Bienvenido a la página del Seminario de Geometría del Dpto. de Geometría y Topología de la Universidad de Granada. Aquí podrá encontrar toda la información sobre las próximas conferencias y eventos organizados por el departamento.

YouTube Visite nuestro canal

Próximas conferencias

Free boundary minimal surfaces in a ball and eigenvalue problems

Universidad de Granada

Eigenvalue problems have played a pivotal role in the study of minimal surface theory. In this talk, I will provide an overview, starting with basic concepts and progressing to recent development. Specifically, I will explain free boundary minimal surfaces in the unit ball and their connection to eigenvalue problems. Key conjectures in this area will be highlighted, along with a discussion of my recent contribution.

Seminario 1 (IMAG)

The Schwarz lemma for holomorphic and minimal disks at the boundary

University of Montenegro

We first prove a Boundary Schwarz lemma for holomorphic disks on the unit ball in $\mathbb{C}^n$. Further by using a Schwarz lemma for minimal conformal disks of Forstnerič and Kalaj, we prove the boundary Schwarz lemma for such minimal disks.

Seminario 1 (IMAG)

Using generative AI to give feedback on formal proofs

Imperial College London

Can large language models improve feedback on undergraduate proof writing without lowering standards? I present a practical way to guide an LLM so its comments are focused, consistent, and aligned with course aims—while academic judgement stays with the instructor. In a pilot with first-year work, this approach surfaced common misconceptions early and shortened feedback cycles. I’ll outline the idea, note what helped and what failed, and discuss where AI can responsibly sit alongside human marking.

Actualmente en el departamento

No tenemos ningún visitante, consulta la sección Visitantes para estar informado sobre las próximas visitas.

Próximos visitantes

Próximos eventos

Mostrar más eventos

This activity is supported by the research projects EUR2024.153556, PID2023-150727NB-I00, , PID2023-151060NB-I00, PID2022-142559NB-I00, CNS2022-135390 CONSOLIDACION2022, PID2020-118137GB-I00, PID2020-117868GB-I00, PID2020-116126GB-I00.