

Simultaneous deconvolution of multiple auditory evoked potentials in a reduced representation space

A. de la Torre¹, I. Sánchez¹, J.T. Valderrama¹, I.M. Alvarez¹, J.C. Segura¹, N. Muller², J.L. Vargas²

¹University of Granada ²San Cecilio Clinical University Hospital Granada (Spain) <u>atv@ugr.es</u>

International Evoked Response Audiometry Study Group (IERASG) 28th Biennial Symposium 2023, Cologne, Germany, 15—19 September 2023

From simple equations to multi-response deconvolution

Simple equation with 1 unknown

y = a x unknown: x

System of 2 equations with 2 unknowns

$$\begin{cases} y_1 = a_{1,1} x_1 + a_{1,2} x_2 \\ y_2 = a_{2,1} x_1 + a_{2,2} x_2 \end{cases}$$

Matrix formulation of the system of equations

$$\begin{cases} y_1 = a_{1,1} x_1 + a_{1,2} x_2 \\ y_2 = a_{2,1} x_1 + a_{2,2} x_2 \end{cases}$$

$$\mathbf{y} = A \mathbf{x}$$
$$A^{-1} \mathbf{y} = A^{-1} A \mathbf{x} = I \mathbf{x} = \mathbf{x}$$
$$\mathbf{x} = A^{-1} \mathbf{y}$$

Overdetermined system of equations (no solution except if equations are redundant)

$$\begin{cases} y_1 &= a_{1,1} x_1 + a_{1,2} x_2 \\ y_2 &= a_{2,1} x_1 + a_{2,2} x_2 \\ y_3 &= a_{3,1} x_1 + a_{3,2} x_2 \\ y_4 &= a_{4,1} x_1 + a_{4,2} x_2 \\ y_5 &= a_{5,1} x_1 + a_{5,2} x_2 \\ \dots \\ y_N &= a_{N,1} x_1 + a_{N,2} x_2 \end{cases}$$

Overdetermined system of equations (makes sense in noise)

$$\begin{cases} y_1 &= a_{1,1} x_1 + a_{1,2} x_2 + n_1 \\ y_2 &= a_{2,1} x_1 + a_{2,2} x_2 + n_2 \\ y_3 &= a_{3,1} x_1 + a_{3,2} x_2 + n_3 \\ y_4 &= a_{4,1} x_1 + a_{4,2} x_2 + n_4 \\ y_5 &= a_{5,1} x_1 + a_{5,2} x_2 + n_5 \\ \dots \\ y_N &= a_{N,1} x_1 + a_{N,2} x_2 + n_N \end{cases}$$

Overdetermined system of equations in noise (all equations are useful): the LS solution

 $\mathbf{y} = A \, \mathbf{x} + \mathbf{n}$ $\nexists \ A^{-1}$

$$\hat{\mathbf{x}} = \left(A^T \ A \right)^{-1} \ A^T \ \mathbf{y}$$

 $\|\mathbf{y} - A\mathbf{x}\|^2$ minimum residual

Convolution as a system of equations

The response samples are the unknowns; The EEG is the observation; the stimulation sequence provides the coefficients

$$y(n) = s(n) * x(n) + n_0(n)$$

Matrix representation

$$\mathbf{y} = S\mathbf{x} + \mathbf{n}_0$$

LS solution

$$\hat{\mathbf{x}} = \left(S^T S\right)^{-1} S^T \mathbf{y}$$

Autocorrelation of stimulation sequence / synchronous average

$$\hat{\mathbf{x}} = R_s^{-1} \, \mathbf{z}_0$$

Practical problems in deconvolution:

- Invertibility of the matrix
- Is the matrix singular (null eigenvalues)?
- Is quasi-singular (near null eigenvalues)?
- Are there negative eigenvalues? (!!!!)
- Periodic vs random sequences (resonances)
- Amplification of noise
- Computational cost: O(N^{2.4})

$$R_s$$
 $(J \times J)$ matrix

 $J \text{ large } \Rightarrow \text{ PROBLEMS!}$

Solution: subspace constrained deconv.

Reduction of the dimensionality with orthonormal projector

$$J \rightarrow J_r \qquad \mathbf{x}_r = V_r \mathbf{x} \qquad \mathbf{x} = V_r^T \mathbf{x}_r$$
$$\mathbf{y} = S V_r^T \mathbf{x}_r + \mathbf{n}_0$$
$$\hat{\mathbf{x}}_r = \left((S V_r^T)^T (S V_r^T) \right)^{-1} (S V_r^T)^T \mathbf{y} =$$
$$= \left(V_r S^T S V_r^T \right)^{-1} V_r S^T \mathbf{y} =$$
$$= \left(V_r R_s V_r^T \right)^{-1} V_r \mathbf{z}_0 = R_{sr}^{-1} \mathbf{z}_{0r}$$

Advantages of dimensionality reduction:

- Reduction of noise
- Reduction of computational cost
- Reduction of problems with invertibility (condition number reduced)
- Diagnose of matrix (eigenvalues) easier

$$\hat{\mathbf{x}}_{r} = R_{sr}^{-1} \, \mathbf{z}_{0r}$$
$$R_{sr} \qquad (J_{r} \times J_{r}) \text{ matrix}$$
$$\hat{\mathbf{x}} = V_{r}^{T} \, \hat{\mathbf{x}}_{r}$$

How can dimensionality be reduced?

- Example:
 - 10 oscillations/s requires 20 samples/s
 - 10 oscillations/decade requires 20 samples/dec.
- Conventional representation ABR/MLR/CAEP:
 - 1 second (CAEP) at 10 kHz (ABR): J = 10.000 samples
- LDFDS
 - 3 decades (1 ms to 1 s)
 - 40 samples/dec. (3 to 5 oscillations/dec. in ABR/MLR/CAEP)
 - $-J_r = 120$ samples

 R_s is a (10.000 x 10.000) matrix with 10.000 eigenvalues R_{sr} is a (120 x 120) matrix with 120 eigenvalues

Multi-response deconvolution

Convolution model with 2 categories of stimulus (2 stimulation sequences, 2 responses)

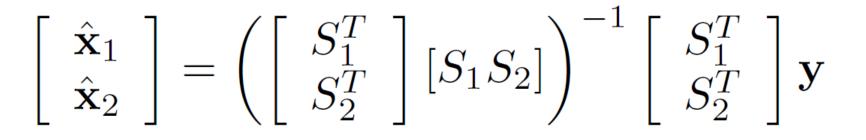
$$y(n) = s_1(n) * x_1(n) + s_2(n) * x_2(n) + n_0(n)$$

$$\mathbf{y} = S_1 \mathbf{x}_1 + S_2 \mathbf{x}_2 + \mathbf{n}_0$$

$$\mathbf{y} = \begin{bmatrix} S_1 S_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \mathbf{n}_0 = S_{all} \mathbf{x}_{all} + \mathbf{n}_0$$

LS solution for the multi-response problem:

$$\hat{\mathbf{x}}_{all} = \left[S_{all}^T S_{all}\right]^{-1} S_{all}^T \mathbf{y}$$



 $\begin{bmatrix} \hat{\mathbf{x}}_1 \\ \hat{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} R_{s\,11} & R_{s\,12} \\ R_{s\,21} & R_{s\,22} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{z}_{01} \\ \mathbf{z}_{02} \end{bmatrix}$

$$\hat{\mathbf{x}}_{all} = R_{s\,all}^{-1} \, \mathbf{z}_{0all}$$

LS solution for the multi-response: a J x M dimension problem

$$\hat{\mathbf{x}}_{all} = R_{s\,all}^{-1} \, \mathbf{z}_{0all}$$

 $R_{s\,all}$ $((J \times M) \times (J \times M))$ matrix

Multi-response deconvolution constrained to the reduced subspace

Similar to multi-response deconvolution but matrix inversion performed in a reduced representation space:

$$\begin{bmatrix} \hat{\mathbf{x}}_{r1} \\ \hat{\mathbf{x}}_{r2} \end{bmatrix} = \begin{bmatrix} R_{sr\,11} & R_{sr\,12} \\ R_{sr\,21} & R_{sr\,22} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{z}_{0r1} \\ \mathbf{z}_{0r2} \end{bmatrix}$$

$$\hat{\mathbf{x}}_{r\,all} = R_{sr\,all}^{-1} \, \mathbf{z}_{0r\,all}$$

 $R_{sr\,all}$ $((J_r \times M) \times (J_r \times M))$ matrix

Summary

Dimensionality of the different deconvolution problems

Conventional deconvolution Subspace deconvolution Multi-response deconv. Subspace multi-resp. deconv.

 $\begin{array}{ll} R_s & (J \times J) \mbox{ matrix} \\ R_{sr} & (J_r \times J_r) \mbox{ matrix} \\ R_{s\,all} & ((J \times M) \times (J \times M)) \mbox{ matrix} \\ R_{sr\,all} & ((J_r \times M) \times (J_r \times M)) \mbox{ matrix} \end{array}$

Summary

Dimensionality of the different deconvolution problems

$$J = 10.000; J_r = 120; M = 10$$

Conventional deconvolution Subspace deconvolution Multi-response deconv. Subspace multi-resp. deconv.

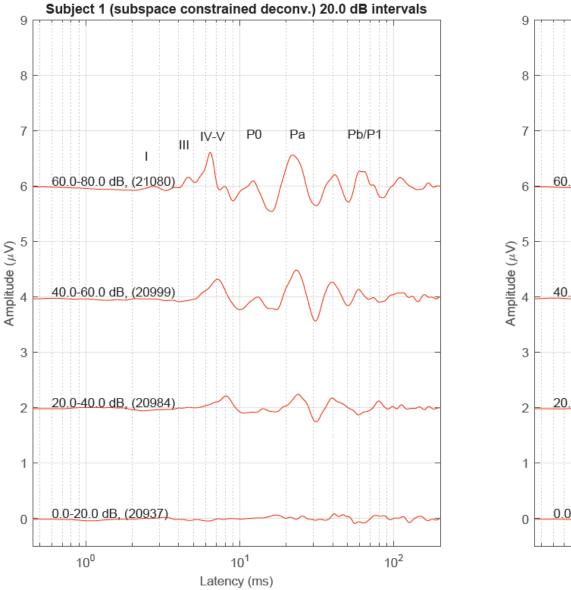
R_s	(10.000×10.000) matrix
R_{sr}	(120×120) matrix
R_{sall}	$(100.000 \times 100.000 \text{ matrix})$
R_{srall}	(1.200×1.200) matrix

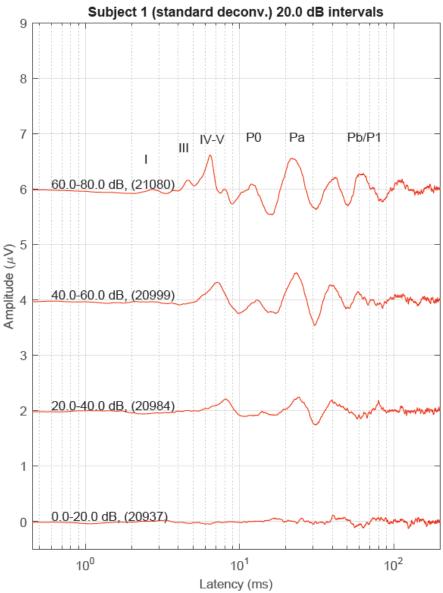
Experiments

- Stimulation
 - Clicks, random ISI (15-30 ms) and level (0-80 dB)
 - 31.5 minutes (84.000 stimuli)
 - Multi-response based on stimulation level
- Recording
 - Biosemi recording system sampled at 16384 Hz
 - Bandwidth 20-3300 Hz (ABR/MLR)
 - Response length: 200 ms (J=3277 samples)
- Dimensionality reduction: 40 samples/dec.
 - Reduced representation J_r=91 samples

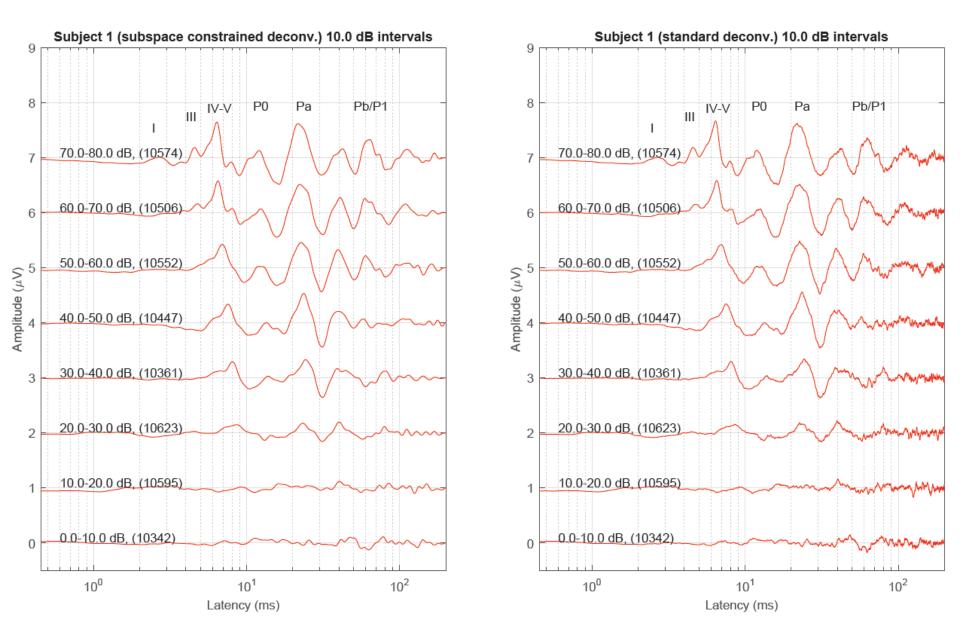
- Multi-response deconvolution
 - Categorization based on stimulation level
 - M categories in 80 dB range:
 - M=2: 2 categories of 40 dB (0-40 dB and 40-80 dB)
 - M=4: 4 categories of 20 dB
 - M=16: 16 categories of 5 dB
 - Categorization and deconvolution off-line (after recording)
- Deconvolution in complete and reduced representation space (transformed to conventional representation)
- Evaluation: noise and computational cost

4 categories of 20 dB: reduction from 13108 to 364 dimensions Computational cost: reduction from 28,4 to 10,7 seconds

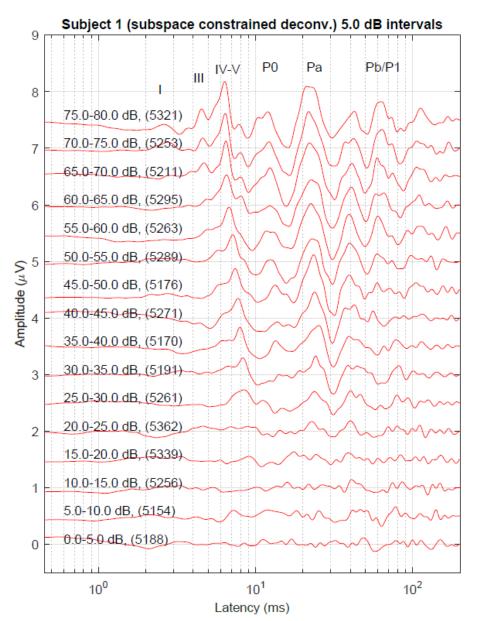




8 categories of 10 dB: reduction from 26216 to 728 dimensions Computational cost: reduction from 304,4 to 22,8 seconds

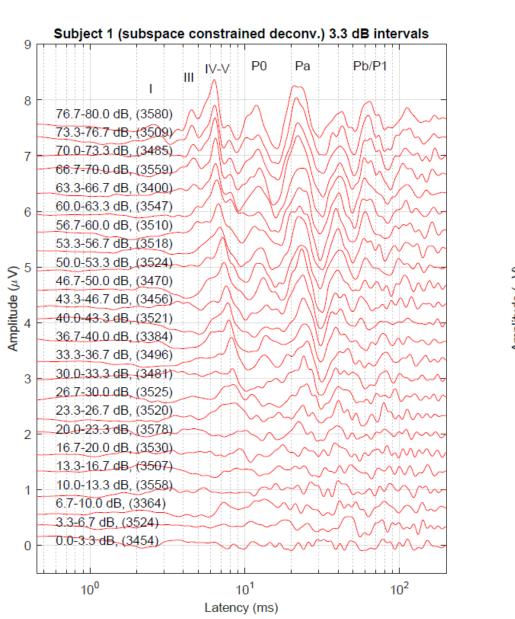


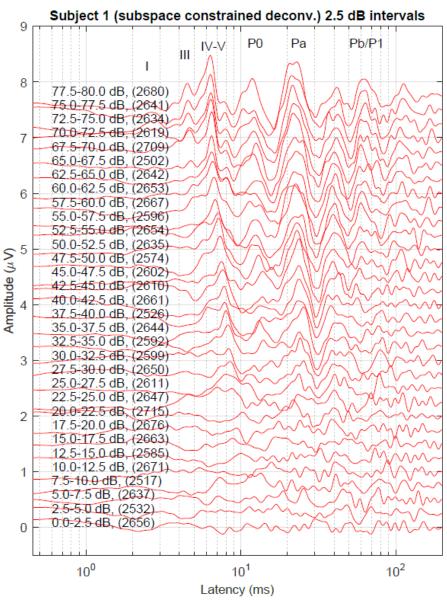
16 categories of 5 dB: reduction from 52432 to 1456 dimens. Computational cost: reduction from XXXX to 56,9 seconds



MEMORY OVERFLOW IN THE COMPLETE REPRESENTATION SPACE

24 categories of 3.3 dB and 32 categories of 2.5 dB (subspace) Computational cost: 97,7 and 135,7 seconds

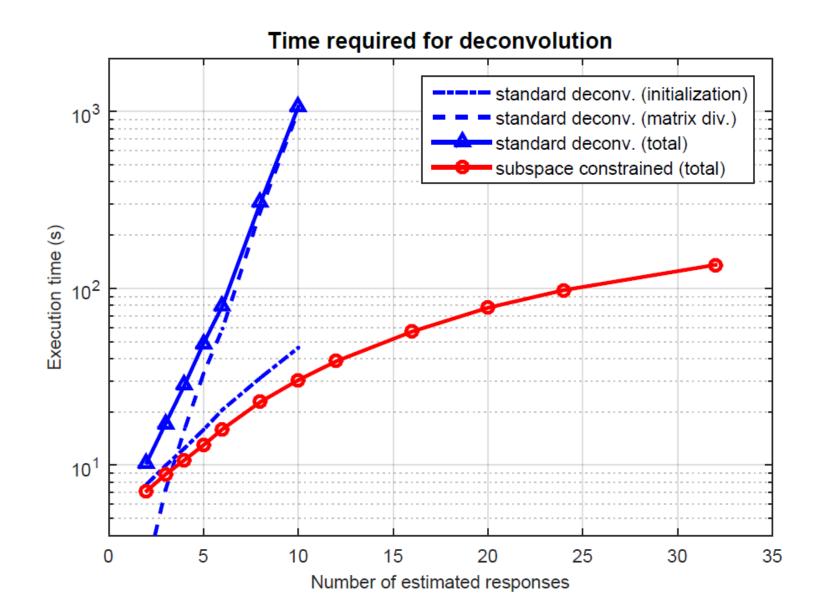




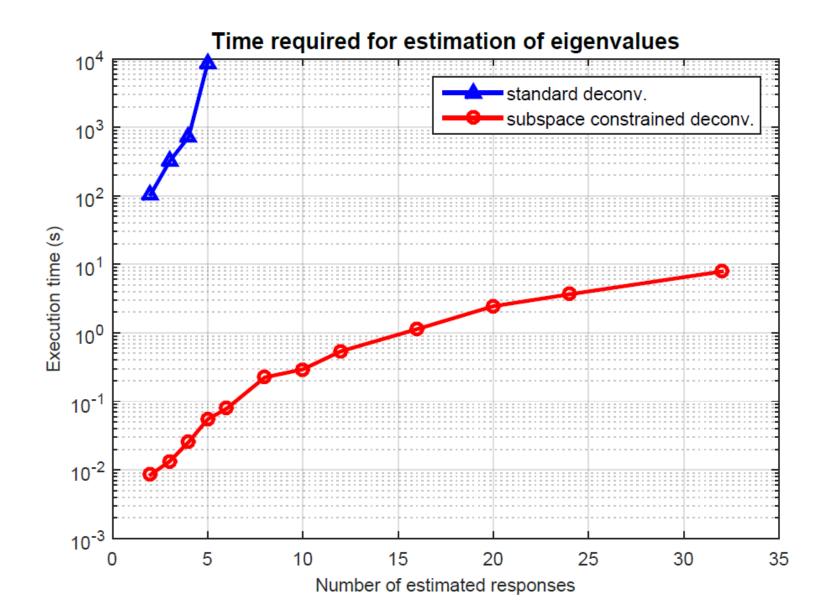
Computational load comparison

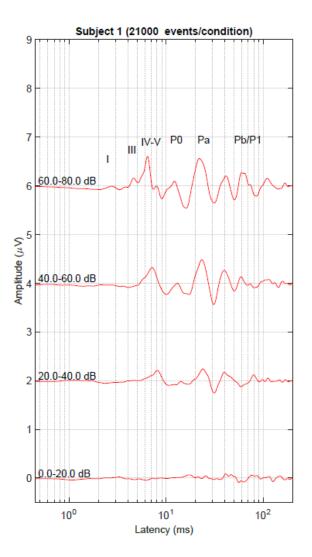
Expe	riment	Complete Representation Spa					e	Subspace-Constrained Deconvolution					
Numb.	Interval	Numb.	ex	ecution t	time (sec	(onds $)$	Cond.	Numb.	execution time (seconds)			Cond.	
categ.	(dB)	dimen.	init.	deconv .	total	eigenval	. number	dimen.	init.	${\rm deconv.}$	total	eigenval.	number
2	40.0	6554	7.80	2.54	10.34	104.05	230.0	182	7.15	0.0004	7.15	0.0085	220.7
3	26.7	9831	9.95	7.28	17.23	318.37	246.8	273	8.87	0.0008	8.87	0.0133	220.7
4	20.0	13108	12.48	15.97	28.45	723.91	241.0	364	10.70	0.0017	10.70	0.0255	220.7
5	16.0	16385	15.86	33.01	48.88	8642.96	256.2	455	12.99	0.0024	12.99	0.0547	220.8
6	13.3	19662	20.60	59.16	79.76	mem.	overflow	546	15.98	0.0049	15.99	0.0784	220.8
8	10.0	26216	31.20	273.21	304.41	mem.	overflow	728	22.78	0.0067	22.79	0.2239	220.8
10	8.0	32770	46.17	1018.04	1064.21	mem.	overflow	910	30.29	0.0120	30.30	0.2933	220.9
12	6.7	39324	memory overflow			mem.	overflow	1092	38.68	0.0218	38.70	0.5386	220.9
16	5.0	52432	memory overflow			mem.	overflow	1456	56.90	0.0531	56.95	1.1333	221.1
20	4.0	65540	memory overflow			mem.	overflow	1820	77.56	0.1038	77.67	2.4461	221.1
24	3.3	78648	memory overflow			mem.	overflow	2184	97.57	0.1114	97.68	3.6501	221.1
32	2.5	104864	memory overflow			mem.	overflow	2912	135.48	0.2279	135.71	7.8493	221.5

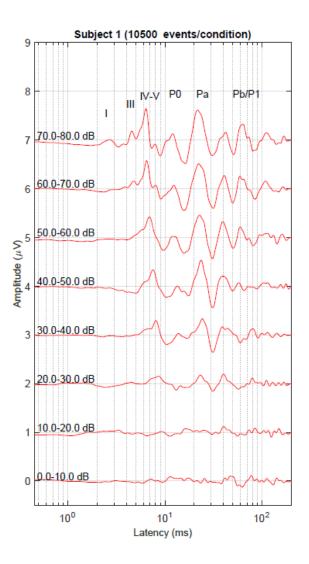
Computational load comparison

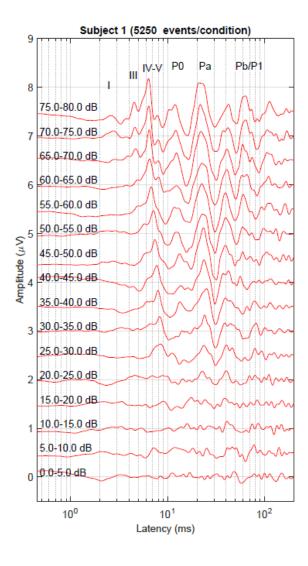


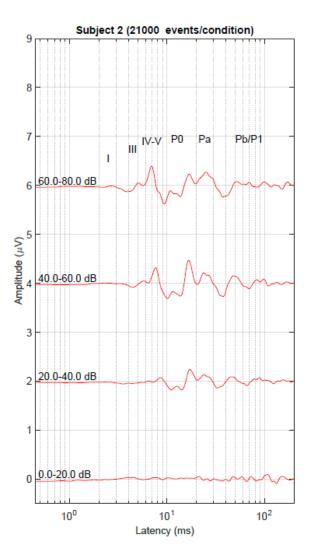
Computational load comparison

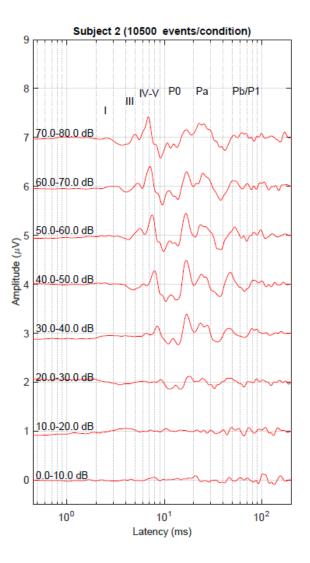


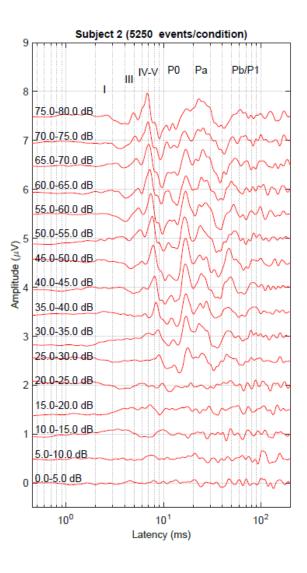


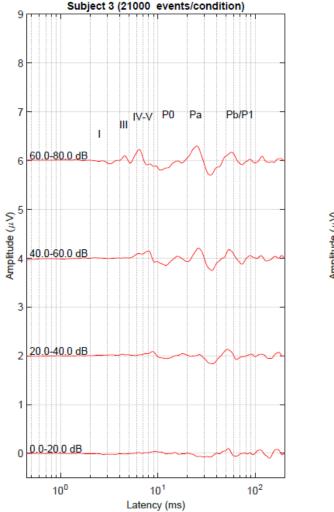


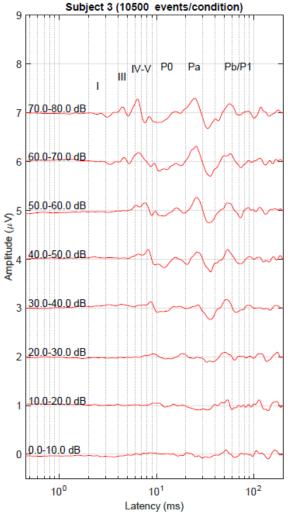


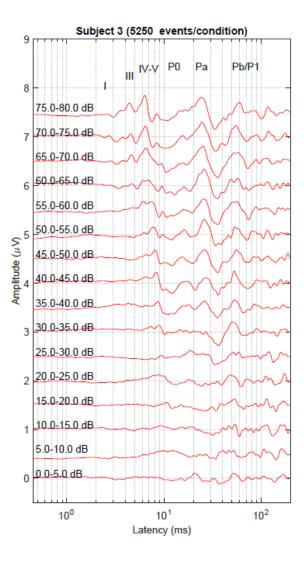


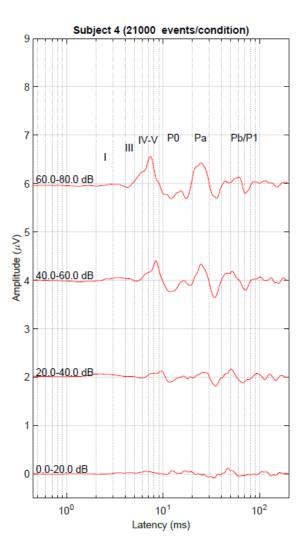


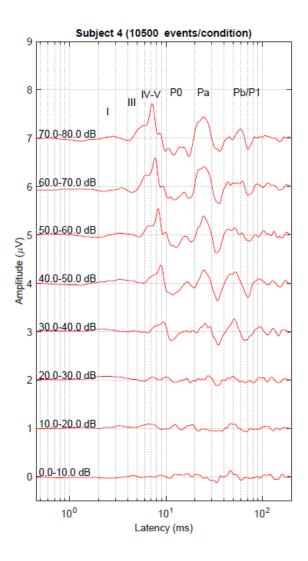


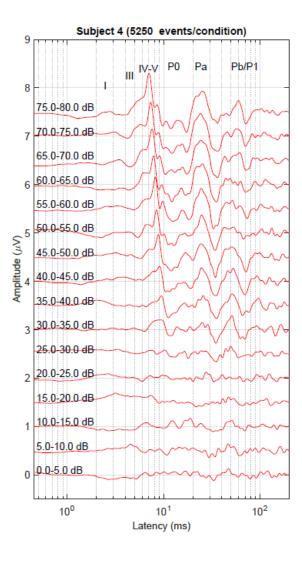






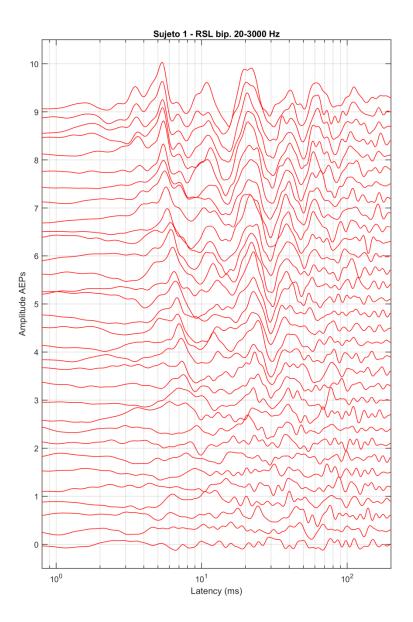


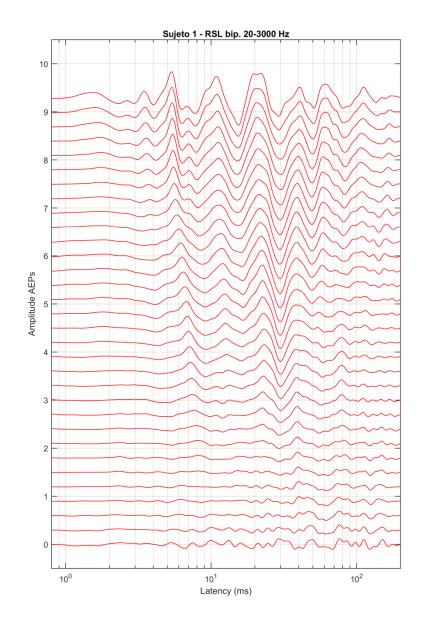




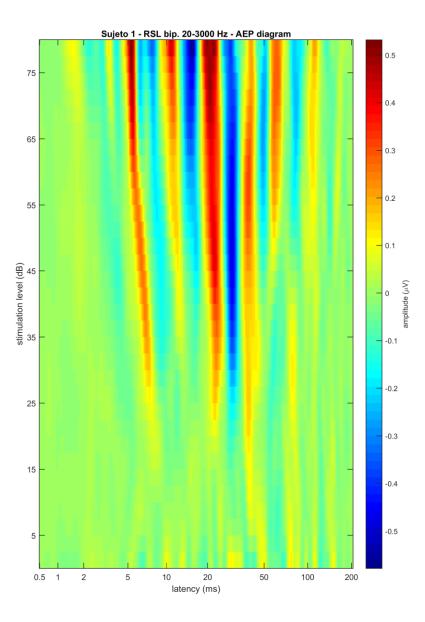
- Number of categories M can be selected offline
- More categories:
 - Estimated responses more affected by noise
 - Better resolution
 - Deconvolution procedure requiring more computer resources, but affordable in reduced representation space
- There are solutions for noise reduction and high resolution (future work)

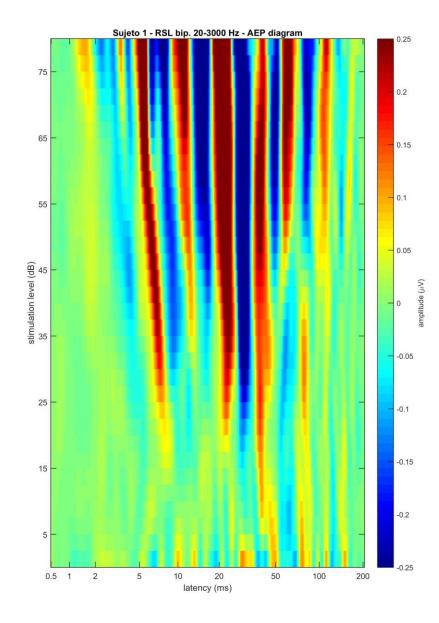
High resolution ABR with multi-response deconvolution





High resolution ABR with multi-response deconvolution





Conclusions

- Multi-response deconvolution of AEPs is possible in a reduced representation space
 - Mathematic fundamental are not very difficult
 - Practical problems are identified and controlled
- Experiments in this work are relatively simple
 Categorization by stimulation level
- Multi-response model allow a broad range of new experimental designs

Complex sounds, structured stimulation patterns

Clinical and research applications

Signal Processing in Audiology

RELEVANT INFORMATION:

- Multi-response deconvolution provides flexibility in AEP recording
- Problem with dimensionality growth (J x M)
- Not a problem in a reduced representation space $(J_r \times M)$

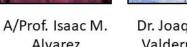
Prof. Angel de la Torre

Prof. Jose C. Segura

Speech-AEPs / PID2020-119073GB-

IO0 / AEI / 10.13039/501100011033

Alvarez



Dr. Joaquin T. Valderrama

Dr. Jose L. Vargas

BINAURAL-EVAL / B.TIC.382.UGR20

E-HHL-D / ProyExcel 00152

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional

María Zambrano Fellowship

MINISTERIO DE UNIVERSIDADES

Projects

Dissemination

In memoriam

Professor José Carlos Segura Luna

23/Feb/1961 10/Sep/2023

