A veces, una curva «clásica» lleva detrás una historia curiosa. Un buen ejemplo de esto es la cisoide de Diocles, una curva plana que se define de la siguiente forma:

Supongamos que tenemos una circunferencia \(\mathbb{S}^1(C,a)\) de centro \(C=(a,0)\) y radio \(a>0\) en \(\mathbb{R}^2\). Dado \(\theta \in (-\pi/2,\pi /2)\), el rayo \(R_{\theta }=\{ re^{i\theta }\ | \ r>0\} \) que parte del origen \(O=(0,0)\) con ángulo en polares \(\theta \), corta a \(\mathbb{S}^1(C,a)\) en un punto \(M_1\) y a la recta \(L=\{ x=2a\} \) en otro punto \(M_2\). La cisoide de Diocles es la curva plana \(\theta \in (-\pi /2,\pi /2)\mapsto M (\theta )\in \mathbb{R}^2\) definida por la condición
$$
\| OM\| =\| M_1M_2\|.
$$
(en rojo en la siguiente figura)

cisoide

  1. Prueba que en coordenadas polares, \(M(\theta )\) viene dada por
    $$
    M(\theta )=2a\, \sin \theta \tan \theta ^\, e^{i\theta }, \quad \theta \in (-\pi /2,\pi /2).
    $$
    ¿Es la cisoide una curva regular?
  2. Tras hacer el cambio de variable \(t=\tan (\theta )\), demuestra que obtenemos la reparametrización
    $$
    \alpha (t)=\left( \frac{2at^2}{1+t^2},\frac{2at^3}{1+t^2}\right),\quad t\in \mathbb{R}.
    $$
  3. Llamando \((x,y)\) a las coordenadas cartesianas de \(\mathbb{R}^2\), prueba que la ecuación en implícitas de la cisoide de Diocles es
    $$
    (x^2+y^2)x=2ay^2.
    $$
    Por lo tanto, la cisoide es el conjunto de ceros del polinomio de orden tres \(p(x,y)=(x^2+y^2)x-2ay^2\), es decir, es una curva algebraica de grado tres, o cúbica (recuerda que las cónicas en el plano viene dadas por ecuaciones de segundo grado en dos variables).

Y ahora, la historia ‘curiosa’ de la cisoide de Diocles: Según el historiador griego Plutarco, los habitantes de la ciudad griega de Atenas sufríeron una epidemia de peste allá por el 429 a.C. Como adoraban al dios Apolo y éste era patrón de la ciudad de Delfos,
algunos atenienses fueron a Delfos a consultar a un oráculo de este dios griego sobre cómo podrían detener la epidemia.  El oráculo les respondió que debían sustituir el altar a Apolo por otro del doble de volumen (desde luego, una respuesta de dudosa utilidad). El altar era cúbico, y los griegos eran muy aficionados a la geometría. Así que se planteó el dilema de cómo calcular el lado \(u>0\) de un cubo de volumen doble de otro cubo dado, de lado \(a>0\). Este problema se conoce como la duplicación del cubo. Evidentemente, la ecuación a resolver era
$$
u^3=2a^3,
$$
siendo \(a\) conocido y \(u\) incógnita. Nosotros sabemos despejar \(u\) en esa ecuación, pero lo que los griegos querían no era despejarla sino construir el nuevo altar. Así que, sin saberlo, buscaban un método para construir \(\sqrt[3]{2}\), sólo usando regla y compás. Desafortunadamente, este número irracional no es constructible con regla y compás, como demostró Pierre Wantzel (¡ en 1837 !). Pero esto no lo sabían los griegos, por supuesto. Así que empezaron a investigar sobre el tema.

El primer avance significativo sobre este problema lo hizo el geómetra griego Hipócrates de Quíos, que lo redujo al llamado
problema de Delian: dados \(a,b>0\), supongamos que podemos construir \(u,v>0\) tales que
$$
\mbox{(1)}\qquad \frac{u}{a}=\frac{v}{u}=\frac{b}{v}.
$$
Hipócrates de Quios se dio cuenta de si suponemos \(u,v\) construídos cumpliendo (1), entonces
$$
u^3=a^3\left( \frac{u}{a}\right) ^3=a^3\frac{u}{a}\frac{v}{u}\frac{b}{v}=a^3\frac{b}{a}=a^2b.
$$
Luego tomando \(b=2a\) tendremos \(u^3=2a^3\), y ya está nuestro cubo duplicado.
Desde luego, no parece que hayamos avanzado mucho en nuestro intento de duplicar el cubo: ahora debemos resolver el problema de Delian dados \(a,b\), pero… ¿cómo?

El geómetra (también griego, cómo no) Diocles estudió la cisoide en el siglo II a.C. (no sabemos si la descubrió él, pero lleva su nombre desde entonces) y la usó para resolver el problema de Delian y por tanto la duplicación del cubo. Es decir, si tenemos ya construída la cisoide, entonces Diocles dio un proceso basado en regla y compás para resolver el problema de Delian (por supuesto, de aquí podemos deducir que la cisoide no es constructible con regla y compás,
o al menos no es posible construir todos sus puntos, porque cualquier cantidad finita de ellos sí que puede construírse
por el procedimiento de arriba).

Veamos el método, muy ingenioso, dado por Diocles: Nos dan \(a,b>0\), y queremos construir \(u,v>0\) cumpliendo (1).
Basta construir sólo \(u>0\) tal que
$$
\mbox{(2)}\qquad u^3=a^2b,
$$
porque definiendo \(v=\frac{u^2}{a}\) (recordemos que el producto y cociente de números constructibles con regla y compás sigue siendo constructible) tendremos también construído \(v\), y es fácil probar que estos \(u,v\)
resuelven el problema de Delian para \(a,b\).

Así que nos toca construir \(u>0\) tal que (2) se cumple, dados \(a,b\). Para ello, Diocles partió de una cisoide como la que aparece arriba. Llamamos \(C=(a,0)\) al centro de la circunferencia de la figura de arriba, y \(L_C=\{ x=a\} \) a la recta vertical que pasa por \(C\). Llevamos la distancia \(b\) sobre esta recta \(L_C\), empezando en \(C\) y en sentido ascendente. De esta forma producimos un punto \(B=(a,b)\). Unimos \(B\) con \(A=(2a,0)\) y llamamos \(P=(x,y)\) al punto de corte del segmento \(AB\) con la cisoide. Ahora trazamos el segmento \(OP\), que cortará a \(L_C\) en un punto \(U=(a,u)\) para cierto \(u>0\). Y éste es el \(u\) que buscamos: como los triángulos \(OCU\) y \(OP_0P\) son semejantes, el teorema de Thales nos dice que
$$
\mbox{(3)}\qquad \frac{u}{a}=\frac{\| CU\| }{\| OC\| }=\frac{\| P_0P\| }{\| OP_0\| }=\frac{y}{x}.
$$
Análogamente, la semejanza de los triángulos \(APP_0\) y \(ABC\) nos lleva a que
$$
\mbox{(4)}\qquad
\frac{y}{2a-x}=\frac{\| PP_0\| }{\| P_0A\| }=\frac{\| BC\| }{\| CA\| }=\frac{b}{a}.
$$
Por tanto,
$$
\frac{u^3}{a^3}\stackrel{(3)}{=}\frac{y^3}{x^3}=y^2\frac{y}{x^3}\stackrel{(\star )}{=}\frac{x^3}{2a-x}\frac{y}{x^3}=\frac{y}{2a-x}\stackrel{(4)}{=}\frac{b}{a},
$$
donde en (\(\star \)) hemos usado la ecuación en implícitas de la cisoide. De lo anterior deducimos que \(u^3=a^2b\) como queríamos.

Para saber más sobre la cisoide de Diocles, puedes leer esto.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *