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- Good morning.

- Today I will talk about emerging technologies that have potential to inspire new 
developments in the field of auditory evoked potentials.
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- The work that I will present here today has been developed by my research team, 
which is headed by Prof. Angel de la Torre.

- The Team is composed of researchers from the University of Granada and medical 
personnel from the San Cecilio University Hospital.

- We are located in Granada, in the south of Spain, and these are some photographs 
from our Technical School, the University Hospital, and our Research Centre.
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Auditory evoked potentials (AEPs)

- Auditory evoked Potentials (AEPs) are voltage peaks that represent the activation 
of the neurons at different stages of the ascending auditory pathway.

- For example, the wave I of auditory brainstem responses (ABRs) shows neural 
activity elicited in the cochlea, the brainstem and the midbrain.

- Middle latency responses (MLRs) show activity from the medial geniculate body 
and the primary auditory cortex.

- And cortical auditory evoked potentials (CAEPs) from the primary and secondary 
auditory cortex.

- By analysing these signals we can (1) understand our neural structures better and 
(2) we can also evaluate someone´s hearing objectively.
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How do we measure AEPs? Hardware elements

Computer

Amplifier

- This figure shows a schematic of a simple recording system of 1 EEG channel. 

- A soundcard is connected to a laptop, through which a stimulus signal is delivered 
to an earphone, which could be an insert earphone or a speaker.

- The stimulus evokes a neural response, which is recorded by electrodes placed on 
the head. This signal is amplified and sent back to the computer through one input 
line of the soundcard.

- In addition, there is also a synchronization signal that is sent synchronously with 
the stimulus to determine the time instants in which the stimuli were sent.
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How do we measure AEPs? Software processing

AEP duration J

EEG

Stimulus

ISI

AEPs

Conventional method  →  ISI > J

- From the synchronization signal we obtain the time instants at which the stimuli 
were presented. We call Inter-Stimulus Interval (ISI) to the separation between 
stimuli.

- It is common to assume that all stimuli evoke the same AEP.

- However, the EEG not only records the neural response, but also a large amount of 
noise from different sources.

- In this example, the EEG is illustrated just with a bit of noise, but a real recorded 
EEG is much more contaminated by noise.

- The conventional method to improve the quality of the response consists of 
averaging the EEG sections that contain the AEPs (red segments). 

- The more averaged responses, the higher the quality of the response. 

- We can observe in the right figure that averaging only 50 segments leads to a low-
quality estimation of the response, and that the quality of the response increases 
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as the number of averaged segments increases. 

- At 20,000 averaged segments the quality is high, but this requires a long test time. 

- Importantly, the conventional method uses ISIs larger than the duration of the AEP 
(J) to avoid responses to be contaminated by adjacent responses.
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Latency-dependent filtering 
and down-sampling

—
A filter that provides a compact 

representation of AEPs

Deconvolution
—

An algorithm that enables 
researchers to conduct AEP 
experiments with flexibility

Structure

- In this context, I will present two methods developed by our research team that 
expand clinical and research possibilities in the field of AEPs.

1. A filter that provides a compact representation of AEPs.

2. An algorithm that allows deconvolution of overlapping AEPs, which increases 
flexibility in the design of experiments.

6



Latency-dependent 
filtering & Down-sampling
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Conventional recording of AEPs

Frequency (Hz)
1 10 100 1000 10000

- The neurophysiological activity along the ascending auditory pathway is 
conventionally recorded via ABR, MLR and CAEP.

- ABRs appear within the first 10 ms from the stimulus onset. Their energy is in 
between 100 and 3000 Hz. 

- MLRs have a duration of 100 ms, and their energy is between 10 and 300 Hz. 

- CAEPs present a typical duration of about 400 ms, and their energy is in between 1 
and 30 Hz.

- Since ABRs, MLRs and CAEPs present energy in different frequency bands, they are 
conventionally recorded as separate responses.
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Desired approach

100-3000 Hz 10-300 Hz 1-30 Hz

- However, it would be desired to represent all the components in the same figure.

- Please note that this picture is a diagram, not a real response, because obtaining a 
signal like this is not straightforward.

- This type of representation would require the signal to be filtered according to its 
latency. 

- An optimal filter would let pass frequencies between 100 and 3000 Hz in the ABR 
section, 10 and 300 Hz in the MLR section, and 1 and 30 Hz in the CAEP section. 
This is what we have called Latency-dependent filtering.
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Proposed filter

𝑉 =

𝑣1,1

𝑣2,1
⋮

𝑣54,1

𝑣1,2

𝑣2,2
⋮

𝑣54,2

…
…
⋱
…

𝑣1,10000

𝑣2,10000
⋮

𝑣54,10000

 To go from the time-domain to the projected space: 

AEP_Projected(54x1) = V(54x10000) AEP(10000x1)

 To go from the projected space back to the time-domain: 

AEP_Reconstructed(10000x1) = VT AEP_Projected = VT V AEP 

- To achieve latency-dependent filtering, we have built a base of functions that are 
uniformly distributed in the LOGARITHMIC time-scale.

- Please note that here that we can define the number of functions per decade. In 
this example, there are 20 functions per decade, covering from 1 to 500 ms – thus 
there are 54 functions.

- The figure in the center presents the functions in the linear-time scale. We observe 
that earlier components are represented with more functions than later 
components.

- Finally, we normalize the base of functions in a way that all functions are 
orthonormal vectors (i.e. their scalar product is 0), and also, their module is 1.
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- We organise our base of functions in a matrix that, in this example, has 54 rows 
(one row for each function) and 10,000 columns (as many samples as the AEP – in 
this case this is representing 500 ms of an AEP sampled at 20 kHz)

- By applying matrix processing, we can project an AEP represented in the time 
domain in the projected space by applying the V matrix over the AEP.

- Importantly, it should be noted that the AEP is represented in this space with only 
54 coefficients, rather than 10,000 samples as in the time domain. There is an 
important dimensionality reduction.

- Once projected, we can apply V transposed the projected AEP to represent this 
signal back in the time domain – this will be the Reconstructed (or filtered) AEP.
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AEP example

CAEP

ABR

MLR

- Let´s see this process with an example. 

- This signal represents 500 ms of an AEP where ABR, MLR and CAEP components 
can be identified.
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AEP example

V
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- This is the same representation of that signal, but this time, in the logarithmic time 
scale.

- We see that representing AEPs in the logarithmic time scale facilitates the 
identification of the components, but …

- … it also leads to high-frequency noise, particularly in the longer latencies.
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AEP example
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- By projecting this signal in the reduced space and projecting back to the time 
domain, we achieve a latency-dependent filtering that is adequate to represent all 
components of the auditory pathway in the same figure, from wave I in the 
cochlea to cortical components.

- This novel representation removes the traditional discontinuities between 
peripherical, middle and central components, and in our view, is the natural way of 
representing AEPs. 

- In fact, since we developed this algorithm in 2019, this is the way we represent 
AEPs in our studies.

13



14

Reference

 Latency-dependent filtering

 Down-sampling
o Storing

o Transmitting

o Processing

 Supplementary material

- In addition to providing latency-dependent filtering, we mentioned earlier that this 
algorithm also provides DOWN-SAMPLING. 

- When we project the AEP on the transformed domain, we are able to represent 
the AEP with only a few coefficients without losing information – in our example, 
54 coefficients rather than 10,000 coefficient as in the time domain.

- Representing AEPs with fewer coefficients has important implications. For 
example, for storing a database of AEPs (it´s not the same to store AEPs of 10,000 
coefficients than AEPs of 54 coefficients), for transmitting AEPs, and for processing 
AEPs such as for automatic classification.

- The mathematical algorithm is described in detail in this publication, which also 
includes extensive supplementary material with Matlab/Octave toolboxes that run 
simulations and implement the methodologies. This is to facilitate the 
implementation of these methods by anyone interested in using them.
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Deconvolution

- The second methodology is Deconvolution, which consists of a mathematical 
algorithm that allows the estimation of the AEP in situations where responses 
overlap.
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Conventional method

AEP duration J

EEG

Stimulus

ISI

AEPs

ISI > J

- We mentioned earlier that in the conventional approach to record AEPs, the ISI 
must be larger than the duration of the response to avoid overlapping responses.
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The problem of overlapping responses

Periodic ISI Jittered ISI

CAEP ISI > 400 ms
2.5 stim/sec

MLR ISI > 100 ms
10 stim/sec

ABR ISI > 10 ms
100 stim/sec

- This is an example of what we would get if we use a periodic ISI shorter than the 
duration of the response. In this case, we are using a periodic ISI of 2 ms, while the 
duration of the ABR is 10 ms.

- This figure shows that the signal recorded at the electrodes is a steady-state signal, 
from which it is not mathematically possible to estimate the original response.

- This means that there is a maximum presentation rate to avoid responses to be 
overlapped.

- Since ABRs present a duration of 10 ms, the ISI must be longer than that time, 
which leads to a maximum presentation rate of 100 stimuli per second.

- Likewise, MLRs present a duration of 100 ms, and the maximum rate would be 10 
stimuli per second. 

- And considering a duration of 400 ms for CAEP, their maximum rate would be 2.5 
stimuli per second. 
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- These maximum presentation rates are an important barrier for scientists, 
particularly to advance knowledge in how our auditory system encodes the sounds 
we usually hear (speech, music, etc.).

- The way we can estimate AEPs that are overlapped is through DECONVOLUTION.

- And the first requirement to be able to deconvolve (or disentangle) responses that 
are overlapping is by jittering the stimulus sequence, 

- such as in this example, where we can visually see that some ISIs are shorter than 
others. 

- The result of overlapping AEPs is a quasi-periodic signal, from which it is now 
mathematically possible to estimate the original response.
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The EEG as a convolution model

EEG  𝑦(𝑡)

Stimulus  𝑠(𝑡)

s t ∗ 𝑥(𝑡)

𝑦 𝑡 = 𝑠 𝑡 ∗ 𝑥 𝑡 + 𝑛(𝑡)

AEP  𝑥(𝑡)

Noise  𝑛(𝑡)

- I will present now the fundamentals of our algorithm to deconvolve overlapping 
AEPs. 

- The EEG y(t) can be represented mathematically as the convolution of the stimulus 
sequence s(t) and the AEP x(t) plus noise.

- Let´s keep in mind that the signal of interest that we are interested in estimating is 
the AEP x(t).
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Matrix formulation of the EEG convolution model

𝑦 𝑡 = 𝑠 𝑡 ∗ 𝑥 𝑡 + 𝑛(𝑡)

𝐲 = 𝑆𝐱 + 𝐧

𝐲

=

𝑆

𝐱

+

𝐧

0𝑠

…

(N x 1) (N x J)

(J x 1)

(N x 1)

N – length of EEG
J – length of AEP
J << N

- The EEG convolution model can be represented as a matrix operation.

- This way, the EEG y is a column vector of N samples (N being the number of 
samples of the EEG, several millions samples for example).

- Sx is the convolution operation.

- S is a matrix of N columns and J rows, being J the number of samples of the AEP –
e.g. 100 samples for an ABR of 10 ms sampled at 10 kHz.

- This matrix is built by presenting the stimulus sequence in the first column (mostly 
0s, and 1s in the start of the stimuli), and shifting this vector one sample every 
column until we complete the matrix.

- x is the AEP, which is a column vector of J samples. 

- And n represents the noise, and has the same size as the EEG.
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Matrix-deconvolution

N – length of EEG
J – length of AEP

J << N

𝐲

=

𝑆

𝐱

+

𝐧

(N x 1) (N x J)

(J x 1)

(N x 1)

𝑦ଵ = 𝑆ଵଵ𝑥ଵ + 𝑆ଵଶ𝑥ଶ + ⋯ + 𝑆ଵ௃𝑥௃ + 𝑛ଵ

𝑦ଶ = 𝑆ଶଵ𝑥ଵ + 𝑆ଶଶ𝑥ଶ + ⋯ + 𝑆ଶ௃𝑥௃ + 𝑛ଶ

𝑦ே = 𝑆ேଵ𝑥ଵ + 𝑆ேଶ𝑥ଶ + ⋯ + 𝑆ே௃𝑥௃ + 𝑛ே

𝑁 equations  &  𝐽 unknowns

⋮

Let´s imagine an AEP of 2 samples (𝐽 = 2)

𝐲

=

𝑆

𝐱

+

𝐧

𝑦ଵ = 𝑆ଵଵ𝑥ଵ + 𝑆ଵଶ𝑥ଶ + 𝑛ଵ

𝑦ଶ = 𝑆ଶଵ𝑥ଵ + 𝑆ଶଶ𝑥ଶ + 𝑛ଶ

𝑦ே = 𝑆ேଵ𝑥ଵ + 𝑆ேଶ𝑥ଶ + 𝑛ே

𝑁 equations, 2 unknowns

⋮

𝑥ଵ

𝑥ଶ 𝐱ො
𝐱ො = (𝑆୘𝑆)ିଵ(𝑆୘𝐲)

𝐲 = 𝑆𝐱 + 𝐧

- In fact, the matrix formulation of the EEG convolution model can be seen as a 
system of equations.

- The first component of the EEG y is the matrix multiplication of the first row of S
and the AEP x vector plus the first element of the noise vector, and so on.

- We can see that we have a system with N equations (one equation for each sample 
of the EEG – meaning a large number of equations) and J unknowns (as many 
unknowns as the size of the AEP). This is an over-defined system of equations.

- Since the AEP has several dimensions, it is difficult to visualize the solutions of this 
system of equations, but let´s imagine that our AEP only has 2 samples (x1 and 
x2).

- This way we would have (again) N equations, but this time, only 2 unknowns. 

- It is now easier to visualize that each equation would lead to a line in the 2-
dimensional space. 
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- We can also observe that this is an over-dimensioned system of equations, and 
that there is not a single solution. 

- However, there is one unique solution that minimizes the error – that is the least-
squares solution, 

- And it is well known that the least-squares solution to this system of equations is 
the matrix division of (STy) by (STS)

- This is the deconvolved AEP
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Matrix-deconvolution
N – length of EEG
J – length of AEP

J << N

(J x N)

𝐲

=

(N x 1)

𝑆୘

(J x N) (J x 1)

(𝑆୘𝐲)

𝐱ො = (𝑆୘𝑆)ିଵ(𝑆୘𝐲)
𝑆

(N x J)

𝑆୘

(J x J)

=

(𝑆୘𝑆)

- How is the AEP estimated?

- On one hand, S-transposed (ST) applied to S leads to the autocorrelation matrix of 
the stimulus sequence, which is a square matrix J x J (being J the length of the AEP, 
much smaller than N)

- And ST applied to S leads y leads to the averaged EEG, i.e. the signal resulting from 
averaging the EEG segments in an equivalent way as in the conventional method. 
This signal has the same dimension as the AEP x.

- This means that to estimate the deconvolved response, first we need to invert the 
(𝑆୘𝑆) square matrix, and multiply it by the (𝑆୘𝐲) vector

- It should be noted that when there is no overlapping responses, the (𝑆୘𝑆) square 
matrix is the identity matrix – and since the inversion of the identity is still an 
identity matrix, the least-squares solution is the synchronous average of the 
response.

- When responses overlap, the (𝑆୘𝑆) square will not be an identity matrix, and we 
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will have to invert that matrix to deconvolve the AEP.
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Matrix-deconvolution

 AEP of 200 ms @ 16,384 Hz

 𝐽 = 3,277 samples   (𝑆୘𝑆)(3277 x 3277)

 How long does the matrix division take?

 9 seconds

V

N0

P0

Na

Pa

Nb

Pb / P1

N1

P2

I

𝐱ො = (𝑆୘𝑆)ିଵ(𝑆୘𝐲)

- Let´s see how this process works with an AEP signal of 200 ms duration, sampled 
at 16384 Hz.

- This AEP has 3,277 samples.

- Considering that the matrix (𝑆୘𝑆) has a dimension 3,277 x 3,277, how long would 
it take to execute the matrix division?

- The complexity of a matrix division increases with the size of the matrix.

- For this example, using a personal computer, it takes around 9 seconds to invert, 
which is a feasible processing time in most applications.
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Multi-response deconvolution

x1 x1 x1 x1 x1 x1

60 dB HL

x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1

x1 x2 x3 x2 x3 x2

80 dB HL

60 dB HL 30 dB HL

x1 x2 x3 x2 x3 x2 x1 x3 x2 x1 x1

- For now we have considered only one type of stimulus that evokes one response 
(x1). 

- And we have described the deconvolution process to estimate x1 when the 
responses overlap. 

- But what would happen if different stimuli are presented? In this case, it would be 
reasonable to assume that different stimuli would evoke AEPs of different 
morphology.

- And the challenge is to estimate these different responses x1, x2 and x3 when they 
overlap – this is called multi-response deconvolution.
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Multi-response deconvolution

 AEPs of 200 ms @ 16,384 Hz   𝐽 = 3,277 samples

 𝐾 = 10 classes  (𝑆୘𝑆)(32,770 x 32,770)

 (𝑆୘𝑆)(32,770 x 32,770)  1,073,872,900 numbers * 8 bytes  8,6 GB

 Matrix division in 1065 s

 For 𝐾 > 10 classes, Out-of-memory!

𝐱ො = (𝑆୘𝑆)ିଵ(𝑆୘𝐲)

- In our previous example of an AEP of 3277 samples, if we had 10 different classes, 
the size of (𝑆୘𝑆) would increase to 32,770 x 32,770

- Please note that a matrix of this size would have around 1 million numbers, each 
of them represented with 8 bytes would lead to a matrix that needs 8,6 GB just to 
store the matrix.

- In this example, we should note that the time required for matrix division 
increases to over 1000 seconds.

- And importantly, for more than 10 classes, the memory requirements to perform 
deconvolution are not manageable for a personal computer.
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Is it there a solution?

Latency-dependent filtering and DOWN-SAMPLING

25

𝐱ො = (𝑆୘𝑆)ିଵ(𝑆୘𝐲)

25

𝑉 =

𝑣1,1

𝑣2,1
⋮

𝑣𝐽𝑟𝑒𝑑, 1

𝑣1,2

𝑣2,2
⋮

𝑣𝐽𝑟𝑒𝑑, 2

…
…
⋱
…

𝑣1, 𝐽

𝑣2, 𝐽

⋮
𝑣𝐽𝑟𝑒𝑑, 𝐽

𝐽௥௘ௗ ≪ 𝐽

 AEPs of 200 ms @ 16,384 Hz 40 samples/decade 
 𝐽 = 3,277 samples 𝐽௥௘ௗ = 91 samples

 𝐾 = 10 classes   (𝑆୘𝑆)(32,770 x 32,770) (𝑆௥௘ௗ
୘ 𝑆௥௘ௗ)(910 x 910)

 Matrix division in 1065 s 30 s

 For 𝐾 > 10 classes , Out-of-memory! Deconvolution is now feasible

𝐱௥௘ௗ = 𝑉𝐱 𝐱

(J x 1)

(Jred x J)

𝐱௥௘ௗ

(Jred x 1)

𝐱௥௘ௗෟ = (𝑆௥௘ௗ
୘ 𝑆௥௘ௗ)ିଵ(𝑆௥௘ௗ

୘ 𝐲)

𝑉

- Is it there any possible way to accelerate the deconvolution process and overcome 
the memory-requirements limitation for large number of classes? 

- The solution comes by applying latency-dependent filtering and DOWN-
SAMPLING. 

- This way, the AEP is no longer represented with J samples, but with Jreduced

- This can be visually observed by applying the V matrix to the AEP x, which leads to 
a reduced representation of the AEP.

- As a result of this dimensionality reduction, to estimate the AEP via matrix 
deconvolution we no longer need to invert a matrix J x J, but a matrix Jred x Jred.

- In our previous example, AEPs sampled at 40 samples/decade now have 91 
samples, and for 10 classes, the size of (𝑆௥௘ௗ

୘ 𝑆௥௘ௗ) would be 910 x 910.

- Now the matrix division could be performed in just 30 seconds.
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- And for a large number of classes, deconvolution is feasible.

- Let´s now see some examples where multi-response deconvolution has been 
useful.
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Exp 1. AEPs evoked by binaural stimuli

Source on the left Source on the right

- In a different experiment we recreated an acoustic scenario in which the position 
of a sound source moved from one side of the head to the other.

- To do this, we used a stereo audio stimulus, delivered to the subject via insert 
earphones.

- The stimulus consisted of a windowed tone of 500 Hz. 

- We varied the phase of the left and right stimulus signals to induce an interaural 
time difference which allowed participants perceive the sound coming from their 
left or from their right side.

- In this example, we observe that the stimulus of the right ear (in red) arrives the 
participant´s ear sooner than the left stimulus (in blue), which is perceived as if 
the sound came from their right side.
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Exp 1. AEPs evoked by binaural stimuli

Right-leading Left-leading

- The stimulus sequence consisted of several repetitions of the binaural windowed 
tones. 

- Randomly between 1 and 2 seconds there was a change on the source location, 
which is represented by the vertical green lines and the coloured speaker icons. 

- This way, during 1 to 2 seconds participants perceived that the sound came from 
their right, then from their left, then from their right again, and so on.

- We hypothesized that each windowed tone would evoke a neurophysiological 
response, and that each change of sound location would evoke an additional 
response.

- We used multi-response deconvolution and latency-dependent filtering to obtain 2 
AEPs: (1) an AEPs to each individual burst & (2) an additional AEP associated with 
the change of the sound location
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Exp 1. AEPs evoked by binaural stimuli

Individual subjectStimulation artifact

Grand-Average (n=27)

V

N0

P0

Na

Pa

Nb

Pb / P1

N1

P2

N2

50 ms

100 ms

160 ms

250 ms

380 ms

- The left figure presents the grand-average responses across the 27 participants 
that we tested. 

- The blue signal shows the neurophysiological response to each individual stimulus.

- In addition to the stimulus artifact, which has the same morphology as the 
stimulus, this signal presents components consistent with conventional ABR, MLR 
and CAEP components.

- The red signal represents the AEP elicited by the change of sound location. 
Interestingly, due to the long latencies of the components of this signal, we can 
conclude that the binaural stimuli used in this experiment evoke a series of cortical 
components with latencies ranging from 50 to almost 400 ms.

- This experiment is another example of the flexibility provided by deconvolution, 
and the comprehensive analysis of AEPs enabled by the latency-dependent 
filtering.

- It´s noteworthy mentioning that these components could be obtained both at 

28



group level (as shown in the grand-average figure) and also at individual level.
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Exp 2. Multiple-Level Stimulation

 84,000 clicks
 Multi-response deconvolution
 Latency-dependent filtering

Level (dB)

Probability of 
occurrence

80 dB60 dB40 dB20 dB0 dB

- In another experiment, we designed a stimulus sequence consisting of clicks, in 
which their level varied linearly as shown in this diagram.

- This multiple-level stimulation enabled a flexible categorization of events based on 
level.

- The figure on the right presents AEPs from one participant obtained by 
categorizing click events in 4 groups of 20 dB.

- To obtain these signals, we used multi-response deconvolution considering 4 
classes, and then applying latency-dependent filter to represent the full-range 
response in the logarithmic time scale.
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Exp 2. Multiple-Level Stimulation

 84,000 clicks
 Multi-response deconvolution
 Latency-dependent filtering

Level (dB)

Probability of 
occurrence

0 dB 16 dB 80 dB64 dB32 dB 48 dB

- AEPs evoked by this stimulation sequence could also be categorised in more 
classes. 

- This time, we categorised the evoked responses in 5 classes – in groups of 16 dB.

- It should be noted that when we make categories, we assume all the responses in 
one class have the same morphology, and that assumption might not be met if we 
consider groups of large deviations in level.

- Does this mean that the more categories the better? On one hand, yes – because 
we can track morphology changes with more resolution; but on the other, we shall 
consider the number of available responses, since making too many categories 
could lead to AEP estimations of poor quality if the number of responses is not 
sufficiently large.

- In this particular example, since we have 84,000 responses (which are a lot), we 
can proceed further and split the available responses in more categories.
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Exp 2. Multiple-Level Stimulation

 84,000 clicks
 Multi-response deconvolution
 Latency-dependent filtering

Level (dB)

Probability of 
occurrence

0 10 806030 5040 7020

- These are the AEPs when we make 8 categories of 10 dB range each.

- We see that components from cochlea (wave I) to cortex (P1) can be easily 
tracked, and that the most robust components are wave V from the ABR and the 
Pa of the MLR.
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Exp 2. Multiple-Level Stimulation

 84,000 clicks
 Multi-response deconvolution
 Latency-dependent filtering

Level (dB)

Probability of 
occurrence
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- The evoked potentials presented in this slide are the result of making 16 categories 
in groups of 5 dB, each of them obtained from around 5,000 responses.

- This figure shows that splitting the available responses in more categories on one 
hand leads to sharper peaks (because the time-invariant assumption is better 
accomplished for narrow level distributions), …

- but also the responses present lower quality resulting from the lower number of 
responses in each group.

- It is interesting to highlight that the constraint to make many categories in this 
experiment comes from an audiological limitation (which is the number of 
available responses), and not a mathematical limitation – as we can apply 
deconvolution in the reduced space to simultaneously estimate AEPs of several 
categories.

- These three experiments also show how useful is to represent the full-range of 
evoked responses in the logarithmic time scale using latency-dependent filtering, 
because we can provide a comprehensive audiological interpretation, considering 
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all components of the auditory pathway, rather than isolated sections.
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- As in the previous reference, these publications also provide the mathematical 
formulation of the algorithms and supplementary material with Matlab and Octave 
toolboxes that run simulations and implement the methodologies, aimed at 
facilitating any interested researcher, clinician or industry to use these techniques.

- In addition to these two references, an article presenting multi-response 
deconvolution is currently in progress.
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Take-home message & Acknowledgments

 The compact representation of AEPs enabled by latency-dependent filtering and down-
sampling facilitates the audiological analysis of all the components of the ascending 
auditory pathway, from cochlea to cortex.

 The representation of AEPs with fewer coefficients enables multi-response 
deconvolution via matrix processing – a method that substantially increases flexibility in 
the design advanced audiological experiments.

 Publications provide extensive supplementary materials with simulations and toolboxes 
to help any interested scientist use and implement these methodologies.
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