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Abstract

Background: The early diagnosis of Alzheimer’s Disease (AD), particularly in its prodromal stage, Mild
Cognitive Impairment (MCI) remains still a challenge. Many computational tools have been developed to
successfully explore and predict the disease progression. In this context, the Spherical Brain Mapping
(SBM) proved its ability in detecting differences between AD and aged subjects without symptoms of de-
mentia. Being a very visual tool, its application in predicting MCI conversion to AD could be of great help
to understand neurodegeneration and the disease progression. Objective: In this work we aim at: pre-
dicting the conversion of MCI affected subjects to AD more than 6 months in advance of their conversion
session and understanding the progression of the disease by predicting neuropsychological test outcomes
from MRI data. Methods: In order to do so, SBM is applied to a series of MRI scans from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The resulting spherical brain maps show statistical and morpho-
logical information of the brain in a bidimensional plane, performing at the same time a significant fea-
ture reduction, that provides a feature vector used in classification analysis. Results: The study achieves
up to 92.3% accuracy in the AD vs normal controls (CTL) detection, and up to a 77.6% in detection a of MCI
conversions when trained with AD and CTL subjects. The prediction of neuropsychological test outcomes
achieved R? rates up to more than 0.5. Significant regions according to t-test and correlation analysis
match reported brain areas in the literature. Conclusion: The results prove that Spherical Brain Map-
ping offers good ability to predict conversion patterns and cognitive state, at the same time that provides
an additional aid for visualizing a two-dimensional abstraction map of the brain.
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[. INTRODUCTION

Alzheimer’s Disease (AD) is the most common neu-
rodegenerative disorder in the world, with more than
46 million affected, a number that is expected to grow
up to 131.5 million by 2050 [2]. Many computational
tools have been developed to aid in the diagnosis of
AD, however, its early diagnosis remains a challenge,
especially in its prodromal stage known as Mild Cog-
nitive Impairment (MCI). The early and more accu-
rate diagnosis of possible AD would reduce the mis-
treatment of MCI and an earlier treatment of the dis-
ease when its symptoms are still subtle. This might
positively impact the progression of AD, delaying the
apparition of a more severe symptomatology and im-
proving the life expectancy and quality of life of the
patients and their families.

Currently, cognitive testing is often used to guide in
the diagnosis procedure. Clinical tests such as Mini
Mental State Exam (MMSE) [33] or the Alzheimer’s
Disease Assessment Scale-cognitive subscale (ADAS-
cog, in 11 and 13-question variants) [3] are often
used to assess cognitive decline in patients in risk of
suffering AD. However, recent studies [15, 34] show
that non-specific neuropsychological scores such as
MMSE could be a possible source of false positives in
MCI diagnosis.

Neuroimaging, with its ability to perform in vivo ex-
ploration of brain structure and function, could be a
key source of information to enhance MCI diagnosis.
Many works have explored the possibility of multi-
variate analyses of structural and functional imaging
using techniques such as Principal Component Analy-
sis [14, 28], Support Vector Machines [24, 16, 10], tex-
ture analysis [35, 22, 19] or volume and shape anal-
ysis [5, 23, 27, 26, 6, 8]. These works used semi-
automatic methodology to segment and extract fea-
tures from images that leaded to higher discrimina-
tive Computer Aided Diagnosis (CAD) systems [18],
offering performances up to 80% in the diagnosis of
MCL

Obtaining reliable and objective information from
neuroimaging data could effectively increase the ac-
curacy of MCI diagnosis. For its part, predicting neu-
ropsychological tests outcomes could help to under-
stand the relationship between structural changes in
the brain and cognitive state (as measured by cogni-
tive tests). This is key to validate diagnostics and es-
tablish a connection between neuroimaging and clin-
ical tests. However, only a few works such as [9] at-
tempt to predict cognitive test outcomes.

Figure 1: Definition of the mapping vector vy , and
the spherical coordinates.

In this work we will evaluate the usefulness of
the Spherical Brain Mapping (SBM) texture measures
[20] in two main environments: to predict conversion
of MCI subjects and to predict outcomes of different
cognitive tests such as MMSE, ADAS-11 and ADAS-13.
In the first case, we will use a Support Vector Machine
classifier (SVC) to classify the derived SBM maps, as in
[24]. For predicting test outcomes, we will test two re-
gression models [25]: Support Vector Machine regres-
sion (SVR, Sec. 11.3.1) with linear kernel, a robust and
generalizable model even in high-dimensional spaces
[4], and a Least Absolute Shrinkage and Selection Op-
erator (LASSO, Sec. 11.3.2), that estimates sparse co-
efficients and can therefore be used for feature selec-
tion [36]. In addition to this, we will identify and vi-
sualize (I1I.2) the brain areas more related to disease
progression using hypothesis testing and correlation
analysis. We will test our approaches on MRI data
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [33], whose results can be found at Section III
and discussed at Section IV. Finally, we draw some
conclusions about this work at section V.

II. METHODS

II.1. Spherical Brain Mapping

The Spherical Brain Mapping (SBM) is a framework
proposed at [20], whose main feature is to project
three dimensional structural brain images to bidimen-
sional maps representing the spatial distribution of a
certain texture measure. To do so, it constructs a map-
ping vector vy , in the spherical coordinates whose
direction is represented by  and ¢ (elevation and az-
imuth, Figure 1) from a given origin of coordinates.
While in [20] the geometric centre of the images was
used, in this work we set the origin at the Anterior
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Commissure, given its favourable anatomical position.
All the intensities of the voxels crossed by vy ,, define
the set of selected intensities Vj ,,. 181 x 361 sets at
each of the elevation and azimuth values 0 < 6 < 180
and 0 < ¢ < 360 are built at an angular resolution of
1°. Finally, five statistical and one morphological mea-
sures are derived from these intensity sets: average,
entropy, kurtosis, skewness and variance (see some
examples at Figure 2).
The average of Vp ,, is defined as:

1y
Uaverage = N Vs (1)
where Vé is the i*" element in the sampled set Vo, g
and N is its size. The entropy of Vy ,, is estimated as:

N . .
Ventropy = )_ Vi 108(Vy ) )
=1

1

The remaining values are computed using the gen-
eral formula for the r" moment:
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from which we derive the corrected variance, skew-
ness and uncorrected kurtosis:

N
Ovariance = mn@ (4)
m3
Uskewness = —3/5 (5)
1y
ms
Okurtosis = —o (6)
3

And finally, the only morphological measure: the
thickness of the tissues crossed by vy ,. In this ap-
proach, the value is obtained from the indexes (posi-
tions) where the intensities are higher than a thresh-
old:

Viax = arg{Ve,p > In} (7)

where I, is the intensity threshold, typically 0. The
thickness is defined as:

Othickness = max{vidx} - min{Vidx} (8)

Once we have computed the different measures at
each coordinate pair, we can build the SBM maps by
putting each value at its corresponding pair. This way,
we obtain maps such as the ones presented in Fig-
ures 2 and 3. The python package used has been up-
loaded athttp://github.com/SiPBA/mapBrain.

[I1.2. Visualization

I1.2.1 Hypothesis Testing

A widespread technique for assessing where class dif-
ferences are located is hypothesis testing. In this con-
text, we assume a null hypothesis of Hy, that is, the hy-
pothesis that there is no difference between two pop-
ulations. On the other hand, we formulate the alter-
native hypothesis Hy: the assumption that there are
some differences. Then, a statistical test is applied,
from which a certain p-value -the probability of reject-
ing Hy by chance- can be derived.

The t-test is a hypothesis testing statistic exten-
sively used in the neuroimaging community, since it
is the basis for the SPM and VBM analyses [13]. In
this work, we will apply an independent two-sample
t-test [11] to each pixel of the resulting SBM measures,
in order to display maps where the more discriminant
areas are highlighted.

The t-test used in this work quantifies the differ-
ences between two classes assuming normal distri-
bution and independent variances, which most of the
SBM measures at different (6, ¢) comply with. Let le
a vector containing the f-th feature of all elements in
class i. The t-score of the f-th feature can be com-
puted as:

<f _<f

tr= XX 9)
02 4o?
9 X

where 0)2( ¢ Is the variance and )_(lf is the average of the

1
f-the feature within class i.

II.2.2 Pearson’s Correlation Coefficient

Correlation maps based on the Pearson’s Correlation
Coefficient (PCC, also known as Pearson’s r) have
been generated in order to visually assess which re-
gions are more correlated with test outcomes (MMSE,
ADAS-11 and ADAS-13). This is done for each mea-
sure value vg , in each direction.:

. Yi(vh, — Do) (yi = F)
12 = :
\/Zi(v’g,q; — 0p,p)?(yi — ¥)?

(10)

where y; is the test score for the i subject, and ¥ the
mean value of all subjects.
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Figure 2: Example of the six SBM maps generated over the GM segmented image of a CTL subject.
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Figure 3: Example of the six SBM maps generated over the WM segmented image of a CTL subject.
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II.3. Regression Analysis

I1.3.1 Support Vector Regression

Support Vector Regression (SVR) trains Support Vec-
tor Machines to predict a continuous variable from
previously unseen data [4]. In contrast to the Gen-
eral Lineal Model (GLM) regression, if two features
are highly correlated, the computed SVR weights are
similar. This is a clear advantage for its use in SBM
maps, where the measures are spatially distributed in
coordinate pairs, sharing inherent similarities due to
neighbourhood. In this work we use the e-SVR imple-
mentation.

For each training vector x; € RF,i = 1,...,n
(containing each of the 1 subjects maps), and a vector
y € R" with their corresponding scores e-SVR solves
the following primal problem:

.1 7 L
-~ C i ¥ 11
Jin, oww + i:Zl(CmLCZ) (11)
where w are the SVM coefficients, b is the bias term
and the variable {; = max (0,1 —y;(w-x; —b)).
This is subject to the conditions:
yi—wix)—b<e+, (12)
wixi+b—y; <e+{}, (13)
Ci, i >0,i=1,..,n (14)

where ¢ = 0.1 is the margin of the hyperplane, and
C is a regularization term set to 1. The test scores
are therefore predicted using the decision function
f(Xi) = X;W + b.

I1.3.2 LASSO

Least Absolute Shrinkage and Selection Operator
(LASSO) is a regression model that estimates sparse
coefficients. This is very useful under the assumption
that very few features influence the dependent vari-
able y, and therefore allows performing feature selec-
tion and regularization. It is based on a linear model
regularized with ¢; prior, defining the following ob-
jective function:

1
in— || Xw — y||3 15
nrngZnII w —yl|[3 +a||wl[s (15)

where X = xq,Xp,...X, is the training matrix, « is
a constant and ||w/||; is the ¢1-norm of the parame-
ter vector. The inclusion of the a||w||; term solves
the minimization of the least-squares penalty. In this
work, the LASSO implementation [25] uses coordi-
nate descent to fit the coefficients. Scores are esti-

mated with the decision function f(x;) = x;w’.

[I1.4. Evaluation
I11.4.1 ADNI Dataset

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological as-
sessment can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

The database used in this article was obtained with
from the ADNI1 initiative, containing subjects that
have undergone periodical assessment of cognitive
function and MRI acquisition every 6 months, with
a total 2182 T1-weighted MRI images (for further in-
formation, see www.adni-info.org). These images
were spatially normalized to the standard SPM tem-
plate using the SPM8 software [13] Normalize with
default parameters (non-rigid, preserve concentra-
tions), and them segmented into Grey Matter (GM)
and White Matter (WM) using the VBM8 toolbox.

In the classification experiments we will consider
four different cohorts. The first subset correspond
to all AD subjects in their baseline acquisition (that
is, when the disease is less advanced), and will be re-
garded as AD from this point. Two more subsets con-
taining the last available visit from CTL and MCI sta-
ble will be selected as well, namely the CTL and MCI-
S (from MCI stable) subsets. Finally, a MCI subset
containing all converters in the last session available
prior to their conversion will form the MCI-C (from
MCI converter) set.

This choice is not trivial. Since the final aim is to es-
timate how discriminant are the SBM maps in predict-
ing MCI conversion, we wanted to make the classifica-
tion task as difficult as possible. Since the MCI-to-AD
progression can be viewed as a continuum, the last
CTL acquisition will be more difficult to differentiate
from the earliest AD, and likewise, the last MCI stable
acquisition will be more difficult to differentiate from
MCI converters. That way, the MCI-S will be more rep-
resentative of the whole spectrum commonly classi-
fied as MCI but never progress to AD.

For comparison purposes, we will provide the
Voxels-As-Features (VAF) [30] performance of this
database using the segmented GM and WM maps in
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Diag Gender N  Age[STD] MMSE [STD] ADAS11[STD] ADAS13 [STD]
AD Female 48 75.08[7.68] 23.11][2.39] 18.21 [5.88] 28.46 [7.23]
Male 51 75.37[7.39] 22.91[2.43] 19.91 [7.59] 30.02 [9.23]
MCI-C Female 27 73.04[8.21] 23.52[3.09] 13.52 [4.65] 22.72 [5.69]
Male 43 75.24[5.51] 24.25]3.07] 13.19 [4.01] 21.15 [5.52]
MCI-S Female 15 71.53[8.41] 25.50[0.71] 10.19 [4.30] 16.53[6.27]
Male 49 7591[6.69] 26.33[1.86] 10.67 [4.40] 17.13 [6.15]
CTL Female 61 75.94[4.42] 30.00[0.00] 5.687 [3.15] 8.350 [4.26]
Male 61 75.38[5.72] 29.33[1.21] 6.645 [2.88] 10.33 [4.22]

Table 1: Demographics of the ADNI dataset.

the AD vs CTL and MCI-C vs MCI-S classification.

I1.4.2 Evaluation Parameters

We will test the SBM statistic maps in two different en-
vironments: in predicting the conversion of MCI to de-
mentia, and trying to predict neuropsychological test
outcomes. The first one is a classification approach,
and therefore, we will employ a linear Support Vec-
tor Machine classifier (SVC) to estimate how relevant
the differences between classes are. The final perfor-
mance values estimate how discriminant the different
measures are when classifying two classes. Accuracy
(acc.), Sensitivity (sens.) and Specificity (spec.) and
their standard deviation (SD) will be estimated as:

_TP+TN TP

acc N ’ Semns. = m,

(16)
where TP, TN, FP and FN are the number of true pos-
itives, true negatives, false positives and false nega-
tives respectively.

The performance estimates are obtained via a strat-
ified 10-fold cross-validation [17]. In brief, this proce-
dure divides the whole dataset in 10 subsets with the
same proportion of classes, and iteratively uses 9 of
this subsets for training and tests against the remain-
ing one. The procedure is repeated 10 times, from
which we obtain the average and standard deviation
of the different proposed estimates. Performance es-
timates of the classification of AD vs CTL groups and
MCI converters vs stable will be computed. Since MCI
is arather heterogeneous class, with overlapping con-
verters and non-converters, we additionally will use
AD and CTL subjects to train the classifier, and then
identify the MCI subjects more similar to AD as con-

verters and those more similar to CTL as stable.

The second environment corresponds to regres-
sion analysis. Since SBM maps have never been tested
on this environment, we will employ two different
strategies: Support Vector Machine regression (SVR,
Sec. I1.3.1) and a Least Absolute Shrinkage and Se-
lection Operator (LASSO, Sec. 11.3.2). To quantify the
quality of the prediction of our regressive model, we
use the Mean Square Error (MSE) and the coefficient
of determination R%. These performance measures
are estimated as the average of all 10 measures com-
puted within a 10-fold cross-validation loop. The
MSE measures the mean error of the outcomes of the
trained model, and is computed as:

1
MSE = =} (9; — yi)? (17)

€= s
P TN + Khere ¥, are the outcomes of the model for the it/ sub-

ject.

Forits part, R measures the proportion of variance
in the dependent variable y; (the outcomes of the cog-
nitive tests) that is explained by the trained model.
The best R? possible is 1.0, a 0.0 is the score of a con-
stant model that always predicts the expected value of
y, and it can be negative (an arbitrarily worse model).
It is computed as:

Yi(yi — 9i)?
Zi((};’i _};,))2 (18)

Furthermore, visual maps for both environments
will be provided. For differences between groups,
we will use the t-test in each value of the SBM maps.
To estimate the correlation of each SBM feature with
the neuropsychological test outcomes, we will use the
Pearson’s 1, as defined before.

RZ=1-
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scenario tissue  acc. [STD] sens. [STD]  spec. [STD]
AD vs CTL GM  0.768[0.011] 0.752[0.016] 0.785[0.016]
WM 0.642(0.009] 0.668[0.012] 0.617(0.013]
GM  0.708[0.165] 0.728[0.174] 0.688[0.197]
MCI-CusMCLS oM 0.753[0.122]  0.757]0.157]  0.752[0.139]

Table 2: VAF performance of this dataset.

[II. RESULTS

[II.1. Anatomical Reference

To better understand the SBM maps, and the location
of differences and correlations, we have created two
different templates (external -figure 4- and internal
-figure 5-, depending on their distance to the crust)
that will be used as a reference throughout this sec-
tion. These templates have been created by project-
ing each of the regions of the well known Automatic
Anatomical Labelling (AAL) atlas [31] by using the
SBM-average measure, then smoothing out the pro-
jection of each individual region and finally assigning
different colours.

Figure 4: Structures at the cortex projected using
SBM, including: 1) Precentral gyrus, 3) frontal supe-
rior gyrus, 5) frontal superior orbital gyrus 7) frontal
middle gyrus, 9) frontal medial orbital gyrus, 11)
frontal inferior operculum, 13) frontal inferior pars
triangularis, 15) frontal inferior orbital gyrus, 17)
rolandic operculum, 19) superior motor area, 23)
frontal superior medial gyrus, 25) frontal medial or-
bital gyrus, 27) gyrus rectus, 43) calcarine sulcus,
45) cuneus, 47) lingual gyrus, 49) occipital superior
gyrus, 51) occipital middle gyrus, 53) occipital infe-
rior gyrus, 55) fusiform gyrus, 57) postcentral gyrus,
61) parietal inferior gyrus, 63) supramarginal gyrus,
65) angular gyrus, 67) precuneus, 69) paracentral lob-
ule, 81) temporal superior gyrus, 83) temporal pole
superior part, 85) temporal middle gyrus, 87) tempo-
ral pole middle part, 89) temporal inferior gyrus.

Figure 5: Subcortical structures projected using SBM.
Same label is used for both left and right hemisphere
as areference. 21) olfactory bulb, 31) anterior part of
the cingulate gyrus, 33) middle part of the cingulate
gyrus, 35) posterior part of the cingulate gyrus, 37)
hippocampus, 39) parahippocampal gyrus, 41) amyg-
dala, 71) caudate nucleus, 73) putamen, 75) globus
pallidus, 77) thalamus.

[II1.2. Visualization

In this section we focus on the two aforementioned
visualization techniques: the hypothesis testing (to
assess differences between the AD, MCI-C, MCI-S and
CTL groups) and maps that display the correlation be-
tween SBM measures and neuropsychological tests.

II1.2.1 Differences Between Groups

In Figure 6 we show the significant regions (uncor-
rected t-test, p<0.001) of each SBM measure com-
puted over the GM tissue. In these maps we can see
shapes that remind us of some internal structures of
the brain such as the hippocampus, amygdala and cin-
gulate gyrus. Blue and red colours respectively mean
negative and positive ¢-values. This shows us that the
average measure is smaller in AD than in CTL in some
areas that have been widely linked to Alzheimer’s dis-
ease, as it could be expected. Similar areas present
a similar behaviour when using entropy. Conversely,
the t-values for kurtosis or skewness present simi-
lar patterns to the average or variance measures, al-
though with smaller statistical significance and nega-
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Figure 6: Significant regions according to the uncorrected ¢-test applied over the AD vs CTL scenario and GM,
thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
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tive values.

In Figure 6 we show similar information (thresh-
olded significant areas, uncorrected t-test, p<0.001)
ofthe WM SBM measures. In this case, the most signif-
icant areas are located at the top of the image, which
might correspond to the middle part of the cingulate
gyrus (33) in the internal reference, and the superior
motor area (19) in the external. However, these ar-
eas correspond more specifically to the longitudinal
fissure, as it can be seen at Figures 2 and 3. Regions
at the inferior part of the hippocampus can also be ap-
preciated in the average, skewness, kurtosis and vari-
ance maps, and at the posterior part of the caudate
nucleus (71).

II1.2.2 Correlation with Neuropsychological
Tests

In this section we will assess the correlation between
each SBM measure and the MMSE and ADAS-13 tests,
to check which regions and measures are more re-
lated to variations in cognitive ability.

In Figure 8, one general pattern can be described in
the SBM’s average, kurtosis, skewness and variance
measures for GM. In these particular cases, there is
a noticeable positive (average and variance) and neg-
ative (kurtosis and skewness) correlation between
MMSE scores and SBM values at the hippocampus
(37), amygdala (41) and parahippocampal gyrus (39).
In these cases, the PCC reaches absolute values higher
than 0.46. However, two different correlation pat-
terns (smaller, with PCCs around 0.3) appear in en-
tropy and thickness. In these two cases, the maxi-
mum correlations are located at the bottom part of
the parahippocampal gyrus (39) and, in general, the
limits of the temporal lobe. In the case of entropy,
we also find some high positive correlations at the
frontal superior orbital gyrus (5), occipital superior
(49), middle (51), and inferior gyri (53), the angu-
lar gyrus (65) and temporal middle gyrus (85), which
also could match the thalamus (77) and posterior part
of the caudate nucleus (71), globus pallidus (75), the
hippocampus (37) and the olfactory bulb (21).

The correlations of the SBM GM-derived measures
with ADAS-cog measures are always higher (in some
cases, more than 0.1 in absolute value) than the corre-
lations found in MMSE. However, the patterns are ex-
tremely similar, but inverse, due to the nature of each
kind of test.

Correlations of the WM-derived SBM measures
with neuropsychological tests are in all cases smaller,
as can be checked at Figure 9 for ADAS-13 (correla-
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tions are again higher for ADAS-cog than for MMSE).
The patterns are much more related to WM variations,
and they can hardly been related to the previous struc-
tures. However, most of them show highest PCC val-
ues in the superior motor area (19), an area shared be-
tween the precentral and postcentral gyrus, including
the parietal inferior gyrus (1, 57 and 61 respectively)
and, for the thickness measure, the outermost part of
the temporal gyrus, near the temporal pole (87).

[I1.3. Classification Analysis

In this section, we present the results of evaluating
the 6 SBM maps for GM and WM tissues under the AD
vs CTL and MCI-C vs MCI-S scenarios.

I11.3.1 ADvs CTL

Under the first scenario, the classification analysis ob-
tained a performance shown at Table 3. As we can eas-
ily see in that table, the best results are obtained by
the average measure on the GM tissue, and both av-
erage and entropy in the WM tissue. The tendency is
that average, entropy and variance obtain similar per-
formance, whereas the skewness, kurtosis, and below
all, thickness, are less discriminant between AD and
CTL classes.

II1.3.2 MCI-C vs MCI-S

Now we will focus on predicting the conversion of
MCI subjects. To do so, we will analyse the system
when trained and tested with MCI-C and MCI-S. The
performance achieved by the different SBM measures
is presented at Table 4.

In this case, we can see that the best performing
measures are the average (for GM tissue) and vari-
ance (for WM tissue). These maps achieve high sen-
sitivity, although smaller than the one obtained when
using the VAF approach (see Table 2). Therefore, even
when obtaining a significant feature reduction, the
performance degrades. This is probably due to the
MCI subclasses sparsity in the SBM space and a high
overlapping rate between converters and non con-
verters. Therefore, we aim to test whether these two
subclasses are better classified when using two more
separate clusters, AD and CTL subjects, to train the
SVC.

In the second part of Table 4, we provide the classi-
fication performance of that very approach, training
on AD and CTL subjects and predicting converters by
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Figure 7: Significant regions according to the uncorrected ¢-test applied over the AD vs CTL scenario and WM,

thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.

tissue measure acc. [STD] sens. [STD]  spec. [STD]
average  0.923[0.036] 0.879[0.075] 0.958[0.077]
entropy 0.920[0.054]  0.879[0.095]  0.953[0.089]
GM kurtosis 0.895[0.075]  0.852[0.111]  0.929[0.107]
skewness  0.913[0.059] 0.868[0.102]  0.948[0.094]
thickness  0.848[0.129]  0.797[0.185]  0.889[0.171]
variance  0.921[0.047] 0.879[0.093]  0.954[0.085]
average 0.896[0.081]  0.847[0.154]  0.933[0.130]
entropy  0.896[0.078] 0.861[0.119] 0.923[0.115]
WM kurtosis 0.827[0.119]  0.766[0.186]  0.875[0.167]
skewness  0.857[0.103] 0.807[0.167]  0.897[0.148]
thickness  0.802[0.130]  0.732[0.198]  0.856[0.181]
variance  0.891[0.076]  0.853[0.122]  0.921[0.119]

Table 3: Performance of the different SBM measures under the AD vs CTL scenario.
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Figure 8: PCC maps computed between the SBM-GM measures and the MMSE. The reference of internal and
external structures is superimposed to the figures, depending on the most relevant patterns
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Figure 9: PCC maps computed between the SBM-WM measures and the ADAS-13 (the best scoring of the two

ADAS-cog tests).

choosing those more similar to the AD class. We eval-
uate the different maps when predicting the conver-
sion of MCI subjects by training the classifier with AD
and CTL subjects. It is clear that there exist a signif-
icant performance increase, of more than 10% in for
GM and 5% in WM. In this case, the best performing
SBM measure is again average for GM and entropy for
WM, outperforming the VAF approach (see Table 2) in
this task.

[I1.4. Regression Analysis

Now we will evaluate how two different regression
techniques, LASSO and SVR, can predict neuropsycho-
logical test outcomes using SBM maps as as source.
The results for this approaches can be found at Ta-
ble 5.

Regarding the regression model, SVR performs bet-
ter than LASSO in ADAS-cog and GM. Conversely,

LASSO correlates better with MMSE in all cases and
ADAS-cog in WM. Of the three tests, the ADAS-13
scores are best modelled, followed by ADAS-11 and,
at a long distance, MMSE. The maps that better pre-
dict test outcomes are the entropy (in GM and WM)
and the variance (for GM when using the SVR). MMSE
prediction achieves a poorer performance, with small
R? values for MMSE, in both GM and WM maps. On
the contrary, the variance/entropy maps for GM out-
perform the same measures in WM by almost 0.2.

[V. DISCUSSION

The main purpose of this work is to test the ability
of the SBM maps in two challenging scenarios: pre-
dicting the conversion of MCI subjects to dementia
at least six months in advance, and predicting neu-
ropsychological tests outcomes from MRI data in or-
der to have another objective measure of cognitive

13
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Trained with MCI-C and MCI-S Trained with AD and CTL
Tissue Measure acc. [STD] sens. [STD]  spec. [STD] acc. [STD] spec. [STD]  sens. [STD]
average | 0.664[0.091] 0.700[(0.149] 0.626[0.175] | 0.776[0.120] 0.826[0.182] 0.729[0.174]
entropy 0.644[0.120]  0.695[0.151]  0.593[0.193] | 0.731[0.115]  0.837[0.205]  0.633[0.183]
GM kurtosis 0.622[0.120]  0.691[0.170]  0.548[0.197] | 0.733[0.115] 0.847[0.210]  0.626[0.196]
skewness | 0.638[0.115] 0.700[0.165]  0.573[0.198] | 0.739[0.110]  0.854[0.210]  0.632[0.194]
thickness | 0.607[0.120] 0.676[0.177]  0.532][0.201] | 0.711[0.122] 0.857[0.235]  0.576[0.218]
variance | 0.646[0.117] 0.686[0.154] 0.604[0.186] | 0.746[0.120] 0.802[0.186]  0.693[0.165]
average 0.672[0.149]  0.700[0.207]  0.645[0.231] | 0.709]0.146]  0.888]0.235]  0.543[0.200]
entropy 0.664[0.157]  0.681[0.244] 0.648[0.237] | 0.719[0.140] 0.862[0.218] 0.590[0.208]
WM kurtosis 0.651[0.156]  0.677[0.215]  0.622]0.226] | 0.675[0.151]  0.808[0.232]  0.554[0.224]
skewness | 0.653[0.160]  0.668]0.229]  0.638[0.231] | 0.707[0.137]  0.846[0.218]  0.582[0.210]
thickness | 0.641[0.152] 0.671[0.216] 0.607][0.222] | 0.672[0.144] 0.796[0.223]  0.560[0.216]
variance | 0.675[0.152] 0.679[0.234] 0.674[0.240] | 0.713][0.147] 0.852[0.219]  0.586[0.211]

Table 4: Performance of the different SBM measures under the MCI-C vs MCI-S scenario.

ADAS11 ADAS13 MMSE
LASSO SVR LASSO SVR LASSO SVR

| MSE R* MSE R* | MSE R*  MSE R? | MSE R*  MSE R?

average (GM) | 49.74 0.263 47.68 0287 | 8473 0307 7207 0412 | 1483 0071 1562 -0.002
entropy (GM) | 41.04 0.392 3948 0414 | 67.46 0.449 6355 0481 | 11.27 0285 1317 0.155
kurtosis (GM) | 71.95 -0.078 69.69 -0.041 | 1326 -0.083 1139 0072 | 19.08 -0223 3826 -1.294
skewness (GM) | 45.06 0330 5215 0219 | 79.69 0353 8027 0341 | 11.71 0262 1552 0.014
thickness (GM) | 64.18 0.038 5293 0211 | 103.1 0.157 8274 0328 | 1651 -0.055 1523 0.026
variance (GM) | 5885 0.127 39.17 0.416 | 9577 0216 60.74 0.504 | 1597 -0.002 12.81 0.183
average (WM) | 63.72 0.052 5932 0.104 | 1131 0.072 9754 0.194 | 1597 -0.002 1599 -0.019
entropy (WM) | 48.28 0.277 4859 0.268 | 77.15 0366 8195 0.325 | 11.51 0.275 1501 0.048
kurtosis (WM) | 1169 -0.754 9591 -0.437 | 219.4 -0.805 1738 -0428 | 2516 -0.598 42.04 -1715
skewness (WM) | 76.16 -0.141 6633 0.005 | 139.7 -0.149 1141 0.062 | 1607 -0.019 1816 -0.153
thickness (WM) | 72.64 -0.094 59.74 0.099 | 1193 0.019 1002 0174 | 1631 -0.035 1445 0.083
variance (WM) | 67.33 -0.002 5173 0222 | 1195 0019 8612 0289 | 1597 -0.002 1299 0.174

Table 5: Coefficient of determination and MSE of the different models for the three cognitive tests, based on the
SBM transformation of GM and WM maps. Best values per test and model are highlighted.

state. This is enhanced by the special characteristics
of the SBM mapping, which allows a direct bidimen-
sional visualization of textural changes in the brain.

However, before discussing these two scenarios, we
will try to provide intuition about what the different
measures mean. In the first place, average, variance,
skewness and kurtosis are related to different statis-
tical moments of Vjp ,. The average of these intensi-
ties is then easy to relate to tissue density, and there-
fore, a decrease in this measure could be a hint of at-
rophy in that direction. Note how this occurs in the
AD and MCI-C groups at Figure 10, where the mean
of all SBM-average maps for each of the four defined
groups are displayed. Similarly, the variance of Vg,
measures the variability in its values. Higher variance
could mean higher neurodegeneration, since its val-
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ues may be more disperse. Skewness and kurtosis are
often considered a measure of symmetry and ‘peaked-
ness’ of the statistical distribution of the intensities in
Vo, Smaller skewness means that the intensity has
decreased, which can also been associated to atrophy.
A higher kurtosis is the result of extreme deviations
from the mean, which is indicative of more abrupt
transitions between grey levels, and therefore, better
defined boundaries of GM and WM. Smaller kurtosis
can also be related to neurodegeneration.

Thickness is the only morphological measure in
this work, and it measures the distance between the
first and last voxels in Vj ,, higher than a threshold. It
is a rough estimate of tissue thickness, very different
from more precise -and complex- cortical thickness
measures provided by software such as FreeSurfer
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Figure 10: Mean of the SBM-average maps for the AD,
MCI-C, MCI-S and CTL groups. Zoom over the hip-
pocampus region.

[12] or the CAT12 toolbox [1]. Finally, entropy comes
from information theory, and it measures the ‘amount
of information‘ or ‘randomness‘ of VQ’(P. In this work,
a higher entropy means a more random distribution
of the voxels in Vj ,,, which may be linked to the struc-
tural changes due to the neurodegeneration process.

Now, regarding the first scenario, we presented
the regions with more significant differences between
AD and CTLs in Section II.2. The highlighted ar-
eas in GM, especially in the afterwards higher scor-
ing measures, correspond mainly to the hippocampus,
amygdala and parahippocampal gyrus. Differences
between MCI-C and MCI-S are also located at these ar-
eas, which also project to the external temporal mid-
dle gyrus and temporal pole. In WM, there are no
significant differences in any SBM measure between
MCI-C and MCI-S, which might be due to neurodegen-
eration affecting first the GM and later progressing to
WM [32]. However significant WM differences can be
found between AD and CTL in the boundaries of the
superior motor area which correspond to the longitu-
dinal fissure, and also some other regions overlapping
to the precuneus, cuneus, paracentral lobule and the
frontal middle gyrus.

These differences correspond to existing evidence
in the literature. The hippocampus is widely regarded
as one of the most discriminating structures in struc-
tural MRI [5, 6, 8, 35]. Its influence in declarative
memory is patent, and many studies have reported at-
rophy in early AD, along with surrounding structures
such as the amygdala and the parahippocampal gyrus.
Most studies report early neurodegeneration in MCI
in these structures and generally in the temporal lobe
[27, 8, 35, 22]. Martinez-Torteya et al. [22] also re-
ported the left medial orbital gyrus and the left inferi-
olateral remainder of the parietal lobe (area between
inferior parietal gyrus and the supramarginal gyrus).
The SBM measures are then collecting useful informa-
tion on neurodegeneration that can be useful for fur-
ther assessment and visualization.

Regarding the classification performance, we
tested four different groups: AD, CTL, MCI-C and

MCI-S. In the AD vs CTL performance we achieved
high accuracy (around 90% for WM, higher for GM)
that may be due to an improvement since our last
work. While in [20] we placed the origin of vy , at the
geometrical centre of the image, now we place it at
the Anterior Commissure, one landmark anatomical
position in the literature and one of the points where
the two cerebral hemispheres are connected. Thank
to this, it may have improved the computation of
the SBM measures in different regions of interest,
especially internal regions such as the hippocampus
or the caudate nucleus.

However, the most relevant classification results
are those that predict MCI conversion between 6 and
12 months in advance. The highest performance was
obtained when training with AD and CTL subjects,
which may be due to a better definition of the separa-
tion hyperplane of the SVC by two more distant clus-
ters than the higher-variability MCI subclasses. The
reported results are comparable to the state of the art,
[16, 10, 5, 23, 27, 26, 6, 22]. Of these studies, which
achieved accuracies ranging from 70% to 80%, the
best performing approach was the one proposed by
Misra et al. [23], which achieved between 75-80%
accuracy on a subset of 27 converters and 76 non-
converters from the ADNI dataset. Chupin et al. [5]
used the larger population, with 210 individuals (76
converters) from ADNI, achieving an accuracy of 64%.
Some of these even used histopathological labels, ac-
quired postmortem, instead of clinical labels, which
are more heterogeneous and make the classification
task more difficult. Our performance results match
those achieved by the best methodology in the state
of the art, with a larger, more heterogeneous and less
prevalent population (70 converters + 64 non con-
verters), which is key for comparison.

Of all SBM measures used in this article, the aver-
age, variance and entropy measures achieved similar
performance. Particularly, average worked very well
with segmented GM maps, whereas the entropy al-
ways performed better in the WM. Thickness yielded
the poorest performance, perhaps due to the lack of
relevant features in areas of interests such as the hip-
pocampus.

In the second scenario, the PCC maps show the
areas that are highly correlated with different neu-
ropsychological tests. The main impression is that
the ADAS-cog scores (especially the ADAS-13) achieve
higher correlations with the MRI data than the MMSE,
suggesting that these measures are much more spe-
cific of AD progression and cognitive decline. This is
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also supported by current literature [15, 34], where
some authors claim that non-specific neuropsycho-
logical scores may be a source of false positives, es-
pecially in MCL

In GM, correlations with the ADAS-13 test out-
comes scored higher than 0.5 in areas such as the hip-
pocampus and parts of the parahippocampal gyrus.
This was repeated in the average, variance, skewness
and kurtosis measures. Entropy and thickness mea-
sures revealed different patterns, with maximum cor-
relations in the lower boundary of the temporal lobe.
As for the WM, the correlations were smaller (maxi-
mum values around 0.3), with more correlated areas
in the longitudinal fissure and, only in the case of en-
tropy, the occipital middle gyrus, the parietal inferior
gyrus and the junction between the temporal middle
and inferior gyri.

The performance of the regression methods is dis-
played at Table 5. The reader may note the large dif-
ferences between the MSE in the ADAS-cog tests and
the MMSE, but this is related to a much higher variabil-
ity in the values (ADAS-13 ranges from 0 to 63 in our
database, and ADAS-11 from 0 to 48) compared to the
MMSE (ranges from 14 to 30). See Table 1 for more in-
formation on the demographics of the dataset. The R?,
however, takes into account this variability, yielding
a more consistent measure of the performance, and
that is why we will focus on it throughout this section.

Two main properties can be inferred from Table 5’s
data. First, the differences in R? scores stress again
the usefulness of the ADAS-cog against the MMSE in
measuring Alzheimer’s progression. Second, They
show that the SVR performs better than LASSO in
predicting test outcomes for ADAS-cog in GM. Since
LASSO internally focuses on a small number of fea-
tures, it may be an indication that there are moder-
ately correlated covariates in the maps, which would
eventually degrade its performance [7]. Then, SVR
is a more adequate choice in this case. Conversely,
LASSO outperforms SVR in modelling MMSE, however
its performance is smaller than with the ADAS-cog. In
WM, our regression techniques can find even less evi-
dence to predict neuropsychological tests, which adds
support to the fact that GM neurodegeneration is a
better predictor of cognitive state.

The maps with higher performance in predicting
neuropsychological tests are entropy and variance.
This differs with the largest PCCs computed for each
Vo,¢ in the maps, where average, kurtosis, skewness
and variance had the largest correlations. However,
PCCs were obtained for each individual SBM value at
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Figure 11: Comparison between the equirectangular
projection for two SBM examples (an average map
and the PCC maps computed at Sec. 111.2.2) and the
stereographic projection, currently in development.

the (6, ¢) position, where the regression methods use
all values in the maps to create alinear model that pre-
dicts the neuropsychological outcomes. Therefore it
is possible that entropy, where individual PCCs were
relatively smaller, contains relevant -and different- in-
formation in more areas than the other maps, and
those values can be used to inform a more accurate
model of the test. When looking at the PCC maps for
the SBM-entropy, large negative and positive correla-
tions were found in GM (in contrast to all other mea-
sures), including negative PCCs at the lower bound-
ary of the temporal lobe and positive at the angular
gyrus, thalamus, occipital gyrus, caudate nucleus, etc.,
that have also been found in functional imaging [21].
The pattern in WM pattern is similar, which may be
the reason why the SBM-entropy achieves best perfor-
mance in regression.

The SBM mapping, as any other technique intended
to visualize three-dimensional volumes in two dimen-
sions, is subject to deformations due to the projec-
tions. Our choice for SBM, given its simplicity, was
the equirectangular projection, also known as plate
carrée projection [29]. However, it is neither equal
area nor conformal, introducing distortions as the ele-
vation 6 increases. Other projections, for example the
stereographic projection [29] (see Fig. 11 for compar-
isons), might seem more convenient for visualization.
This last projection is conformal and therefore pre-
serves angular relationships, yielding a more brain-
like, intuitive visualization of the SBM maps. We
plan to include this approach in future releases of the
python mapBrain package, which contains SBM.

In summary, the SBM offers a series of bidimen-
sional maps that provide a significant feature reduc-
tion along with a visual aid that could be useful to lo-
cate differences, in combination with either hypoth-
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esis testing or correlation analysis. We have proven
that a classifier trained with SBM average maps from
AD and CTL subjects can effectively predict conver-
sion of MCI in the session immediately previous to
their reported conversion session (that is, in all cases,
between 6 and 12 months in advance), with a 77%
accuracy and 73% sensitivity. And ultimately, we
demonstrated that these maps can be used to predict
scores that match the outcomes of clinical tests, pro-
viding an objective replication tool based on imaging
data.

V. CONCLUSIONS

In this work, we propose the application of a Spher-
ical Brain Mapping (SBM) of Magnetic Resonance
Imaging (MRI) in two challenging scenarios involving
Alzheimer’s Disease (AD): predicting the conversion
of MCI subjects to dementia at least six months in ad-
vance, and predicting neuropsychological tests out-
comes from MRI data. These two classification and
regression scenarios are tested using Support Vector
Machines and LASSO, providing numerical evidence
of their performance. Moreover, we also analyse vi-
sual evidence on the affected regions via hypothesis
testing (for differences between groups) and correla-
tion coefficient (for correlation with test outcomes).

The SBM maps provide a significant feature reduc-
tion over the million-voxel MRI images, while achiev-
ing a state-of-the-art performance (77% accuracy) in
the prediction of MCI conversion more than 6 months
in advance. The best prediction is obtained with a
classifier trained with AD and control (CTL) classes
which, thanks to being separate clusters, define a bet-
ter separation hyperplane. Significant differences be-
tween maps have been found at the hippocampus,
parahippocampal gyrus and more generally the tem-
poral lobe, all of which have a proven relationship
with AD progression.

For its part, the relationship between some of the
SBM measures in GM and the outcomes of neuropsy-
chological tests has also been proven. The highest
performance of this regression analysis is achieved
when predicting the ADAS-cog, supporting existing
evidence that this test is more indicative of the dis-
ease stage than the MMSE. R? scores up to 0.504 were
obtained when predicting ADAS-13 with Support Vec-
tor Regression on the SBM-variance maps. The SBM
average and variance measures are also noticeably
correlated with this test (pearson-r higher than 0.5).
A visual analysis of the pearson-r reveals the util-

ity of the bidimensional representation in identifying
changes in texture along the brain. Regions typically
related with AD, achieve highest correlation rates, but
the most persistent area is the hippocampus.

In summary, the SBM offers a series of bidimen-
sional maps that provide a significant feature reduc-
tion along with a visual aid that could be useful to lo-
cate differences, in combination with either hypothe-
sis testing or correlation analysis. These maps keep
relevant textural information that allows a system to
predict MCI conversion more than six months in ad-
vance. New projections to enhance visualization are
currently being explored, in order to provide a more
intuitive insight of the brain structure.
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Figure 12: Significant regions according to the uncorrected ¢-test applied over the AD vs CTL scenario and GM,
thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure 13: Significant regions according to the uncorrected ¢-test applied over the AD vs CTL scenario and WM,
thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure 14: Significant regions according to the uncorrected ¢-test applied over the MCI-C vs MCI-S scenario and
GM, thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
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Figure 15: Significant regions according to the uncorrected ¢-test applied over the MCI-C vs MCI-S scenario and
GM, thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure 16: Significant regions according to the uncorrected ¢-test applied over the MCI-C vs MCI-S scenario and
WM, thresholded at the p < 0.001 value. The reference for internal structures is superimposed to the maps.
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Figure 17: Significant regions according to the uncorrected ¢-test applied over the MCI-C vs MCI-S scenario and
WM, thresholded at the p < 0.001 value. The reference for external structures is superimposed to the maps.
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Figure 18: PCC maps computed between the SBM measures for GM and the MMSE. The reference of internal

structures is superimposed to the figures.
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Figure 19: PCC maps computed between the SBM measures for GM and the MMSE. The reference of external
structures is superimposed to the figures
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Figure 20: PCC maps computed between the SBM measures for WM and the MMSE. The reference of internal

structures is superimposed to the figures
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Figure 21: PCC maps computed between the SBM measures for WM and the MMSE. The reference of external
structures is superimposed to the figures
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Figure 22: PCC maps computed between the SBM measures for GM and the ADAS13. The reference of internal
structures is superimposed to the figures
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Figure 23: PCC maps computed between the SBM measures for GM and the ADAS13. The reference of external
structures is superimposed to the figures
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Figure 24: PCC maps computed between the SBM measures for WM and the ADAS13. The reference of internal
structures is superimposed to the figures
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Figure 25: PCC maps computed between the SBM measures for WM and the ADAS13. The reference of external

structures is superimposed to the figures
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