achieved for 50 iterations (as observed when
Figures 14 and 15 are compared). On the other hand, 10000 iterations are enough for
convergence (the SNR associated to the comparison of responses for 10000 and 100000 is

greater than 170 dB in all the configurations).

Table 6: Results with real EEGs: Comparison of the responses estimated with 50,
10000 and 100000 iterations with matrix-IRSAred.

Companad Configuration IR5A methnd
condions IS1dmsy  sinmuli EEG duration | msrix-IRSA-red
TOSO0-8000 1500 Yo s 622 48
5 weratiens IO A00-s0G 2008 24 4.54 d8
¥, 3003000 S8G 121 s 310 d8
000 werations | 4 3100 20000 (3225 154 dR
Average 386 dB
fOSO0-8G0 1500 900 « 227 dB
HOOO0 slerations. | 2 300-R00 2000 824 i
¥, T30 30B0D 121 s
HGO000 ferations | 4 3010480 20000 F322 %
Average 08,50 4B

Results with real EEGs - Comparison of the execution time for the IRSA implementations

[0151] Table 7 shows the execution times associated to the different implementations of
IRSA. The time required for initialization, for each iteration and the total execution time are
estimated for different conditions and IRSA implementations. The execution times observed
in this Table are consistent with those observed for the synthetic EEGs: (1) the time required
for each iteration depends on the number of stimuli and EEG length for the conventional IRSA,
but not for the matrix implementations; (2) matrix-IRSA provides a substantial reduction of the
computational time with respect to conventional-IRSA; (3) for a reasonable number of
iterations (several thousands) most of the execution time is devoted to the iterations in
conventional-IRSA and matrix-IRSA; however in matrix-IRSA-red the time involved in each
iteration is very small (several microseconds) and most of the execution time is devoted to the
initialization; (4) for a reasonable number of iterations, matrix-IRSA-red provides a substantial

reduction of the execution time with respect to matrix-IRSA or conventional-IRSA. The total
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execution time for 10000 iterations was reduced from 28h:30’ (conventional-IRSA, estimated
from results for 50 iterations) to 1h:36’ (matrix-IRSA) and to 1:17” (matrix-IRSA-red). The
execution time is therefore reduced in a factor 18 due to the matrix implementation, and an

additional factor 75 due to the implementation in the reduced representation space, providing

a total time reduction in a factor 1300 when both optimizations are combined.

Table 7: Results with real EEGs. Time required for execution for different responses,

procedures and conditions.

Contiguration

Execution me

Provedure fterations ISEimsy  siinwli EEG dur fivi Fiter
I B00-BOG HRtEY Gl 5 2153 0893 s
Crane-TRSA i 3 A0S 200G PACE (3888 0773¢
3 OI0-IG SO 1021 s G708« 1.BQds
4 310G 2000 13328 FHEI s THOSs
Tedal execution time
I 30800 180G Gy g 14.73s 131
Mat-IR5A &4 2 300-e00 2000 Y2d s 14308 0.130s
3 MRy SN0 21 1438 £3:
20000 1322 s 2378«
Q913 5 i3 139 s
Mat-IRSAred S0 G4 g 15 134 us
03l s 1A 103 us
1322 | 255 438 ps
GUtY 2 02158 G893
Cora-IRBA 1000 9xd 5 (286s 0T773s
{estinution W2 s 9.8 s LeMd s 1R18O0s
13323 s TRy TOMSs TOa2Gs
2R 5
i RTEY G0 s 1hi7s 138 s
Aa-IREA JRREEE 20y 2000 924 s 3130
30308 S0 N2 s LN E I
4 31000 20000 1332 §.152s 1%
Tostaf execation time S794.3
I 300830 1500 QY 5 324 s 17.3¢
Mai-IRS A red JREREE: 2 30-eGn 3000 Yd s G i3 us 1733
30 G330 SGOn W2l s 551 us 1878
4 3y 20000 13328 394 px 357«
Tedal execution time TaYx
HEEE 880s 618 ps 1T
Mat-IRSAved | D G4 x 16785 &1%us i74s
2l g 17188 834 us 1T Hs
4 20000 1322 s w36 6ddps SRS
Total excoution time T«

Results with real EEGSs - Selecting an appropriate resolution for dimensionality reduction
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[0152] An important contribution for the reduction of the computational load is associated to
the reduction of the dimensionality. The dimensionality of the reduced representation space
depends on the resolution used for the basis definition. A resolution of K,,. =40
samples/decade provides a reasonable estimation of the responses. However, selecting an
appropriate K. is important, since a greater K, involves more computational load, while a
smaller one would reduce the accuracy of the estimated responses (since an appropriate

representation of the response requires a minimum resolution).

[0153] In order to determine what is the appropriate resolution, a sensitivity study has been
carried out by estimating the responses for different resolutions ranging between 5 and 90
samples per decade. Figure 16 shows the responses estimated at different resolutions with
matrix-IRSA-red after 10000 iterations. As can be observed, a resolution smaller than 20
samples/decade is not enough for identifying all the ABR components. On the other hand, an
excessive resolution (greater than 80 samples/decade) provides a too high cut-off frequency
in the latency dependent filtering that causes small high frequency oscillations associated to
noise. The responses shown in the Figure illustrate that a resolution between 40 and 60
samples/decade is appropriate for the representation of all the AEPs, with a good tradeoff

between resolution, dimensionality reduction and noise filtering.

[0154] In orderto quantitatively evaluate what is the appropriate resolution, the inventors have
compared the responses estimated for different resolutions with those estimated for 70
samples/decade. The responses with K,,. = 70, used as reference, are marked in black in
Figure 16. The SNR associated to the difference between the evaluated and the reference
responses has been calculated for different resolutions and are expressed in dB in Table 8.
The highest SNR is observed for 60 and 80 samples/decade since these are the estimations
obtained in the conditions most similar to the reference. A slight reduction of the SNR is
observed for 90, 50 and 40 samples/decade, probably associated to the different amount of
noise in the estimated responses associated to the different resolutions. However, a
progressive reduction of the SNR is observed for resolutions of 30 samples/decade or smaller.
This analysis suggests that resolutions smaller than 30 samples/decade are not enough, while
a resolution in the range 40-60 samples/decade are appropriate for representing AEP: these
resolutions provide appropriate representation of ABRs, MLRs and CAEPs, optimal
dimensionality reduction, optimal reduction of the computational time for matrix-IRSA-red, and

optimal latency dependent filtering.

Table 8: Results with real EEGs. Evaluation of the estimated response as a function of

the resolution (number of samples/decade). The responses with 70 samples/decade
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were used as reference. The SNR measures the ratio of the response to the difference

between the compared responses expressed in dB.
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Discussion and conclusions

[0155] The inventors proposed and evaluated two optimizations ofthe IRSA algorithm for AEP
estimation. The first one is a matrix implementation of the IRSA algorithm. The second one is
a reduction of the dimensionality of the algorithm based on a latency dependent low-pass

filtering and decimation.

[0156] The matrix formulation was theoretically demonstrated and experimentally verified to
be equivalent to the conventional formulation of the IRSA algorithm. The results provided by
both algorithms are identical (with differences associated to the limited numerical resolution).
The reduction of the computational load when IRSA is performed with the matrix formulation
is due to the fact that conventional IRSA requires, at each iteration, computations involving
the whole EEG (typically millions of samples), while matrix-IRSA requires computations
involving the whole EEG only at initialization, but at each iteration the computations just involve
operations with the length of the response (typically hundreds or thousands of samples).
Therefore, the matrix formulation of IRSA is an equivalent implementation that provides a

substantial reduction of the computational load.

[0157] The dimensionality reduction allows an additional reduction of the computational load
of IRSA. The conditions that the dimensionality reduction should verify in order to make matrix-
IRSA and matrix-IRSA-red equivalent have been studied: both are equivalent if the response
to be estimated is contained in the reduced representation space. This condition suggests, for
example, that a simple dimensionality reduction could be achieved by appropriate low-pass
filtering and decimation. The particular nature of the AEP signals suggests a more challenging
dimensionality reduction, because the bandwidth of the different components (ABR, MLR,

CAEP) decreases as the latency increases. A procedure for designing an orthonormal basis
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providing a latency-dependent low-pass filtering and decimation has been proposed. This
basis provides a dimensionality reduction that preserves the AEP components when the
resolution is large enough. An analysis of the preserved frequency content at each latency
suggests that a resolution of 40 samples/decade should be enough (see Table 1). A sensitivity
analysis with real EEGs has been performed in order to determine what is an appropriate
resolution for optimally representing the AEP responses. A resolution of 40 samples/decade
was found to be appropriate, with an evident degradation when a resolution equal or smaller

than 30 samples/decade is applied (see Figure 16 and Table 8).

[0158] The dimensionality reduction is not very relevant when a specific portion of the
response is considered: for example, if only ABR or only MLR or only CAEP responses are
under consideration, after appropriate band-pass filtering and decimation of the EEG, 100
samples would be enough for representing the response, and the latency-dependent lowpass
filtering and decimation would provide a dimensionality reduction from 100 samples to 40
samples, which would moderately improve the matrix-IRSA efficiency. However, the proposed
dimensionality reduction is more relevant when several AEP portions are simultaneously
under consideration. If all ABR, MLR and CAEP are considered, a minimum dimensionality of
10000 samples is required (minimum sampling frequency of 10 kHz for appropriate
representation of ABR, minimum window length of 1 s for appropriate representation of
CAEP), and the proposed latency-dependent low-pass filtering and decimation with a
resolution of 40 samples/decade reduces the dimensionality from 10000 to 110, with the

subsequent impact in the reduction of the computational load of the IRSA algorithm.

[0159] Inthis sense, the proposed implementation of matrix-IRSA in a reduced representation
space provides a framework in which the whole AEP response (including ABR, MLR and
CAEP) can be estimated. Without this dimensionality reduction, matrix-IRSA would require a
prohibitive execution time to reach convergence, while matrix-IRSA performed in the reduced
representation space provides the results in few seconds. This opens the possibility of a global
analysis of the different components of the auditory response in a more comprehensive
representation. The representation of the response including several decades and using a
logarithmically scaled time axis (as in Figures 14 and 15) allows a compact representation of

all the evoked potentials.

[0160] In addition to the optimization of the computational time of matrix-IRSA, the
dimensionality reduction provides a latency dependent low-pass filtering that contributes to
appropriately remove the noise affecting the estimated response. The transformation provided
by the orthogonal basis preserves those components in which the response is expected to

contain energy and removes those components in which the response is not expected,
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cancelling the noise affecting the removed components. This improves the quality of the

estimated responses.

[0161] Even though the resulting responses provided by matrix-IRSA followed by projection
and matrix-IRSA-red are very similar, there are slight differences between both results. These
differences are observed for simulations as well as for real EEGs. The differences are
associated to the noise affecting the EEG, and the accidental correlations of the noise and the
stimulation signal. The noise and the stimulation should be uncorrelated signals, but due to
specific values of both signals and their limited length, they are not completely uncorrelated,
and the estimation of the response from a noisy EEG contains energy out of the reduced
representation space that propagates a small error according to equation (562). The impact of
this error can be reduced by increasing the resolution in the dimensionality reduction. Using
an increased resolution has three effects: it increases the dimensionality of the reduced
representation space (the improvement in the execution time would be smaller); it reduces the
error propagated by the term VIRsV T 2 #xv2 i in equation (52); and it reduces the efficiency
of noise reduction associated to the latency-dependent low-pass filtering (because of the use
of an excessive resolution). A practical alternative to avoid the last effect would be to perform
matrix-IRSA-red with a high resolution (for example K;.. = 100 samples/dec) in order to
reduce the error, and after convergence, filtering the resulting response by applying V,TV,.
defined with the appropriate resolution (for example K,,. = 40 samples/dec). In any case,

the sensitivity analysis reveals that 40 samples/dec is an appropriate resolution.

[0162] The suggested dimensionality reduction, in addition to the advantages previously
described (reduction of the computational load of matrix-IRSA algorithm and latency-
dependent low-pass filtering for noise reduction) provide a compact representation of the
estimated responses, particularly useful if the whole response is under consideration. An AEP
response, with a duration of 10000 samples, can be represented using only 100 or 200
samples. The compact representation is not a limitation, since the basis can be applied to
recover the standard representation from the compact one (i.e. to transform the response from
the reduced representation space to the complete representation space). This way, ifthe J. x ]
transformation V; is stored (or the procedure to obtain V., is clearly defined), the representation
of each response does not require ] but only ], samples. This can be exploited in different
contexts: to reduce the size of a database of responses, for optimally transmitting the
responses, or when using the responses in automatic classification, distance measurements
among responses, automatic quality assessment, automatic detection of peaks or other
artificial intelligence applications (a substantial dimensionality reduction preserving the

relevant information is always useful as a pre-processing procedure in all these examples).

45



WO 2020/198787 PCT/AU2020/050311

[0163] Regarding the impact of the proposed optimizations in the execution time, for the
evaluation with the described experiment using real EEGs, completing 10000 iterations of
IRSA required 28h:30m with the conventional implementation, 1h:36m with the matrix
implementation and 1m:17s with the matrix implementation in the reduced representation
space (see Table 7). Taking into account that the time involved in the recording session was
1h:11’, the execution time required for conventional IRSA make this implementation
unacceptable for a practical application. In spite of the time reduction provided by the matrix
implementation, the processing time is larger than the acquisition time. In contrast, the matrix-
IRSA performed in the reduced representation space required just a few seconds (most of
them devoted to initialization) to complete the algorithm, providing a useful applicability for

clinical or research applications.

Computational optimization of the matrix-IRSA method for recording evoked potentials:

Fast implementation for complete and reduced representation spaces

[0164] The inventors have also studied the computational load of the matrix-IRSA algorithm
(for both complete and reduced representations spaces). In the case of matrix-IRSA in the
complete representation space, an important part of the computation is associated to the
calculation of the cross correlation between the EEG and the stimulation signal (both signals
with a long duration, typically several minutes and millions of samples) and the calculation of
the autocorrelation of the stimulation signal. However, the most important factor affecting the
requested memory and the execution time is a matrix product (involving the autocorrelation
matrix of the stimulation signal and the response estimated at each iteration), where the size
of the matrix is / x J (being J the length of the response). For AEP estimations including only
a portion of the evoked response (i.e. only ABR, or only MLR, or only CAEP) the length of the
response is several hundreds of samples and the matrix product is not an important problem

(neither for memory nor execution time).

[0165] However, if the response includes the contributions of the whole auditory pathway
(including ABR, MLR and CAEP simultaneously), the length of the response could be several
thousands of samples (in the experiments with real EEGs discussed earlier) , the response
length is ] =16384 samples), and the matrix product limits the computational efficiency of the
matrix-IRSA algorithm because of both, memory requirements (the matrix requi requires 268
millions of numbers, and more than 2 GB of memory for double precision representation) and

execution time.

[0166] In the case of matrix-IRSA performed in the reduced representation space, the

computation of the correlations during the initialization are affected by the same problem as
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in the complete space. The initialization also requires the calculation of the autocorrelation
matrix (of the stimulation signal) in the reduced space (i.e. transforming a / x J matrix into a
J- x J, matrix where J, is the dimensionality of the reduced space), with the subsequent
problems of memory and execution time requirements. However, after the initialization, the
matrix product performed at each iteration involves a J, x J. matrix (where J,. is typically
between 100 and 200) and the iterations do not involve restrictive memory or execution time

requirements.

[0167] Focusing the attention in the most critical computations of the matrix-IRSA algorithms
(both in the complete and the reduced spaces), the inventors proposed optimizations to
improve their efficiency. Two aspects are exploited in order to implement the optimizations.
With respect to the computation of the correlations, the fact that they involve the stimulation
signal (which is composed of a relatively small number of unitary isolated impulses) allows to
simplify these calculations. With respect to the matrix products (involving the autocorrelation
matrix of the stimulation sequence when matrix-IRSA is performed in the complete space, or
the autocorrelation matrix transformed to the reduced space in the other case), the fact that
the involved matrix is symmetric Toeplitz allows to store it using just J values (instead of ] x |
values) as well as to obtain the matrix product with a convolution operation, simplifying the
calculation and reducing the memory requirements. Additionally, these optimizations do not
involve any approximation, and they provide identical results to those from the previous

versions of matrix-IRSA (both in the complete or in the reduced representation spaces).

[0168] The proposed optimizations of the matrix-IRSA algorithm and the inventors evaluated
the improvements (in terms of computational efficiency) obtained when the optimized matrix-

IRSA algorithms are applied to obtain AEP responses using real EEGs are now described.
METHODS
Optimization of matrix-IRSA in the complete representation space

The matrix-IRSA algorithm

[0169] The matrix-IRSA algorithm models the EEG y(n) as a convolutional process involving

the response to be estimated x(n), the stimulation signal s(n), and the noise n,(n):
yin) = s{nd < a{n) + neln) (1)

where n is the index of the samples (with n = 0;... ;N — 1), N the length of the EEG, the

response x(n) is assumed to be null for n > J (J is the length of the response), and the
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asterisk (*) represents convolution. The stimulation signal s(n) contains K events at the

samples m and can therefore be written as:
R

e (72)

where §(n) is the unitary impulse at n = 0. With these definitions, the matrix-IRSA algorithm

is the following

1. [Initialization:

1 K1 N —.
B =0 wldi= = Do wid vl edi= Y slastn =gy Yie{h. T 1)
T 2 : , .
=0 n=y (73)
RS ‘:if’\ Piy — dpid it :)6‘{“‘;.”.171} {f(q.Z.”.\])).;}
g b= geredih — 2 0 2 Fs (74)
2. Response updating:
XKy = Xy—p T i¥Es_g (75)
3. Averaged-residual estimation:
Ly — EZn — ff(.,xe (76)

4. Steps 2 and 3 are repeated until convergence.

[0170] The computational requirements of this algorithm are conditioned by the number of
samples in the EEG (N) and the length of the response (J). Two operations involve signals
with the length of the EEG during the initialization: the initialization of the averaged residual
7o(j) and the estimation of the autocorrelation of the stimulation signal r;(j). Regarding the
length of the response, the most critical point concerning the computational requirements is
the management of the matrix R (that requires to store J x J values) at initialization, and the

matrix product R.X; at each iteration.

Cross-correlation of the EEG and the stimulation signal

[0171] Interestingly, the averaged residual z,(j) can be calculated as the normalized cross-

correlation between the EEG y(n) and the stimulation signal s(n):
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[0172] This equivalence is associated to the fact that the stimulation signal consists in a

number of unitary impulses.

[0173] Even though both procedures for computing z,(j) (using the cross-correlation or the
sum for each individual impulse) are equivalent, the best procedure in terms of computational
load depends on the length of the involved signals (N and J) and the number of stimuli (K) in
the stimulation signal. In general, if the number of impulses in the stimulation sequence was
very large, the calculation based in cross-correlation would be more efficient, because
internally, cross-correlation is calculated with Fast Fourier Transform (FFT) and Inverse Fast
Fourier Transform (IFFT) that are efficient algorithms in spite of the length of the involved
signals. However, if the number of stimuli is small, computing z,(j) as a sum for each impulse
is more efficient than using cross-correlation. For typical values of the EG length (N about
several millions of samples), response length (J about several hundreds or a few thousands
of samples) and number of stimuli (K about several thousands of stimuli), the calculation of

7y(j) as a sum for all the stimuli is more efficient.

Autocorrelation of the stimulation signal

[0174] Similarly, the autocorrelation of the stimulation signal can be calculated either as a

cross-correlation or as a sum for all the stimuli:

N—j K1
r{J) = o gli = S__: simisin— ji= E &4 + v
=i s (78)

(the demonstration of this equivalence is similar to that in equation (77) where the signal y(n)
is substituted by s(n)). Again, the computational efficiency can easily be improved by

calculating the autocorrelation as a sum for all the stimuli.

Optimization of the matrix product

[0175] The most memory and time consuming part of the matrix-IRSA algorithm is the matrix

product R.X;. This matrix product involves the J x J matrix R; and the vector X; with a length

of ] samples:
O L) ¥ i.] — 3 /
P , T rild =2
P2 —Ru = b v el — 3
K .
Pr-t crsld =1 e -3 e P - {0 O\ w1 (79)
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[0176] The matrix product requires the storage of a J x J matrix, /2 products and % sums,
with the corresponding memory and execution time requirements. Taking into account the
symmetric Toeplitz nature of the autocorrelation matrix R, it is a very redundant matrix that

can be stored with just J values (instead of J?), and the product can be written as:

- PR ) y b )

T Rﬁl“\r = %3.,:&}} ’7} = 7‘. ;* 1\5 . t’ — i
£ 81)
the product can equivalently be written as:
J—1
;37\«&11‘1:‘;?]'\ i ld — 3 7i=4,....J—1
= (82)

that is, the matrix product can equivalently be calculated as a convolution:

RaXp = X3 ¥ Yycat 83)
[0177] Regarding the memory requirements, the product based on convolution is more
efficient since a 2J — 1 vector (instead of a J X J matrix) is used. Regarding the number of
operations involved, explicit computation of the convolution product would require /2 products
and J? sums, as in the case of the matrix product. However, since the convolution is a built-in
function optimized in MatLab and Octave, the calculations based on convolutions are faster
than explicit products and sums. Additionally, a FFT-based convolution could be implemented.
The MatLab and Octave convolution function do not perform FFT-based convolutions, but
calculations are optimized taking into account only the non-null samples of the vectors to be

convolved. Under specific circumstances, a FFT-based convolution would be faster.

Fast algorithm for matrix-IRSA

[0178] The algorithm for matrix-IRSA in the complete representation space including the

proposed optimizations is as follows:

1. [Initialization:
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2. Response updating:

}L — ki—fz + &gy
(86)

3. Averaged-residual estimation:
By = B — X; # Dy prt 87)
4. Steps 2 and 3 are repeated until convergence.
Optimization of matrix-IRSA in the reduced representation space

The matrix-IRSA algorithm in a reduced representation space

[0179] The dimensionality reduction for the matrix-IRSA algorithm is described with a J,. x J
incomplete orthonormal matrix V., with J,. < J, verifying that x = VTV x (i.e. verifying that the
expected AEP responses x are included in the reduced representation space), where VT
represents the transpose of V,.. Given the matrix ;. describing the dimensionality reduction,

the matrix-IRSA algorithm in the reduced representation space is the following:

1. [Initialization:

5t Ao

Toiil =1 il = 4 N7 reifl = E s{nisin — Fi {%0. 2o, By} (88)
< = Vi = O 75— Vg 25— VR Eer Fyl glr mm-}
X4 3 IR0 U I3} VAN £ r g ¥, (X <& LE D (89)

2. Response updating:

(90)
3. Averaged-residual estimation:

Rie e X U
Z, = Ey Xy

1)
4. Steps 2 and 3 are repeated until convergence.
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5. The recovered evoked response after convergence is transformed back to the original

representation space:

o )

[0180] As in the case of the matrix-IRSA performed in the complete representation space,
there are two operations involving signals with the length of the EEG during the initialization:
the initialization of the averaged residual z,(j) and the estimation of the autocorrelation of the
stimulation signal r;(j). Also during the initialization, the transformation of the matrix R, to the
reduced representation space include matrix products involving the / x J matrix R,. However,
at each iteration, the size of the involved vectors and matrices is /, and J, x J, respectively,
since these calculations are performed in the reduced representation space. Therefore, the
most critical point concerning the computational requirements in this algorithm is the
manipulation of the J x ] matrix R, in order to obtain the autocorrelation matrix in the reduced

representation space R;'T.

Optimization of the cross-correlations

[0181] As in the case of the matrix-IRSA performed in the complete representation space, the
averaged residual z,(j) can equivalently be calculated with a cross-correlation between the

EEG y(n) and the stimulation signal s(n) or with a sum for each individual impulse:

g N—
AN AN
Talgi = o= ) Tl = oo d o wingsln — J1 = o NCOTy gl
VYK L o TV K R
k=0 w=7% (93)

and for typical values of N (length of the EEG), J (length of the response) and K (number of

stimuli), the implementation based on the sum for each individual impulse is more efficient.

[0182] Similarly, the autocorrelation of the stimulation signal can be calculated as an

autocorrelation or as a sum for each individual impulse in the stimulation signal:

N—j K1
rolit = xoor aid) = E slmdein — =N alf +omg
=3 k=0 (94)

and the implementation as a sum for each individual impulse is usually more efficient.

Optimization of the matrix transformation
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[0183] The most memory and time consuming part of the matrix-IRSA algorithm, when it is
performed in the reduced representation space, is the matrix product required to obtain the

transformed autocorrelation matrix:

since it involves a matrix product of a / x J matrix with a J x J,. matrix (R;V,7), and another
matrix product of involving a J, x J matrix and a J x J, matrix (V.(RsV1)), it implies the
memory management fora] x J matrix as well as J2 - J, products and sums for the first matrix
product, and J2 -J products and sums for the second matrix product (being the first matrix

product the most critical one, because J, x J).

[0184] The matrix providing the dimensionality reduction V. is composed of J,. row vectors of

an orthonormal basis of functions:

T
\ V-1 (96)
and its transpose VT is composed of J,. column vectors:

1: = { Vo Vpooeer Vi } (97)

and therefore, the product R,V,T can be decomposed as J, products of R, with each one of the

vectors in the basis:

A= ,"{J’:T A=1{ay & - ai_y \) a; = vy $i=0... £ —1 (98)

[0185] Taking into account that R, is a symmetric Toeplitz matrix, as in the case of the
complete representation space, the autocorrelation matrix can be completely represented with
J values of the autocorrelation of the stimulation signal R,(j), and the matrix products can be

performed with convolutions:

J-1 J—1 F—1

sl ,-‘*\ - X" F.i ‘j’ ;""" ‘vz:,-(',"”": = v r :'3:," e iy = g bt T j""\{
tid N EAN T A W A Fa s R SV st d Fopegd

i =l 37=a (99)

withj* = 0;..;J-1andj = 0;..; Jr — 1. Therefore, the vectors a; in the resulting matrix 4

can be obtained with J, convolutions:

B3 = Yopge ¥ Vy V=00 1 (100)
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with the subsequent reduction in memory and execution time requirements, as in the case of

the algorithm performed in the complete representation space. When the vectors a; are
calculated, they can be arranged in the J x J. matrix A, and the transformed autocorrelation

matrix can be obtained with the matrix product:

R =V, 4 (101)

which is a matrix operation involving matrices of /. x J and] x J,, and with reasonable memory

and execution time requirements if /.. is small.

1. [Initialization:

RK—1 H -1

miny=0 2plil = i Z ald 4 e r{dy = Z gla + g Vie{o ... -1}
it i (102)
= SETES NN s }
Pe et T el viei—{J—1hL. . - X0 Zg. Yoot
K T T (103)
B = Feae v Vy AL TI=eiy Yi=0o L -1 N =001 (104)
X7 =WXe=10 7 = Vemy A=V, 4 - A S (105)
2. Response updating:
X=X s (106)
3. Averaged-residual estimation:
z; (107)
4. Steps 2 and 3 are repeated until convergence.
5. The recovered evoked response after convergence is transformed back to the
original representation space:
. — 17 T
j\z — -i - ‘\'i (1 08)

Experimental results

[0186] The inventors have proposed optimizations for the matrix-IRSA algorithm performed in
the complete representation space, as well as optimizations for the matrix-IRSA algorithm
performed in a reduced representation space. The proposed optimizations involve the
calculation of correlations during the initialization and some matrix products. In order to
evaluate the proposed optimizations, the inventors designed experiments to (a) show that the
results are identical with the corresponding algorithms before and after the optimizations and

(b) evaluate the reduction in the computational requirements (execution time and memory
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requirements). The evaluation of the proposed optimizations is based on real EEGs registered

during an evoked potential recording session.

AEP recording session

[0187] The EEGs used in this evaluation were the same as used earlier. These EEGs were
recorded in an AEP recording session in which 4 different stimulation rates were configured.
The stimulation signal was prepared using a uniform distribution of IS| between 500 and 800
ms (for an average stimulation rate of 1.53 Hz), between 300 and 600 ms (for 2.22 Hz),
between 100 and 300 ms (for 5.00 Hz) and between 30 and 100 ms (for 15.38 Hz). The
number of stimuli used for each configuration was increased with the stimulation rate (from
1500 stimuli at the slowest rate to 20000 stimuli at the fastest rate). The stimulation consisted
in a sequence of rarefaction clicks resented at the instants defined by the stimulation
sequence. The clicks were delivered diotically through ER-3A insert earphones at 60 dB HL.
The recording electrodes were located at the upper forehead (Fz, active), at the mastoids (Tp9
and Tp10, references 1 and 2) and at the middle forehead (Fpz, ground). The EEGs were
recorded using a BioSemi instrumentation pre-amplifier (BioSemi V.B., Amsterdam,
Netherlands), with a [1-3000] Hz bandwidth and a sampling frequency of 16384 samples per
second. The [Fz-Tp9] and [Fz-Tp10] were averaged to obtain a single EEG. Eye-blink artifacts
were suppressed with the iterative template matching and suppression (ITMS), an algorithm
that detects, models and suppresses blink-artefacts from a single-channel EEG (Valderrama
et al, 2018 — Ref 19).

Table 9: Configuration of the EEG recording session

i EEG length  EEG fength

Conhiguration ISi aver. stim rate  (stimali) (secomds) {samples)
H S{KY - Q006 ms 153 Hz 1300 G {6.22 - 10°

2 3O - 600 ws 222 Hr 2000 924 1504 1t

3 100 - 300 ms 5.00 Hz 000} 1021 1672 10¢

4 3 - 100 ms 15.35 Hz 2003060 1322 2166 - 108

[0188] Table 9 summarizes the configurations involved in this EEG recording session. Since
the objective of this experiment is the evaluation of the optimization procedures proposed for
the matrix-IRSA algorithm, only one subject (male, 33 years) was considered in these

experiments.
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Table 10: Comparison of the responses estimated with different versions of the matrix-
IRSA algorithm. The ratio of the response energy (Er) to the energy of the difference

between the compared responses (Ed) is expressed in dB.

Compared Configuration Enevgy ratie
versions IST (s} stirnul; EEG dwration E

i SDO-800 1300 990 s 29447 dB
mairix-IR8A 20 3N-6000 2000 924 s 298,57 dB
VS, 30 N300 5000 1021 s 29731 4B
nrageix-IRSA-fast 4 30-100 20000 1322 s 29242 4B
Average 295,69 4B

SO0-RO0 1300 Gy s

matrx-IRSA-reil 20O300-600 2000 G245
V8. 3 100-300 3600 H3Z1 s 287.57 4B
mairi-IRSA-red-fast | 4 3D-100 20000 1322 % 27926 4B
Average 290.72 4B

Equivalence of optimized algorithms

[0189] Figure 17 compares the responses provided by the original and the optimized matrix-
IRSA algorithms after 10000 iterations using a convergence parametera = 0.02. The different
waves of the evoked responses are marked for the first recording configuration. The
responses provided by the matrix-IRSA in the complete representation space with and without
the proposed optimizations (algorithms matrix-IRSA and matrix-IRSA-fast) are compared in
the left panel of the Figure 17. The plots in blue are the responses estimated with the original
matrix-IRSA algorithm while the plots in red are those estimated with the optimized version. In
the right panel, the responses estimated with the matrix-IRSA in the reduced representation
space are compared (matrix-IRSA-red, in blue, for the original algorithm, matrix-IRSA-red-fast,
in red, for the optimized algorithm). As can be observed in these plots, the responses provided

by the original and the optimized versions are essentially identical.

[0190] The difference between the responses provided by the original and the optimized
algorithms is represented in Figure 18 (left panel for matrix-IRSA in the complete
representation space, right panel for matrix-IRSA in the reduced representation space). This
figure illustrates the small difference in the responses provided by the original and the
optimized algorithms. The amplitude of the responses is around 1 uV, while the amplitude of

the difference is around 10™1*pV.

[0191] In order to evaluate the difference between the original and the optimized algorithms
the signal to noise ratio (SNR) associated to the difference (i.e. the ratio of the energy of the
responses to the energy of the difference) was measured for the different responses and with
the difference methods. Table 10 shows the SNR associated to the comparison of the
responses provided by the different versions. All the SNRs are close to 300 dB, which clearly

demonstrates that the results provided by the original and the optimized version are identical
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in practice. The small differences are associated to the limited precision in the numerical
representation and the slightly different numerical procedures involved in some computations

(sums and products vs. FFTs and IFFTs for computing correlations, for example).

Computational efficiency

[0192] The computational efficiency provided by the proposed optimizations has been
evaluated in terms of the reduction of memory requirements and execution time. The
computations were performed in a desktop computer with an Intel-Core i7-3770 CPU, 3.40
GHz, 8.00 GB RAM. Table 11 shows the execution time (time required for the initialization, for
each iteration and for the complete algorithm) and memory requirements with the different
versions of the matrix-IRSA method (in the complete representation space without and with

optimizations, and in the reduced representation space without and with optimizations).

Table 11: Execution time and memory requirements with different versions of the
matrix-IRSA method.

Contigueation Execution il Moemoaory
Procedurs frerations IS Gusy  stimall EEG due fiven Fiter fro0 reguirernients
boOSON-800 1508 GO 5 16.17s 01385 13902« 2.41 GB
Mat-IRSA OO0 30 300-a0 2000 924 5 5.6fs G138s 14723 239 GB
origtnal 3100300 3000 1021 s 1388s  Qldis 14272 % 2.42GB
4 30-10( 20000 1322 & 3768s 1525 13607 s 249 GB
Totah: 37943 s
1 SEK0-R00 §300 SO} 8 PO0s 240 ms PATARN 260.5 ME
Mat-IRSA OO0 2 300-60dy 2000 G245 Ligs  S08ms 520+ 243.0MB
fast 30300 5060 {021 s 28d4s 304ms 307.0s 2 ME
4 30160 20000 1322 5 9365 MO0ms  3MW4s 3477 MB
Total: 69435
T S00-8(0 FA0G G910 & 17.25 5 5.24 s 17.3% 242 GB
Mat-IRSA-red 10000 2 MK-600 2000 824 s 1712s 633 us 1723 2.4 GB
original 2 00-300 000 W21 s 16625 651 s 167 243 GR
4 30-100 20080 1322% 23685 509 s 257 s 251 GB
Total: Te9s
bOSH-800 1504 GO 5 12y 661 us 1265 2613 MB
Mat-IRSAved OO0 2 300-a 2060 924 & L48s 471 s 133 s 274.0MB
fast 300300 3000 1021 s 3468 462 s 355 26494 MB
4 30-1000 20000 1322 % Hrid s ST ps 1.2 s 3786 MB
Totak: 1655

[0193] Regarding the memory requirements, matrix-IRSA in both, the complete orthe reduced
representation space requires memory allocation for the / x J autocorrelation matrixR; when
the optimization are not included. Since ] = 16384 and each number is represented in double
precision format (8 Bytes), the allocation of the R, matrix requires 2.1475 - 10° Bytes, i.e. more
than 2 GB. The implementation of the matrix products as convolutions requires the allocation
of only J numbers, and therefore, the memory requirements are reduced, due to the

optimization, from more than 2 GB to less than 400 MB.
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[0194] The execution time is also substantially reduced in the optimized versions with respect
to the corresponding original versions. In the case of matrix-IRSA performed in the complete
representation space, the time required for estimating the 4 responses was decreased from
5794.3 seconds to 694.3 seconds (i.e. the execution time is reduced in a factor 8.3). Similarly,
in the case of matrix-IRSA performed in the reduced representation space, the time for
estimating the 4 responses was reduced from 76.9 seconds to 16.5 seconds (i.e. the execution

time is reduced in a factor 4.7).

[0195] Identifying what is the specific mechanism involved in the execution time reduction is
difficult in a multi-task computer. The allocation of memory (in the case of the non-optimized
versions) requires some time depending on the amount of memory installed in the system and
the programs that are running simultaneously. The operations involving variables with so many
elements (like the matrix product with R,) also requires the management of large areas of
memory that takes time to the operation system. The management of variables requiring 2 GB
is a problem for the execution of the algorithm even in a system with 8 GB RAM. The memory
allocation problem would be dramatic for systems with a smaller RAM memory. Finally, the
execution time reduction associated to the reorganization of the calculations is difficult to be
evaluated. The matrix product R.%; requires J? products and sums either if it is computed as
a matrix product or if it is computed as a convolution. However, some execution time reduction
is obtained from internal optimizations of the MatLab convolution function (for example, it is
based in a built-in function, only the non-null values in the vectors to be convolved are

considered in order to improve efficiency, etc.).

Additional optimisations

[0196] An additional optimization could be included in the matrix-IRSA algorithms by
computing convolutions in the Fourier domain. Default MatLab implementation of the
convolution is done by explicit products and sums of the samples (where some execution time
can be saved by identifying the null samples in the signals to be convolved). In general, for
signals with length N the cost of the convolution is 0 (N?). A more efficient convolution can be
performed in the FFT domain (it requires the FFT of the signals to be convolved, a product of
the transformed signals and a IFFT of the product). In that case the cost of the convolution is
O(N log, (N)). For small J (or for a large number of null values in the signals to be convolved)
the standard convolution algorithm is more efficient, while for large J, the FFT-based

convolution is more efficient.

[0197] In our matrix-IRSA algorithms, convolutions are related to the matrix products involving

the symmetric Toeplitz matrix R, and therefore, the signal to be convolved is 7., i.€. an
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extended and normalized version of r;. This is a pair signal (it is the normalized autocorrelation
function of the stimulation sequence), and therefore convolution and cross-correlation with this

signal is equivalent.

[0198] Table 12 compares the execution time for different implementations of the matrix-IRSA
algorithm (either in the complete or in the reduced representation spaces). The execution
times are compared for the original implementation, for the fast version (using conventional
convolutions for the matrix product) and for the fast version implementing FFTbased
convolutions (see last three columns). By comparing the last two cases, the utility of the FFT-
based convolution can be discussed: in some cases the FFT convolution provides a significant
improvement (matrix-IRSA in the complete representation space for experiment configurations
2, 3 and 4), while in others the improvement is small (configuration 1in complete
representation space or configurations 3 and 4 in reduced representation space) or even there
is an increment in the execution time (configurations 1 and 2 in the reduced representation
space). This is related to the number of null samples in the signals to be convolved (that
changes depending on the stimulation sequence and therefore depends on the experiment
configuration) and also depends on the number of samples in the response J (in all the
experiments in this application J = 16384, but obviously FFT-based convolutions are

preferable as J increases).

Table 12: Execution time and memory requirements with different versions of the
matrix-IRSA method

Repres. | Number Configurstion Execution time
space of iter. ISfemsy  stimuli EBG dur. | oviginal Tast FFT-conv
1 1300 Q44 s 2599 223 %
Complete | 10000 | 2 300-600 2000 P4s 3205 216
3010300 5000 1021 5 307.0s 2365
40 30-100 20000 {322s 303 s
Total: 9785
tooS00-800 300 EEE 1365
Reduced 10000 | 2 300-600 2000 Q24 157 s
30 300-300 3000 12t s ERiES
4 30-100 20000 13225 9.7
Total: 768 s 16.55 15.6s

[0199] In this application, some computational optimizations of the algorithm matrix-IRSA are
proposed. The optimizations include:

a fast procedure for computing correlations at the initialization (that makes use of the
fact that the stimulation signal is null for most of the samples, and therefore correlations
involving this signal can be calculated as sum for each stimulus) and

a procedure for computing matrix products as a convolution (that makes use of the fact

that the involved matrix is Toeplitz, and therefore the product does not requires to store the
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whole matrix but only a signal containing the first column and the first row, with the subsequent

reduction of memory and execution time requirements).

[0200] The application describes the motivation and formulation of the optimizations, and
provides updated functions for matrix- IRSA (in the complete and the reduced representation

spaces) implementing these optimizations.

[0201] This application also includes an evaluation of the proposed optimizations, in terms of
(a) equivalence of the estimated responses and (b) computational efficiency, using real EEGs
registered in an AEP recording session. The analysis of the responses estimated with and
without the proposed optimizations reveals that the algorithms with and without the
optimizations are equivalent (the estimated responses are identical in practice, with a SNR
associated to the difference around 300 dB). The analysis of computational requirements
reveals a substantial reduction of the required memory (from more than 2 GB to less than 400
MB in the performed experiments) as well as a substantial reduction of the execution time (in
a factor 8.3 when matrix-IRSA is performed in the complete representation space, and in a

factor 4.7 when it is performed in the reduced representation space).

[0202] It will be understood to persons skilled in the art of the invention that modifications may
be made without departing from the spirit and scope of the invention. The embodiments and/or

examples as described herein are therefore to be considered as illustrative and not restrictive.
List of references

[0203] The disclosures of each of the below references are hereby incorporated in their

entirety into the present specification:
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CLAIMS

1. A method of estimating the transient auditory evoked potential (AEP’) responses of a

subject, the method comprising:

generating a digital auditory stimulus signal consisting of at least one auditory
stimulus type;

presenting the at least one auditory stimulus type to a subject via a transducer;

recording an electroencephalogram signal (EEG’) including the neural response
of the subject to the at least one auditory stimulus type;

synchronizing the digital auditory stimulus signal with the recorded EEG; and

deconvolving the overlapping AEP responses of the subject from the EEG by
applying an iterative randomized stimulation and averaging (‘IRSA’) technique,

wherein the step of applying an IRSA technique is performed with matrix

operations in the representation spaces of the AEP and the EEG.

2. A method according to claim 1, wherein the IRSA technique comprises the steps of: (a)
initialisation, (b) response updating, and (c) averaged-residual estimation in which the
steps of (b) response updating and (c) averaged-residual estimation are repeated until

convergence and wherein steps (a)-(c) are performed using matrix operations.

3. A method according to either of claims 1 or 2, wherein the least one auditory stimulus
type includes a stimulus type having a jittered inter-stimulus interval less than the

duration of the resulting auditory evoked potential to be detected.

4, A method according to any one of the previous claims, wherein the at least one auditory
stimulus type is selected from the group consisting of:
standard auditory stimuli such clicks and tone-bursts; and
complex auditory stimuli like multi-pattern stimuli, speech-like stimuli, or natural

speech stimuli.

5. A method according to either of claims any of the previous claims, comprising: applying
more than one auditory stimulus type, such that the different stimulus types evoke

different AEP responses.

6. A method according to any one of the previous claims, wherein the step of applying the
IRSA technique comprises performing iterative matrix operations in segments limited to
the duration of the AEP, rather than the duration of the EEG (that is, performing matrix
operations in the representation space of the AEPs rather than in the representation
space of the EEG).
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7. A method according to any one of the previous claims, wherein the step of applying the
IRSA technique comprises configuring the matrix operations according to the symmetric-
Toeplitz properties of generated matrices to thereby reduce the computational effort

required to deconvolve the AEP responses.

8. A method according to any one of the previous claims, wherein the step of applying the
IRSA technique comprises calculating the matrix product used when implementing the
iterations of the IRSA technique as a convolution.

9. A method according to any one of the previous claims, further comprising the step of
calculating the autocorrelation of the digital auditory stimulus signal either as a cross-

correlation or as a sum for all stimuli of the digital auditory stimulus signal.

10. A method according to any one of the previous claims, wherein the step of applying the
IRSA technique comprises calculating an averaged residual as either the normalised
cross-correlation of the EEG and the digital auditory stimulus signal or as a sum for all

stimuli of the digital auditory stimulus signal.

11. A method according to either of claims any of the previous claims, comprising:
applying more than one auditory stimulus type, such that the different stimulus
types evoke different AEP types; and
adapting the IRSA technique to deconvolve more than one AEP type (‘multi-

response deconvolution’) in its matrix formulation.

12. A method according to any of the previous claims, comprising performing an
orthonormal transformation of the representation space, and performing IRSA

operations in the transformed representation space.

13. A method according to claim 12, wherein the step of applying an orthonormal

transformation results in a transformed representation space of reduced dimensions.

14. A method according to any one of the previous claims, wherein IRSA operations are
performed in the transformed representation space derived from a matrix performing
any one of the following steps: low-pass filtering; band-pass filtering; decimation; latency

dependent filtering; or latency dependent decimation.

15. A method according to any one of the previous claims wherein IRSA operations are
performed in the reduced representation space derived from an orthonormal matrix

performing latency dependent filtering and latency dependent decimation.
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16. A method according to any one of the previous claims, wherein the method is used to
estimate AEP responses to complex auditory stimuli, including multi-pattern stimuli,
speech-like stimuli or natural speech stimuli, either in a single-response or multi-

response approach.

17. A method according to any one of the previous claims, wherein the method is used to
estimate one or more of auditory brainstem responses, middle latency responses, or
cortical auditory evoked potentials to complex auditory stimuli, including multi-pattern
stimuli, speech-like stimuli or natural speech stimuli, either in a single-response or multi-

response approach.

18. A method according to any one of the previous claims, wherein the method is used to
simultaneously estimate auditory brainstem responses, middle latency responses, and
cortical auditory evoked responses to complex auditory stimuli, such as multi-pattern
stimuli, speech-like stimuli or natural speech stimuli, either in a single-response or multi-

response approach.

19. A method according to any one of the previous claims, wherein the method is used to
estimate one or more of auditory brainstem responses, middle latency responses, or
cortical auditory evoked potentials, either in a single-response or multi-response

approach.

20. A method according to any one of the previous claims, wherein the method is used to
simultaneously estimate auditory brainstem responses, middle latency responses, and
cortical auditory evoked responses, either in a single-response or multi-response

approach.

21. A method according to any one of the previous claims, further comprising graphically

representing the estimated AEP.

22. A method according to any one of the preceding claims, wherein the method is

performed at least in part on a computer.

23. A system configured to estimate the auditory evoked potential responses of a subject
according to a method of any one of the previous claims, the system comprising:
a data processor,
a memory in data communication with the data processor;
wherein the system is configured to implement a method according to any one of

the previous claims.
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24. A computer program comprising instructions to make a computer carry out a method
according to any one claims 1 to 22.

25. A computer-readable storage medium comprising program instructions capable of

making a computer carry out the method according to any one of claims 1-22.

26. A transmissible signal comprising program instructions capable of making a computer
carry out the method according to any one of claims 1-22.
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FIGURE 7
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FIGURE 8
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FIGURE 9
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FIGURE 9 (Cont)
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FIGURE 9 (Cont)
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FIGURE 11
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FIGURE 12
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FIGURE 13
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FIGURE 14
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FIGURE 14 (cont)
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FIGURE 15
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FIGURE 15 (cont)
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FIGURE 16 (cont)
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FIGURE 16 (cont)
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FIGURE 17
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FIGURE 17 {cont)
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FIGURE 18
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