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Abstract

Background: The early diagnosis of Alzheimer’s Disease (AD), particularly in its prodromal stage, Mild
Cognitive Impairment (MCI) remains still a challenge. Many computational tools have been developed to
successfully explore and predict the disease progression. In this context, the Spherical Brain Mapping
(SBM) proved its ability in detecting differences between AD and aged subjects without symptoms of de-
mentia. Being a very visual tool, its application in predicting MCI conversion to AD could be of great help
to understand neurodegeneration and the disease progression. Objective: In this work we aim at: pre-
dicting the conversion of MCI affected subjects to AD more than ͼ months in advance of their conversion
session and understanding the progression of the disease by predicting neuropsychological test outcomes
from MRI data. Methods: In order to do so, SBM is applied to a series of MRI scans from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The resulting spherical brainmaps show statistical andmorpho-
logical information of the brain in a bidimensional plane, performing at the same time a signiϔicant fea-
ture reduction, that provides a feature vector used in classiϔication analysis. Results: The study achieves
up to 92.3%accuracy in theAD vs normal controls (CTL) detection, and up to a ͽͽ.ͼ% in detection a ofMCI
conversions when trained with AD and CTL subjects. The prediction of neuropsychological test outcomes
achieved R2 rates up to more than 0.ͻ. Signiϔicant regions according to t-test and correlation analysis
match reported brain areas in the literature. Conclusion: The results prove that Spherical Brain Map-
ping offers good ability to predict conversion patterns and cognitive state, at the same time that provides
an additional aid for visualizing a two-dimensional abstraction map of the brain.
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I. IēęėĔĉĚĈęĎĔē

Alzheimer’s Disease (AD) is the most common neu-rodegenerative disorder in the world, with more thanͶ million affected, a number that is expected to growup to ͳ͵ͳ.ͷ million by ʹͲͷͲ [ʹ]. Many computationaltools have been developed to aid in the diagnosis ofAD, however, its early diagnosis remains a challenge,especially in its prodromal stage known as Mild Cog-nitive Impairment (MCI). The early and more accu-rate diagnosis of possible AD would reduce the mis-treatment of MCI and an earlier treatment of the dis-ease when its symptoms are still subtle. This mightpositively impact the progression of AD, delaying theapparition of a more severe symptomatology and im-proving the life expectancy and quality of life of thepatients and their families.Currently, cognitive testing is often used to guide inthe diagnosis procedure. Clinical tests such as MiniMental State Exam (MMSE) [͵͵] or the Alzheimer’sDisease Assessment Scale-cognitive subscale (ADAS-cog, in ͳͳ and ͳ͵-question variants) [͵] are oftenused to assess cognitive decline in patients in risk ofsuffering AD. However, recent studies [ͳͷ, ͵Ͷ] showthat non-speciϐic neuropsychological scores such asMMSE could be a possible source of false positives inMCI diagnosis.Neuroimaging, with its ability to perform in vivo ex-ploration of brain structure and function, could be akey source of information to enhance MCI diagnosis.Many works have explored the possibility of multi-variate analyses of structural and functional imagingusing techniques such as Principal Component Analy-sis [ͳͶ, ʹͺ], Support Vector Machines [ʹͶ, ͳ, ͳͲ], tex-ture analysis [͵ͷ, ʹʹ, ͳͻ] or volume and shape anal-ysis [ͷ, ʹ͵, ʹ, ʹ, , ͺ]. These works used semi-automatic methodology to segment and extract fea-tures from images that leaded to higher discrimina-tive Computer Aided Diagnosis (CAD) systems [ͳͺ],offering performances up to ͺͲ% in the diagnosis ofMCI.Obtaining reliable and objective information fromneuroimaging data could effectively increase the ac-curacy of MCI diagnosis. For its part, predicting neu-ropsychological tests outcomes could help to under-stand the relationship between structural changes inthe brain and cognitive state (as measured by cogni-tive tests). This is key to validate diagnostics and es-tablish a connection between neuroimaging and clin-ical tests. However, only a few works such as [ͻ] at-tempt to predict cognitive test outcomes.

Figure ͳ: Deϐinition of the mapping vector vθ,ϕ andthe spherical coordinates.
In this work we will evaluate the usefulness ofthe Spherical Brain Mapping (SBM) texture measures[ʹͲ] in two main environments: to predict conversionof MCI subjects and to predict outcomes of differentcognitive tests such as MMSE, ADAS-ͳͳ and ADAS-ͳ͵.In the ϐirst case, we will use a Support Vector Machineclassiϐier (SVC) to classify the derived SBM maps, as in[ʹͶ]. For predicting test outcomes, we will test two re-gression models [ʹͷ]: Support Vector Machine regres-sion (SVR, Sec. II.͵.ͳ) with linear kernel, a robust andgeneralizable model even in high-dimensional spaces[Ͷ], and a Least Absolute Shrinkage and Selection Op-erator (LASSO, Sec. II.͵.ʹ), that estimates sparse co-efϐicients and can therefore be used for feature selec-tion [͵]. In addition to this, we will identify and vi-sualize (II.ʹ) the brain areas more related to diseaseprogression using hypothesis testing and correlationanalysis. We will test our approaches on MRI datafrom the Alzheimer’s Disease Neuroimaging Initiative(ADNI) [͵͵], whose results can be found at Section IIIand discussed at Section IV. Finally, we draw someconclusions about this work at section V.

II. MĊęčĔĉĘII.ͳ. Spherical Brain MappingThe Spherical Brain Mapping (SBM) is a frameworkproposed at [ʹͲ], whose main feature is to projectthree dimensional structural brain images to bidimen-sional maps representing the spatial distribution of acertain texture measure. To do so, it constructs a map-ping vector vθ,ϕ in the spherical coordinates whosedirection is represented by θ and ϕ (elevation and az-imuth, Figure ͳ) from a given origin of coordinates.While in [ʹͲ] the geometric centre of the images wasused, in this work we set the origin at the Anterior
ʹ
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Commissure, given its favourable anatomical position.All the intensities of the voxels crossed by vθ,ϕ deϐinethe set of selected intensities Vθ,ϕ. 181 × 361 sets ateach of the elevation and azimuth values 0 < θ < 180and 0 < ϕ < 360 are built at an angular resolution ofͳo . Finally, ϐive statistical and one morphological mea-sures are derived from these intensity sets: average,entropy, kurtosis, skewness and variance (see someexamples at Figure ʹ).The average of Vθ,ϕ is deϐined as:

vaverage =
1

N

N

∑
i=1

Vi
θ,ϕ (ͳ)

where Vi
θ,ϕ is the ith element in the sampled set Vθ,ϕ,and N is its size. The entropy of Vθ,ϕ, is estimated as:

ventropy =
N

∑
i=1

Vi
θ,ϕ log(Vi

θ,ϕ) (ʹ)
The remaining values are computed using the gen-eral formula for the rth moment:

mr =
1

N

N

∑
i=1

(Vi
θ,ϕ − vaverage)

r (͵)
from which we derive the corrected variance, skew-ness and uncorrected kurtosis:

vvariance =
N

N − 1
m2 (Ͷ)

vskewness =
m3

m3/2
2

(ͷ)
vkurtosis =

m3

m2
2

()
And ϐinally, the only morphological measure: thethickness of the tissues crossed by vθ,ϕ. In this ap-proach, the value is obtained from the indexes (posi-tions) where the intensities are higher than a thresh-old:

Vidx = arg{Vθ,ϕ > Ith} ()where Ith is the intensity threshold, typically Ͳ. Thethickness is deϐined as:
vthickness = max{Vidx} − min{Vidx} (ͺ)Once we have computed the different measures ateach coordinate pair, we can build the SBM maps byputting each value at its corresponding pair. This way,we obtain maps such as the ones presented in Fig-ures ʹ and ͵. The python package used has been up-loaded at http://github.com/SiPBA/mapBrain.

II.ʹ. Visualization
II.ʹ.ͳ Hypothesis TestingA widespread technique for assessing where class dif-ferences are located is hypothesis testing. In this con-text, we assume a null hypothesis of H0, that is, the hy-pothesis that there is no difference between two pop-ulations. On the other hand, we formulate the alter-native hypothesis H1: the assumption that there aresome differences. Then, a statistical test is applied,from which a certain p-value -the probability of reject-ing H0 by chance- can be derived.The t-test is a hypothesis testing statistic exten-sively used in the neuroimaging community, since itis the basis for the SPM and VBM analyses [ͳ͵]. Inthis work, we will apply an independent two-sample
t-test [ͳͳ] to each pixel of the resulting SBM measures,in order to display maps where the more discriminantareas are highlighted.The t-test used in this work quantiϐies the differ-ences between two classes assuming normal distri-bution and independent variances, which most of theSBM measures at different (θ, ϕ) comply with. Let X

f
ia vector containing the f -th feature of all elements inclass i. The t-score of the f -th feature can be com-puted as:

t f =
X̄

f
1 − X̄

f
2

√

σ2

X
f
2

+σ2

X
f
1

n

(ͻ)
where σ2

X
f
i

is the variance and X̄
f
i is the average of the

f -the feature within class i.
II.ʹ.ʹ Pearson’s Correlation CoefϐicientCorrelation maps based on the Pearson’s CorrelationCoefϐicient (PCC, also known as Pearson’s r) havebeen generated in order to visually assess which re-gions are more correlated with test outcomes (MMSE,ADAS-ͳͳ and ADAS-ͳ͵). This is done for each mea-sure value vθ,ϕ in each direction.:

r12 =
∑i(v

i
θ,ϕ − v̄θ,ϕ)(yi − ȳ)

√

∑i(v
i
θ,ϕ − v̄θ,ϕ)2(yi − ȳ)2

(ͳͲ)
where yi is the test score for the ith subject, and ȳ themean value of all subjects.
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Figure ʹ: Example of the six SBM maps generated over the GM segmented image of a CTL subject.
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Figure ͵: Example of the six SBM maps generated over the WM segmented image of a CTL subject.

ͷ



Assessing Mild Cognitive Impairment Progression... • January ͵Ͳ, ʹͲͳͺ• J. Alz. Dis. (Accepted)
II.͵. Regression Analysis
II.͵.ͳ Support Vector RegressionSupport Vector Regression (SVR) trains Support Vec-tor Machines to predict a continuous variable frompreviously unseen data [Ͷ]. In contrast to the Gen-eral Lineal Model (GLM) regression, if two featuresare highly correlated, the computed SVR weights aresimilar. This is a clear advantage for its use in SBMmaps, where the measures are spatially distributed incoordinate pairs, sharing inherent similarities due toneighbourhood. In this work we use the ε-SVR imple-mentation.For each training vector xi ∈ R

p, i = 1, . . . , n(containing each of the n subjects maps), and a vector
y ∈ R

n with their corresponding scores ε-SVR solvesthe following primal problem:
min

w,b,ζ,ζ∗

1

2
wTw + C

n

∑
i=1

(ζi + ζ∗i ) (ͳͳ)where w are the SVM coefϐicients, b is the bias termand the variable ζi = max (0, 1 − yi(w · xi − b)).This is subject to the conditions:
yi − wTx) − b ≤ ε + ζi, (ͳʹ)
wTxi + b − yi ≤ ε + ζ∗i , (ͳ͵)

ζi, ζ∗i ≥ 0, i = 1, ..., n (ͳͶ)where ε = 0.1 is the margin of the hyperplane, and
C is a regularization term set to ͳ. The test scoresare therefore predicted using the decision function
f (xi) = xiw + b.
II.͵.ʹ LASSOLeast Absolute Shrinkage and Selection Operator(LASSO) is a regression model that estimates sparsecoefϐicients. This is very useful under the assumptionthat very few features inϐluence the dependent vari-able y, and therefore allows performing feature selec-tion and regularization. It is based on a linear modelregularized with ℓ1 prior, deϐining the following ob-jective function:

min
w

1

2n
||Xw − y||22 + α||w||1 (ͳͷ)where X = x1, x2, . . . xn is the training matrix, α isa constant and ||w||1 is the ℓ1-norm of the parame-ter vector. The inclusion of the α||w||1 term solvesthe minimization of the least-squares penalty. In thiswork, the LASSO implementation [ʹͷ] uses coordi-nate descent to ϐit the coefϐicients. Scores are esti-mated with the decision function f (xi) = xiw

T .

II.Ͷ. Evaluation
II.Ͷ.ͳ ADNI DatasetData used in the preparation of this article wereobtained from the Alzheimer’s Disease Neuroimag-ing Initiative (ADNI) database (adni.loni.usc.edu).The ADNI was launched in ʹͲͲ͵ as a public-privatepartnership, led by Principal Investigator Michael W.Weiner, MD. The primary goal of ADNI has been to testwhether serial magnetic resonance imaging (MRI),positron emission tomography (PET), other biologi-cal markers, and clinical and neuropsychological as-sessment can be combined to measure the progres-sion of mild cognitive impairment (MCI) and earlyAlzheimer’s disease (AD).The database used in this article was obtained withfrom the ADNIͳ initiative, containing subjects thathave undergone periodical assessment of cognitivefunction and MRI acquisition every  months, witha total ʹͳͺʹ Tͳ-weighted MRI images (for further in-formation, see www.adni-info.org). These imageswere spatially normalized to the standard SPM tem-plate using the SPMͺ software [ͳ͵] Normalize withdefault parameters (non-rigid, preserve concentra-tions), and them segmented into Grey Matter (GM)and White Matter (WM) using the VBMͺ toolbox.In the classiϐication experiments we will considerfour different cohorts. The ϐirst subset correspondto all AD subjects in their baseline acquisition (thatis, when the disease is less advanced), and will be re-garded as AD from this point. Two more subsets con-taining the last available visit from CTL and MCI sta-ble will be selected as well, namely the CTL and MCI-S (from MCI stable) subsets. Finally, a MCI subsetcontaining all converters in the last session availableprior to their conversion will form the MCI-C (fromMCI converter) set.This choice is not trivial. Since the ϐinal aim is to es-timate how discriminant are the SBM maps in predict-ing MCI conversion, we wanted to make the classiϐica-tion task as difϐicult as possible. Since the MCI-to-ADprogression can be viewed as a continuum, the lastCTL acquisition will be more difϐicult to differentiatefrom the earliest AD, and likewise, the last MCI stableacquisition will be more difϐicult to differentiate fromMCI converters. That way, the MCI-S will be more rep-resentative of the whole spectrum commonly classi-ϐied as MCI but never progress to AD.For comparison purposes, we will provide theVoxels-As-Features (VAF) [͵Ͳ] performance of thisdatabase using the segmented GM and WM maps in
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Diag Gender N Age [STD] MMSE [STD] ADASͳͳ [STD] ADASͳ͵ [STD]AD Female Ͷͺ ͷ.Ͳͺ [.ͺ] ʹ͵.ͳͳ [ʹ.͵ͻ] ͳͺ.ʹͳ [ͷ.ͺͺ] ʹͺ.Ͷ [.ʹ͵]Male ͷͳ ͷ.͵ [.͵ͻ] ʹʹ.ͻͳ [ʹ.Ͷ͵] ͳͻ.ͻͳ [.ͷͻ] ͵Ͳ.Ͳʹ [ͻ.ʹ͵]MCI-C Female ʹ ͵.ͲͶ [ͺ.ʹͳ] ʹ͵.ͷʹ [͵.Ͳͻ] ͳ͵.ͷʹ [Ͷ.ͷ] ʹʹ.ʹ [ͷ.ͻ]Male Ͷ͵ ͷ.ʹͶ [ͷ.ͷͳ] ʹͶ.ʹͷ [͵.Ͳ] ͳ͵.ͳͻ [Ͷ.Ͳͳ] ʹͳ.ͳͷ [ͷ.ͷʹ]MCI-S Female ͳͷ ͳ.ͷ͵ [ͺ.Ͷͳ] ʹͷ.ͷͲ [Ͳ.ͳ] ͳͲ.ͳͻ [Ͷ.͵Ͳ] ͳ.ͷ͵ [.ʹ]Male Ͷͻ ͷ.ͻͳ [.ͻ] ʹ.͵͵ [ͳ.ͺ] ͳͲ. [Ͷ.ͶͲ] ͳ.ͳ͵ [.ͳͷ]CTL Female ͳ ͷ.ͻͶ [Ͷ.Ͷʹ] ͵Ͳ.ͲͲ [Ͳ.ͲͲ] ͷ.ͺ [͵.ͳͷ] ͺ.͵ͷͲ [Ͷ.ʹ]Male ͳ ͷ.͵ͺ [ͷ.ʹ] ʹͻ.͵͵ [ͳ.ʹͳ] .Ͷͷ [ʹ.ͺͺ] ͳͲ.͵͵ [Ͷ.ʹʹ]

Table ͳ: Demographics of the ADNI dataset.
the AD vs CTL and MCI-C vs MCI-S classiϐication.
II.Ͷ.ʹ Evaluation ParametersWe will test the SBM statistic maps in two different en-vironments: in predicting the conversion of MCI to de-mentia, and trying to predict neuropsychological testoutcomes. The ϐirst one is a classiϐication approach,and therefore, we will employ a linear Support Vec-tor Machine classiϐier (SVC) to estimate how relevantthe differences between classes are. The ϐinal perfor-mance values estimate how discriminant the differentmeasures are when classifying two classes. Accuracy(acc.), Sensitivity (sens.) and Speciϐicity (spec.) andtheir standard deviation (SD) will be estimated as:
acc. =

TP + TN

N
, sens. =

TP

TP + FN
, spec. =

TN

TN + FP(ͳ)where TP, TN, FP and FN are the number of true pos-itives, true negatives, false positives and false nega-tives respectively.The performance estimates are obtained via a strat-iϐied ͳͲ-fold cross-validation [ͳ]. In brief, this proce-dure divides the whole dataset in ͳͲ subsets with thesame proportion of classes, and iteratively uses ͻ ofthis subsets for training and tests against the remain-ing one. The procedure is repeated ͳͲ times, fromwhich we obtain the average and standard deviationof the different proposed estimates. Performance es-timates of the classiϐication of AD vs CTL groups andMCI converters vs stable will be computed. Since MCIis a rather heterogeneous class, with overlapping con-verters and non-converters, we additionally will useAD and CTL subjects to train the classiϐier, and thenidentify the MCI subjects more similar to AD as con-

verters and those more similar to CTL as stable.The second environment corresponds to regres-sion analysis. Since SBM maps have never been testedon this environment, we will employ two differentstrategies: Support Vector Machine regression (SVR,Sec. II.͵.ͳ) and a Least Absolute Shrinkage and Se-lection Operator (LASSO, Sec. II.͵.ʹ). To quantify thequality of the prediction of our regressive model, weuse the Mean Square Error (MSE) and the coefϐicientof determination R2. These performance measuresare estimated as the average of all ͳͲ measures com-puted within a ͳͲ-fold cross-validation loop. TheMSE measures the mean error of the outcomes of thetrained model, and is computed as:
MSE =

1

N ∑
i

(ŷi − yi)
2 (ͳ)

where ŷi are the outcomes of the model for the ith sub-ject.For its part, R2 measures the proportion of variancein the dependent variable yi (the outcomes of the cog-nitive tests) that is explained by the trained model.The best R2 possible is ͳ.Ͳ, a Ͳ.Ͳ is the score of a con-stant model that always predicts the expected value of
y, and it can be negative (an arbitrarily worse model).It is computed as:

R2 = 1 −
∑i(yi − ŷi)

2

∑i(yi − ȳ)2
(ͳͺ)

Furthermore, visual maps for both environmentswill be provided. For differences between groups,we will use the t-test in each value of the SBM maps.To estimate the correlation of each SBM feature withthe neuropsychological test outcomes, we will use thePearson’s r, as deϐined before.
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scenario tissue acc. [STD] sens. [STD] spec. [STD]AD vs CTL GM 0.768[0.011] 0.752[0.016] 0.785[0.016]WM 0.642[0.009] 0.668[0.012] 0.617[0.013]MCI-C vs MCI-S GM 0.708[0.165] 0.728[0.174] 0.688[0.197]WM 0.753[0.122] 0.757[0.157] 0.752[0.139]Table ʹ: VAF performance of this dataset.III. RĊĘĚđęĘIII.ͳ. Anatomical ReferenceTo better understand the SBM maps, and the locationof differences and correlations, we have created twodifferent templates (external -ϐigure Ͷ- and internal-ϐigure ͷ-, depending on their distance to the crust)that will be used as a reference throughout this sec-tion. These templates have been created by project-ing each of the regions of the well known AutomaticAnatomical Labelling (AAL) atlas [͵ͳ] by using theSBM-average measure, then smoothing out the pro-jection of each individual region and ϐinally assigningdifferent colours.
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Figure Ͷ: Structures at the cortex projected usingSBM, including: ͳ) Precentral gyrus, ͵) frontal supe-rior gyrus, ͷ) frontal superior orbital gyrus ) frontalmiddle gyrus, ͻ) frontal medial orbital gyrus, ͳͳ)frontal inferior operculum, ͳ͵) frontal inferior parstriangularis, ͳͷ) frontal inferior orbital gyrus, ͳ)rolandic operculum, ͳͻ) superior motor area, ʹ͵)frontal superior medial gyrus, ʹͷ) frontal medial or-bital gyrus, ʹ) gyrus rectus, Ͷ͵) calcarine sulcus,Ͷͷ) cuneus, Ͷ) lingual gyrus, Ͷͻ) occipital superiorgyrus, ͷͳ) occipital middle gyrus, ͷ͵) occipital infe-rior gyrus, ͷͷ) fusiform gyrus, ͷ) postcentral gyrus,ͳ) parietal inferior gyrus, ͵) supramarginal gyrus,ͷ) angular gyrus, ) precuneus, ͻ) paracentral lob-ule, ͺͳ) temporal superior gyrus, ͺ͵) temporal polesuperior part, ͺͷ) temporal middle gyrus, ͺ) tempo-ral pole middle part, ͺͻ) temporal inferior gyrus.
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Figure ͷ: Subcortical structures projected using SBM.Same label is used for both left and right hemisphereas a reference. ʹͳ) olfactory bulb, ͵ͳ) anterior part ofthe cingulate gyrus, ͵͵) middle part of the cingulategyrus, ͵ͷ) posterior part of the cingulate gyrus, ͵)hippocampus, ͵ͻ) parahippocampal gyrus, Ͷͳ) amyg-dala, ͳ) caudate nucleus, ͵) putamen, ͷ) globuspallidus, ) thalamus.III.ʹ. VisualizationIn this section we focus on the two aforementionedvisualization techniques: the hypothesis testing (toassess differences between the AD, MCI-C, MCI-S andCTL groups) and maps that display the correlation be-tween SBM measures and neuropsychological tests.
III.ʹ.ͳ Differences Between GroupsIn Figure  we show the signiϐicant regions (uncor-rected t-test, p<Ͳ.ͲͲͳ) of each SBM measure com-puted over the GM tissue. In these maps we can seeshapes that remind us of some internal structures ofthe brain such as the hippocampus, amygdala and cin-gulate gyrus. Blue and red colours respectively meannegative and positive t-values. This shows us that theaverage measure is smaller in AD than in CTL in someareas that have been widely linked to Alzheimer’s dis-ease, as it could be expected. Similar areas presenta similar behaviour when using entropy. Conversely,the t-values for kurtosis or skewness present simi-lar patterns to the average or variance measures, al-though with smaller statistical signiϐicance and nega-
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Figure : Signiϐicant regions according to the uncorrected t-test applied over the AD vs CTL scenario and GM,thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
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tive values.In Figure  we show similar information (thresh-olded signiϐicant areas, uncorrected t-test, p<Ͳ.ͲͲͳ)of the WM SBM measures. In this case, the most signif-icant areas are located at the top of the image, whichmight correspond to the middle part of the cingulategyrus (͵͵) in the internal reference, and the superiormotor area (ͳͻ) in the external. However, these ar-eas correspond more speciϐically to the longitudinalϐissure, as it can be seen at Figures ʹ and ͵. Regionsat the inferior part of the hippocampus can also be ap-preciated in the average, skewness, kurtosis and vari-ance maps, and at the posterior part of the caudatenucleus (ͳ).
III.ʹ.ʹ Correlation with Neuropsychological

TestsIn this section we will assess the correlation betweeneach SBM measure and the MMSE and ADAS-ͳ͵ tests,to check which regions and measures are more re-lated to variations in cognitive ability.In Figure ͺ, one general pattern can be described inthe SBM’s average, kurtosis, skewness and variancemeasures for GM. In these particular cases, there isa noticeable positive (average and variance) and neg-ative (kurtosis and skewness) correlation betweenMMSE scores and SBM values at the hippocampus(͵), amygdala (Ͷͳ) and parahippocampal gyrus (͵ͻ).In these cases, the PCC reaches absolute values higherthan Ͳ.Ͷ. However, two different correlation pat-terns (smaller, with PCCs around Ͳ.͵) appear in en-tropy and thickness. In these two cases, the maxi-mum correlations are located at the bottom part ofthe parahippocampal gyrus (͵ͻ) and, in general, thelimits of the temporal lobe. In the case of entropy,we also ϐind some high positive correlations at thefrontal superior orbital gyrus (ͷ), occipital superior(Ͷͻ), middle (ͷͳ), and inferior gyri (ͷ͵), the angu-lar gyrus (ͷ) and temporal middle gyrus (ͺͷ), whichalso could match the thalamus () and posterior partof the caudate nucleus (ͳ), globus pallidus (ͷ), thehippocampus (͵) and the olfactory bulb (ʹͳ).The correlations of the SBM GM-derived measureswith ADAS-cog measures are always higher (in somecases, more than Ͳ.ͳ in absolute value) than the corre-lations found in MMSE. However, the patterns are ex-tremely similar, but inverse, due to the nature of eachkind of test.Correlations of the WM-derived SBM measureswith neuropsychological tests are in all cases smaller,as can be checked at Figure ͻ for ADAS-ͳ͵ (correla-

tions are again higher for ADAS-cog than for MMSE).The patterns are much more related to WM variations,and they can hardly been related to the previous struc-tures. However, most of them show highest PCC val-ues in the superior motor area (ͳͻ), an area shared be-tween the precentral and postcentral gyrus, includingthe parietal inferior gyrus (ͳ, ͷ and ͳ respectively)and, for the thickness measure, the outermost part ofthe temporal gyrus, near the temporal pole (ͺ).
III.͵. Classiϐication AnalysisIn this section, we present the results of evaluatingthe  SBM maps for GM and WM tissues under the ADvs CTL and MCI-C vs MCI-S scenarios.
III.͵.ͳ AD vs CTLUnder the ϐirst scenario, the classiϐication analysis ob-tained a performance shown at Table ͵. As we can eas-ily see in that table, the best results are obtained bythe average measure on the GM tissue, and both av-erage and entropy in the WM tissue. The tendency isthat average, entropy and variance obtain similar per-formance, whereas the skewness, kurtosis, and belowall, thickness, are less discriminant between AD andCTL classes.
III.͵.ʹ MCI-C vs MCI-SNow we will focus on predicting the conversion ofMCI subjects. To do so, we will analyse the systemwhen trained and tested with MCI-C and MCI-S. Theperformance achieved by the different SBM measuresis presented at Table Ͷ.In this case, we can see that the best performingmeasures are the average (for GM tissue) and vari-ance (for WM tissue). These maps achieve high sen-sitivity, although smaller than the one obtained whenusing the VAF approach (see Table ʹ). Therefore, evenwhen obtaining a signiϐicant feature reduction, theperformance degrades. This is probably due to theMCI subclasses sparsity in the SBM space and a highoverlapping rate between converters and non con-verters. Therefore, we aim to test whether these twosubclasses are better classiϐied when using two moreseparate clusters, AD and CTL subjects, to train theSVC.In the second part of Table Ͷ, we provide the classi-ϐication performance of that very approach, trainingon AD and CTL subjects and predicting converters by
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Figure : Signiϐicant regions according to the uncorrected t-test applied over the AD vs CTL scenario and WM,thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
tissue measure acc. [STD] sens. [STD] spec. [STD]
GM

average 0.923[0.036] 0.879[0.075] 0.958[0.077]entropy 0.920[0.054] 0.879[0.095] 0.953[0.089]kurtosis 0.895[0.075] 0.852[0.111] 0.929[0.107]skewness 0.913[0.059] 0.868[0.102] 0.948[0.094]thickness 0.848[0.129] 0.797[0.185] 0.889[0.171]variance 0.921[0.047] 0.879[0.093] 0.954[0.085]

WM
average 0.896[0.081] 0.847[0.154] 0.933[0.130]
entropy 0.896[0.078] 0.861[0.119] 0.923[0.115]kurtosis 0.827[0.119] 0.766[0.186] 0.875[0.167]skewness 0.857[0.103] 0.807[0.167] 0.897[0.148]thickness 0.802[0.130] 0.732[0.198] 0.856[0.181]variance 0.891[0.076] 0.853[0.122] 0.921[0.119]Table ͵: Performance of the different SBM measures under the AD vs CTL scenario.
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Figure ͺ: PCC maps computed between the SBM-GM measures and the MMSE. The reference of internal andexternal structures is superimposed to the ϐigures, depending on the most relevant patterns
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Figure ͻ: PCC maps computed between the SBM-WM measures and the ADAS-ͳ͵ (the best scoring of the twoADAS-cog tests).
choosing those more similar to the AD class. We eval-uate the different maps when predicting the conver-sion of MCI subjects by training the classiϐier with ADand CTL subjects. It is clear that there exist a signif-icant performance increase, of more than ͳͲ% in forGM and ͷ% in WM. In this case, the best performingSBM measure is again average for GM and entropy forWM, outperforming the VAF approach (see Table ʹ) inthis task.
III.Ͷ. Regression AnalysisNow we will evaluate how two different regressiontechniques, LASSO and SVR, can predict neuropsycho-logical test outcomes using SBM maps as as source.The results for this approaches can be found at Ta-ble ͷ.Regarding the regression model, SVR performs bet-ter than LASSO in ADAS-cog and GM. Conversely,

LASSO correlates better with MMSE in all cases andADAS-cog in WM. Of the three tests, the ADAS-ͳ͵scores are best modelled, followed by ADAS-ͳͳ and,at a long distance, MMSE. The maps that better pre-dict test outcomes are the entropy (in GM and WM)and the variance (for GM when using the SVR). MMSEprediction achieves a poorer performance, with small
R2 values for MMSE, in both GM and WM maps. Onthe contrary, the variance/entropy maps for GM out-perform the same measures in WM by almost Ͳ.ʹ.IV. DĎĘĈĚĘĘĎĔēThe main purpose of this work is to test the abilityof the SBM maps in two challenging scenarios: pre-dicting the conversion of MCI subjects to dementiaat least six months in advance, and predicting neu-ropsychological tests outcomes from MRI data in or-der to have another objective measure of cognitive
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Trained with MCI-C and MCI-S Trained with AD and CTLTissue Measure acc. [STD] sens. [STD] spec. [STD] acc. [STD] spec. [STD] sens. [STD]

GM
average 0.664[0.091] 0.700[0.149] 0.626[0.175] 0.776[0.120] 0.826[0.182] 0.729[0.174]entropy 0.644[0.120] 0.695[0.151] 0.593[0.193] 0.731[0.115] 0.837[0.205] 0.633[0.183]kurtosis 0.622[0.120] 0.691[0.170] 0.548[0.197] 0.733[0.115] 0.847[0.210] 0.626[0.196]skewness 0.638[0.115] 0.700[0.165] 0.573[0.198] 0.739[0.110] 0.854[0.210] 0.632[0.194]thickness 0.607[0.120] 0.676[0.177] 0.532[0.201] 0.711[0.122] 0.857[0.235] 0.576[0.218]variance 0.646[0.117] 0.686[0.154] 0.604[0.186] 0.746[0.120] 0.802[0.186] 0.693[0.165]

WM
average 0.672[0.149] 0.700[0.207] 0.645[0.231] 0.709[0.146] 0.888[0.235] 0.543[0.200]entropy 0.664[0.157] 0.681[0.244] 0.648[0.237] 0.719[0.140] 0.862[0.218] 0.590[0.208]kurtosis 0.651[0.156] 0.677[0.215] 0.622[0.226] 0.675[0.151] 0.808[0.232] 0.554[0.224]skewness 0.653[0.160] 0.668[0.229] 0.638[0.231] 0.707[0.137] 0.846[0.218] 0.582[0.210]thickness 0.641[0.152] 0.671[0.216] 0.607[0.222] 0.672[0.144] 0.796[0.223] 0.560[0.216]
variance 0.675[0.152] 0.679[0.234] 0.674[0.240] 0.713[0.147] 0.852[0.219] 0.586[0.211]Table Ͷ: Performance of the different SBM measures under the MCI-C vs MCI-S scenario.ADASͳͳ ADASͳ͵ MMSELASSO SVR LASSO SVR LASSO SVR

MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2average (GM) Ͷͻ.Ͷ Ͳ.ʹ͵ Ͷ.ͺ Ͳ.ʹͺ ͺͶ.͵ Ͳ.͵Ͳ ʹ.Ͳ Ͳ.Ͷͳʹ ͳͶ.ͺ͵ Ͳ.Ͳͳ ͳͷ.ʹ -Ͳ.ͲͲʹentropy (GM) Ͷͳ.ͲͶ Ͳ.͵ͻʹ ͵ͻ.Ͷͺ Ͳ.ͶͳͶ .Ͷ Ͳ.ͶͶͻ ͵.ͷͷ Ͳ.Ͷͺͳ ͳͳ.ʹ Ͳ.ʹͺͷ ͳ͵.ͳ Ͳ.ͳͷͷkurtosis (GM) ͳ.ͻͷ -Ͳ.Ͳͺ ͻ.ͻ -Ͳ.ͲͶͳ ͳ͵ʹ. -Ͳ.Ͳͺ͵ ͳͳ͵.ͻ Ͳ.Ͳʹ ͳͻ.Ͳͺ -Ͳ.ʹʹ͵ ͵ͺ.ʹ -ͳ.ʹͻͶskewness (GM) Ͷͷ.Ͳ Ͳ.͵͵Ͳ ͷʹ.ͳͷ Ͳ.ʹͳͻ ͻ.ͻ Ͳ.͵ͷ͵ ͺͲ.ʹ Ͳ.͵Ͷͳ ͳͳ.ͳ Ͳ.ʹʹ ͳͷ.ͷʹ Ͳ.ͲͳͶthickness (GM) Ͷ.ͳͺ Ͳ.Ͳ͵ͺ ͷʹ.ͻ͵ Ͳ.ʹͳͳ ͳͲ͵.ͳ Ͳ.ͳͷ ͺʹ.Ͷ Ͳ.͵ʹͺ ͳ.ͷͳ -Ͳ.Ͳͷͷ ͳͷ.ʹ͵ Ͳ.Ͳʹvariance (GM) ͷͺ.ͺͷ Ͳ.ͳʹ ͵ͻ.ͳ Ͳ.Ͷͳ ͻͷ. Ͳ.ʹͳ Ͳ.Ͷ Ͳ.ͷͲͶ ͳͷ.ͻ -Ͳ.ͲͲʹ ͳʹ.ͺͳ Ͳ.ͳͺ͵average (WM) ͵.ʹ Ͳ.Ͳͷʹ ͷͻ.͵ʹ Ͳ.ͳͲͶ ͳͳ͵.ͳ Ͳ.Ͳʹ ͻ.ͷͶ Ͳ.ͳͻͶ ͳͷ.ͻ -Ͳ.ͲͲʹ ͳͷ.ͻͻ -Ͳ.Ͳͳͻentropy (WM) Ͷͺ.ʹͺ Ͳ.ʹ Ͷͺ.ͷͻ Ͳ.ʹͺ .ͳͷ Ͳ.͵ ͺͳ.ͻͷ Ͳ.͵ʹͷ ͳͳ.ͷͳ Ͳ.ʹͷ ͳͷ.Ͳͳ Ͳ.ͲͶͺkurtosis (WM) ͳͳ.ͻ -Ͳ.ͷͶ ͻͷ.ͻͳ -Ͳ.Ͷ͵ ʹͳͻ.Ͷ -Ͳ.ͺͲͷ ͳ͵.ͺ -Ͳ.Ͷʹͺ ʹͷ.ͳ -Ͳ.ͷͻͺ Ͷʹ.ͲͶ -ͳ.ͳͷskewness (WM) .ͳ -Ͳ.ͳͶͳ .͵͵ Ͳ.ͲͲͷ ͳ͵ͻ. -Ͳ.ͳͶͻ ͳͳͶ.ͳ Ͳ.Ͳʹ ͳ.Ͳ -Ͳ.Ͳͳͻ ͳͺ.ͳ -Ͳ.ͳͷ͵thickness (WM) ʹ.Ͷ -Ͳ.ͲͻͶ ͷͻ.Ͷ Ͳ.Ͳͻͻ ͳͳͻ.͵ Ͳ.Ͳͳͻ ͳͲͲ.ʹ Ͳ.ͳͶ ͳ.͵ͳ -Ͳ.Ͳ͵ͷ ͳͶ.Ͷͷ Ͳ.Ͳͺ͵variance (WM) .͵͵ -Ͳ.ͲͲʹ ͷͳ.͵ Ͳ.ʹʹʹ ͳͳͻ.ͷ Ͳ.Ͳͳͻ ͺ.ͳʹ Ͳ.ʹͺͻ ͳͷ.ͻ -Ͳ.ͲͲʹ ͳʹ.ͻͻ Ͳ.ͳͶTable ͷ: Coefϐicient of determination and MSE of the different models for the three cognitive tests, based on theSBM transformation of GM and WM maps. Best values per test and model are highlighted.
state. This is enhanced by the special characteristicsof the SBM mapping, which allows a direct bidimen-sional visualization of textural changes in the brain.However, before discussing these two scenarios, wewill try to provide intuition about what the differentmeasures mean. In the ϐirst place, average, variance,skewness and kurtosis are related to different statis-tical moments of Vθ,ϕ. The average of these intensi-ties is then easy to relate to tissue density, and there-fore, a decrease in this measure could be a hint of at-rophy in that direction. Note how this occurs in theAD and MCI-C groups at Figure ͳͲ, where the meanof all SBM-average maps for each of the four deϐinedgroups are displayed. Similarly, the variance of Vθ,ϕmeasures the variability in its values. Higher variancecould mean higher neurodegeneration, since its val-

ues may be more disperse. Skewness and kurtosis areoften considered a measure of symmetry and ‘peaked-ness’ of the statistical distribution of the intensities in
Vθ,ϕ. Smaller skewness means that the intensity hasdecreased, which can also been associated to atrophy.A higher kurtosis is the result of extreme deviationsfrom the mean, which is indicative of more abrupttransitions between grey levels, and therefore, betterdeϐined boundaries of GM and WM. Smaller kurtosiscan also be related to neurodegeneration.Thickness is the only morphological measure inthis work, and it measures the distance between theϐirst and last voxels in Vθ,ϕ higher than a threshold. Itis a rough estimate of tissue thickness, very differentfrom more precise -and complex- cortical thicknessmeasures provided by software such as FreeSurfer
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Figure ͳͲ: Mean of the SBM-average maps for the AD,MCI-C, MCI-S and CTL groups. Zoom over the hip-pocampus region.
[ͳʹ] or the CATͳʹ toolbox [ͳ]. Finally, entropy comesfrom information theory, and it measures the ‘amountof information‘ or ‘randomness‘ of Vθ,ϕ. In this work,a higher entropy means a more random distributionof the voxels in Vθ,ϕ, which may be linked to the struc-tural changes due to the neurodegeneration process.Now, regarding the ϐirst scenario, we presentedthe regions with more signiϐicant differences betweenAD and CTLs in Section III.ʹ. The highlighted ar-eas in GM, especially in the afterwards higher scor-ing measures, correspond mainly to the hippocampus,amygdala and parahippocampal gyrus. Differencesbetween MCI-C and MCI-S are also located at these ar-eas, which also project to the external temporal mid-dle gyrus and temporal pole. In WM, there are nosigniϐicant differences in any SBM measure betweenMCI-C and MCI-S, which might be due to neurodegen-eration affecting ϐirst the GM and later progressing toWM [͵ʹ]. However signiϐicant WM differences can befound between AD and CTL in the boundaries of thesuperior motor area which correspond to the longitu-dinal ϐissure, and also some other regions overlappingto the precuneus, cuneus, paracentral lobule and thefrontal middle gyrus.These differences correspond to existing evidencein the literature. The hippocampus is widely regardedas one of the most discriminating structures in struc-tural MRI [ͷ, , ͺ, ͵ͷ]. Its inϐluence in declarativememory is patent, and many studies have reported at-rophy in early AD, along with surrounding structuressuch as the amygdala and the parahippocampal gyrus.Most studies report early neurodegeneration in MCIin these structures and generally in the temporal lobe[ʹ, ͺ, ͵ͷ, ʹʹ]. Martinez-Torteya et al. [ʹʹ] also re-ported the left medial orbital gyrus and the left inferi-olateral remainder of the parietal lobe (area betweeninferior parietal gyrus and the supramarginal gyrus).The SBM measures are then collecting useful informa-tion on neurodegeneration that can be useful for fur-ther assessment and visualization.Regarding the classiϐication performance, wetested four different groups: AD, CTL, MCI-C and

MCI-S. In the AD vs CTL performance we achievedhigh accuracy (around ͻͲ% for WM, higher for GM)that may be due to an improvement since our lastwork. While in [ʹͲ] we placed the origin of vθ,ϕ at thegeometrical centre of the image, now we place it atthe Anterior Commissure, one landmark anatomicalposition in the literature and one of the points wherethe two cerebral hemispheres are connected. Thankto this, it may have improved the computation ofthe SBM measures in different regions of interest,especially internal regions such as the hippocampusor the caudate nucleus.However, the most relevant classiϐication resultsare those that predict MCI conversion between  andͳʹ months in advance. The highest performance wasobtained when training with AD and CTL subjects,which may be due to a better deϐinition of the separa-tion hyperplane of the SVC by two more distant clus-ters than the higher-variability MCI subclasses. Thereported results are comparable to the state of the art,[ͳ, ͳͲ, ͷ, ʹ͵, ʹ, ʹ, , ʹʹ]. Of these studies, whichachieved accuracies ranging from Ͳ% to ͺͲ%, thebest performing approach was the one proposed byMisra et al. [ʹ͵], which achieved between ͷ-ͺͲ%accuracy on a subset of ʹ converters and  non-converters from the ADNI dataset. Chupin et al. [ͷ]used the larger population, with ʹͳͲ individuals (converters) from ADNI, achieving an accuracy of Ͷ%.Some of these even used histopathological labels, ac-quired postmortem, instead of clinical labels, whichare more heterogeneous and make the classiϐicationtask more difϐicult. Our performance results matchthose achieved by the best methodology in the stateof the art, with a larger, more heterogeneous and lessprevalent population (Ͳ converters + Ͷ non con-verters), which is key for comparison.Of all SBM measures used in this article, the aver-age, variance and entropy measures achieved similarperformance. Particularly, average worked very wellwith segmented GM maps, whereas the entropy al-ways performed better in the WM. Thickness yieldedthe poorest performance, perhaps due to the lack ofrelevant features in areas of interests such as the hip-pocampus.In the second scenario, the PCC maps show theareas that are highly correlated with different neu-ropsychological tests. The main impression is thatthe ADAS-cog scores (especially the ADAS-ͳ͵) achievehigher correlations with the MRI data than the MMSE,suggesting that these measures are much more spe-ciϐic of AD progression and cognitive decline. This is
ͳͷ
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also supported by current literature [ͳͷ, ͵Ͷ], wheresome authors claim that non-speciϐic neuropsycho-logical scores may be a source of false positives, es-pecially in MCI.In GM, correlations with the ADAS-ͳ͵ test out-comes scored higher than Ͳ.ͷ in areas such as the hip-pocampus and parts of the parahippocampal gyrus.This was repeated in the average, variance, skewnessand kurtosis measures. Entropy and thickness mea-sures revealed different patterns, with maximum cor-relations in the lower boundary of the temporal lobe.As for the WM, the correlations were smaller (maxi-mum values around Ͳ.͵), with more correlated areasin the longitudinal ϐissure and, only in the case of en-tropy, the occipital middle gyrus, the parietal inferiorgyrus and the junction between the temporal middleand inferior gyri.The performance of the regression methods is dis-played at Table ͷ. The reader may note the large dif-ferences between the MSE in the ADAS-cog tests andthe MMSE, but this is related to a much higher variabil-ity in the values (ADAS-ͳ͵ ranges from Ͳ to ͵ in ourdatabase, and ADAS-ͳͳ from Ͳ to Ͷͺ) compared to theMMSE (ranges from ͳͶ to ͵Ͳ). See Table ͳ for more in-formation on the demographics of the dataset. The R2,however, takes into account this variability, yieldinga more consistent measure of the performance, andthat is why we will focus on it throughout this section.Two main properties can be inferred from Table ͷ’sdata. First, the differences in R2 scores stress againthe usefulness of the ADAS-cog against the MMSE inmeasuring Alzheimer’s progression. Second, Theyshow that the SVR performs better than LASSO inpredicting test outcomes for ADAS-cog in GM. SinceLASSO internally focuses on a small number of fea-tures, it may be an indication that there are moder-ately correlated covariates in the maps, which wouldeventually degrade its performance []. Then, SVRis a more adequate choice in this case. Conversely,LASSO outperforms SVR in modelling MMSE, howeverits performance is smaller than with the ADAS-cog. InWM, our regression techniques can ϐind even less evi-dence to predict neuropsychological tests, which addssupport to the fact that GM neurodegeneration is abetter predictor of cognitive state.The maps with higher performance in predictingneuropsychological tests are entropy and variance.This differs with the largest PCCs computed for each
vθ,ϕ in the maps, where average, kurtosis, skewnessand variance had the largest correlations. However,PCCs were obtained for each individual SBM value at
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Figure ͳͳ: Comparison between the equirectangularprojection for two SBM examples (an average mapand the PCC maps computed at Sec. III.ʹ.ʹ) and thestereographic projection, currently in development.
the (θ, ϕ) position, where the regression methods useall values in the maps to create a linear model that pre-dicts the neuropsychological outcomes. Therefore itis possible that entropy, where individual PCCs wererelatively smaller, contains relevant -and different- in-formation in more areas than the other maps, andthose values can be used to inform a more accuratemodel of the test. When looking at the PCC maps forthe SBM-entropy, large negative and positive correla-tions were found in GM (in contrast to all other mea-sures), including negative PCCs at the lower bound-ary of the temporal lobe and positive at the angulargyrus, thalamus, occipital gyrus, caudate nucleus, etc.,that have also been found in functional imaging [ʹͳ].The pattern in WM pattern is similar, which may bethe reason why the SBM-entropy achieves best perfor-mance in regression.The SBM mapping, as any other technique intendedto visualize three-dimensional volumes in two dimen-sions, is subject to deformations due to the projec-tions. Our choice for SBM, given its simplicity, wasthe equirectangular projection, also known as plate
carrée projection [ʹͻ]. However, it is neither equalarea nor conformal, introducing distortions as the ele-vation θ increases. Other projections, for example thestereographic projection [ʹͻ] (see Fig. ͳͳ for compar-isons), might seem more convenient for visualization.This last projection is conformal and therefore pre-serves angular relationships, yielding a more brain-like, intuitive visualization of the SBM maps. Weplan to include this approach in future releases of thepython mapBrain package, which contains SBM.In summary, the SBM offers a series of bidimen-sional maps that provide a signiϐicant feature reduc-tion along with a visual aid that could be useful to lo-cate differences, in combination with either hypoth-
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esis testing or correlation analysis. We have proventhat a classiϐier trained with SBM average maps fromAD and CTL subjects can effectively predict conver-sion of MCI in the session immediately previous totheir reported conversion session (that is, in all cases,between  and ͳʹ months in advance), with a %accuracy and ͵% sensitivity. And ultimately, wedemonstrated that these maps can be used to predictscores that match the outcomes of clinical tests, pro-viding an objective replication tool based on imagingdata.

V. CĔēĈđĚĘĎĔēĘIn this work, we propose the application of a Spher-ical Brain Mapping (SBM) of Magnetic ResonanceImaging (MRI) in two challenging scenarios involvingAlzheimer’s Disease (AD): predicting the conversionof MCI subjects to dementia at least six months in ad-vance, and predicting neuropsychological tests out-comes from MRI data. These two classiϐication andregression scenarios are tested using Support VectorMachines and LASSO, providing numerical evidenceof their performance. Moreover, we also analyse vi-sual evidence on the affected regions via hypothesistesting (for differences between groups) and correla-tion coefϐicient (for correlation with test outcomes).The SBM maps provide a signiϐicant feature reduc-tion over the million-voxel MRI images, while achiev-ing a state-of-the-art performance (% accuracy) inthe prediction of MCI conversion more than  monthsin advance. The best prediction is obtained with aclassiϐier trained with AD and control (CTL) classeswhich, thanks to being separate clusters, deϐine a bet-ter separation hyperplane. Signiϐicant differences be-tween maps have been found at the hippocampus,parahippocampal gyrus and more generally the tem-poral lobe, all of which have a proven relationshipwith AD progression.For its part, the relationship between some of theSBM measures in GM and the outcomes of neuropsy-chological tests has also been proven. The highestperformance of this regression analysis is achievedwhen predicting the ADAS-cog, supporting existingevidence that this test is more indicative of the dis-ease stage than the MMSE. R2 scores up to Ͳ.ͷͲͶ wereobtained when predicting ADAS-ͳ͵ with Support Vec-tor Regression on the SBM-variance maps. The SBMaverage and variance measures are also noticeablycorrelated with this test (pearson-r higher than Ͳ.ͷ).A visual analysis of the pearson-r reveals the util-

ity of the bidimensional representation in identifyingchanges in texture along the brain. Regions typicallyrelated with AD, achieve highest correlation rates, butthe most persistent area is the hippocampus.In summary, the SBM offers a series of bidimen-sional maps that provide a signiϐicant feature reduc-tion along with a visual aid that could be useful to lo-cate differences, in combination with either hypothe-sis testing or correlation analysis. These maps keeprelevant textural information that allows a system topredict MCI conversion more than six months in ad-vance. New projections to enhance visualization arecurrently being explored, in order to provide a moreintuitive insight of the brain structure.
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Figure ͳʹ: Signiϐicant regions according to the uncorrected t-test applied over the AD vs CTL scenario and GM,thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure ͳ͵: Signiϐicant regions according to the uncorrected t-test applied over the AD vs CTL scenario andWM,thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure ͳͶ: Signiϐicant regions according to the uncorrected t-test applied over theMCI-C vs MCI-S scenario and
GM, thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
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Figure ͳͷ: Signiϐicant regions according to the uncorrected t-test applied over theMCI-C vs MCI-S scenario and
GM, thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure ͳ: Signiϐicant regions according to the uncorrected t-test applied over theMCI-C vs MCI-S scenario and
WM, thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
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Figure ͳ: Signiϐicant regions according to the uncorrected t-test applied over theMCI-C vs MCI-S scenario and
WM, thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure ͳͺ: PCC maps computed between the SBM measures for GM and the MMSE. The reference of internalstructures is superimposed to the ϐigures.
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Figure ͳͻ: PCC maps computed between the SBM measures for GM and the MMSE. The reference of externalstructures is superimposed to the ϐigures
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Figure ʹͲ: PCC maps computed between the SBM measures for WM and the MMSE. The reference of internalstructures is superimposed to the ϐigures
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Figure ʹͳ: PCC maps computed between the SBM measures for WM and the MMSE. The reference of externalstructures is superimposed to the ϐigures
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Figure ʹʹ: PCC maps computed between the SBM measures for GM and the ADASͳ͵. The reference of internalstructures is superimposed to the ϐigures
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Figure ʹ͵: PCC maps computed between the SBM measures for GM and the ADASͳ͵. The reference of externalstructures is superimposed to the ϐigures
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Figure ʹͶ: PCC maps computed between the SBM measures forWM and theADASͳ͵. The reference of internalstructures is superimposed to the ϐigures
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Figure ʹͷ: PCC maps computed between the SBM measures forWM and theADASͳ͵. The reference of externalstructures is superimposed to the ϐigures
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