¿Buscas información acerca de una conferencia o evento? En esta sección podrás consultar todas las actividades pasadas del seminario así cómo buscar información específica acerca de un visitante concreto o reunión.
The Schwarz Lemma, a cornerstone in complex analysis, offers crucial insights into the behavior of holomorphic functions on the unit disk. Beyond its classical formulation, this result has significant geometric implications, particularly in the context of minimal surfaces, which are surfaces with zero mean curvature. These surfaces arise in both differential geometry and physics, with applications ranging from soap films to general relativity. The conformality of harmonic maps, especially those that preserve area, is fundamental in understanding minimal surfaces, and the Schwarz Lemma provides key constraints on these maps. It helps in establishing curvature bounds and offers tools for analyzing the behavior of minimal surfaces near their boundaries. In this presentation, we will explore two key results that extend the reach of the Schwarz Lemma in the theory of minimal surfaces: (1) Extension of the Schwarz Lemma for Conformal Parameterization of Minimal Surfaces: We will introduce a generalized version of the Schwarz Lemma that applies to conformal mappings associated with minimal surfaces, offering a new perspective on their parameterization. (2) Solution to the Gaussian Curvature Conjecture for Minimal Graphs: We will present a solution to the long-standing conjecture related to the Gaussian curvature of minimal graphs, shedding light on their intrinsic geometry. These results showcase the deep interplay between complex analysis and geometric properties of minimal surfaces, revealing new avenues for research and applications.
David Kalaj (University of Montenegro) The Schwarz Lemma and its Connection to Minimal Surfaces II
The Schwarz Lemma and its Connection to Minimal Surfaces I
The Schwarz Lemma, a cornerstone in complex analysis, offers crucial insights into the behavior of holomorphic functions on the unit disk. Beyond its classical formulation, this result has significant geometric implications, particularly in the context of minimal surfaces, which are surfaces with zero mean curvature. These surfaces arise in both differential geometry and physics, with applications ranging from soap films to general relativity. The conformality of harmonic maps, especially those that preserve area, is fundamental in understanding minimal surfaces, and the Schwarz Lemma provides key constraints on these maps. It helps in establishing curvature bounds and offers tools for analyzing the behavior of minimal surfaces near their boundaries. In this presentation, we will explore two key results that extend the reach of the Schwarz Lemma in the theory of minimal surfaces: (1) Extension of the Schwarz Lemma for Conformal Parameterization of Minimal Surfaces: We will introduce a generalized version of the Schwarz Lemma that applies to conformal mappings associated with minimal surfaces, offering a new perspective on their parameterization. (2) Solution to the Gaussian Curvature Conjecture for Minimal Graphs: We will present a solution to the long-standing conjecture related to the Gaussian curvature of minimal graphs, shedding light on their intrinsic geometry. These results showcase the deep interplay between complex analysis and geometric properties of minimal surfaces, revealing new avenues for research and applications.
David Kalaj (University of Montenegro) The Schwarz Lemma and its Connection to Minimal Surfaces I
Rigidity for Serrin's problem in Riemannian manifolds
In this lecture, we address Serrin-type problems in Riemannian manifolds. We begin by establishing a Heintze-Karcher inequality and proving a Soap Bubble theorem, with its corresponding rigidity, in the context of ambient spaces with a Ricci tensor bounded from below. We then focus on Serrin’s problem within bounded domains of manifolds endowed with a conformal vector field. A key tool in this analysis is a new Pohozaev identity that incorporates the scalar curvature of the manifold. Applications involve Einstein and constant scalar curvature spaces. This lecture is based on joint works with A. Roncoroni (Politecnico di Milano, Italy), M. Santos (UFPB, Brazil), M. Andrade (UFS, Brazil), and Diego Marín (Universidad de Granada, Spain)
Allan Freitas (Universidade Federal da Paraíba (UFPB)) Rigidity for Serrin's problem in Riemannian manifolds
Stability of extremal domains for the first Dirichlet eigenvalue of the Laplacian operator
In this talk, we discuss the concept of stable extremal domains for the first Dirichlet eigenvalue of the Laplacian operator. We classify the stable extremal domains in the 2-sphere and higher-dimensional spheres when the boundary is minimal. Additionally, we establish topological bounds for stable domains in general compact Riemannian surfaces, assuming either nonnegative total Gaussian curvature or small volume. This is a joint work with Marcos P. Cavalcante (UFAL, Brazil).
Ivaldo Nunes (UFMA) Stability of extremal domains for the first Dirichlet eigenvalue of the Laplacian operator
We introduce new families of four-dimensional Ricci solitons of cohomogeneity two with collapsing ends. In a local presentation of the metric conformal to a product, we reduce the soliton equation to a degenerate Monge-Ampère equation for the conformal factor coupled with ODEs. We exhibit explicit solutions and obtain abstract existence results for complete expanding solitons and singular shrinking and steady ones. These families of Ricci solitons specialize to classical examples of Einstein and soliton metrics.
Benjy Firester (MIT) Collapsing cohomogeneity two Ricci solitons
The Gauss map of a minimal surface in $\mathbb R^3$, parametrised as a conformal minimal immersion from an open Riemann surface $M$ into $\mathbb R^3$, is a meromorphic function on $M$. Although the Gauss map has been a central object of interest in the theory of minimal surfaces since the mid-19th century, it was only recently proved by Alarcón, Forstnerič and López, using new complex-analytic methods, that every meromorphic function on $M$ is a Gauss map. It remains an open problem to usefully characterise those meromorphic functions that are the Gauss map of a complete minimal surface. I will describe recent joint work with Antonio Alarcón, in which we take a new approach to this problem. We investigate the space of meromorphic functions on $M$ that are the Gauss map of a complete minimal surface from a homotopy-theoretic viewpoint, using a new h-principle as a key tool. My talk will include a brief general introduction to h-principles and their applications.
Finnur Lárusson (University of Adelaide) The Gauss map and the h-principle
Flexibility for tangent curves in higher dimension
Is it always possible to park a car in a parking space whose size is exactly the same as the car? Can we do the same with a multi-trailer truck? In this talk, we will show the relationship between these two questions and the theory of distributions on differentiable manifolds. We will review this theory and focus our attention on bracket-generating distributions. Typical examples of this class of distributions are Contact and Engel structures. We will motivate these objects by showing other examples and establish several results about their tangent curves. In particular, we will show that the spaces of regular tangent knots are flexible if the dimension of the manifold is greater than $3$. These results are part of a joint work with Álvaro del Pino (Utrecht University).
Javier Martínez-Aguinaga (Universidad Complutense de Madrid) Flexibility for tangent curves in higher dimension
Reverse isoperimetric inequality under curvature constraints
What is the smallest volume a convex body $K$ in $\mathbb R^n$ can have for a given surface area? This question is in the reverse direction to the classical isoperimetric problem and, as such, has an obvious answer: the infimum of possible volumes is zero. One way to make this question highly non-trivial is to assume that $K$ is uniformly convex in the following sense. We say that $K$ is $\lambda$-convex if the principal curvatures at every point of its boundary are bounded below by a given constant $\lambda>0$ (considered in the barrier sense if the boundary is not smooth). By compactness, any smooth strictly convex body in $\mathbb R^n$ is $\lambda$-convex for some $\lambda>0$. Another example of a $\lambda$-convex body is a finite intersection of balls of radius $1/\lambda$ (sometimes referred to as ball-polyhedra). Until recently, the reverse isoperimetric problem for $\lambda$-convex bodies was solved only in dimension 2. In a recent joint work with Kateryna Tatarko, we resolved the problem also in $\mathbb R^3$. We showed that the lens, i.e., the intersection of two balls of radius $1/\lambda$, has the smallest volume among all $\lambda$-convex bodies of a given surface area. For $n>3$, the question is still widely open. I will outline the proof of our result and put it in a more general context of reversing classical inequalities under curvature constraints in various ambient spaces.
Kostya Drach (Universidad de Barcelona) Reverse isoperimetric inequality under curvature constraints
Translating Solitons in the Hyperbolic Einstein Space-time
We classify those rotationally invariant translators of the mean curvature flow in the Hyperbolic Einstein Space-time \(\mathbb{H}^n\times_{-1}\mathbb{R}\). Next, we consider a connected, compact space-like translator whose boundary is the boundary of a bounded open domain in a slice. If the domain is invariant by an isometry \(\sigma\) of \(\mathbb{H}^n\), then the traslator is invariant by \(\sigma\times id\). We then characterize one of the rotationally invariant examples.
Buse Yalçın (Ankara University) Translating Solitons in the Hyperbolic Einstein Space-time
In this talk we will introduce Gromov's $h$-principle theory from a basic and accessible perspective. We will motivate it through visual examples with special emphasis on the method of Convex Integration. Many problems in Differential Topology involve differential relations (differential equations, inequalities, etc.). In many contexts, it can be proven that there exists an $h$-principle: this means that the resolution of certain geometric problems can be reduced to studying the underlying Algebraic Topology. We will show how these techniques can be applied to the study of maximal growth distributions on smooth manifolds. Prototypical examples of these objects are Contact and Engel structures.
Javier Martínez-Aguinaga (Universidad Complutense de Madrid) Gromov's h-Principle and distributions
Large conformal metrics with prescribed gauss and geodesic curvatures
Rayssa CajuPontificia Universidad Católica de Chile
In this talk, our goal is to discuss the existence of at least two distinct conformal metrics with prescribed gaussian curvature and geodesic curvature respectively, $K_{g}= f + \lambda$ and $k_{g}= h + \mu$, where f and h are nonpositive functions and \lambda and \mu are positive constants. Utilizing Struwe's monotonicity trick, we investigate the blowup behavior of the solutions and establish a non-existence result for the limiting PDE, eliminating one of the potential blow-up profiles.
Rayssa Caju (Pontificia Universidad Católica de Chile) Large conformal metrics with prescribed gauss and geodesic curvatures
A Morse-theoretic glance at phase transitions approximations of mean curvature flows
Pedro GasparPontificia Universidad Católica de Chile
The Allen–Cahn equation is a semilinear parabolic partial differential equation that models phase-separation phenomena and which provides a regularization for the mean curvature flow (MCF), one of the most studied geometric flows. In this talk, we employ Morse-theoretical considerations to construct eternal solutions of the Allen–Cahn equation that connect unstable equilibria in compact manifolds. We describe the space of such solutions in a round 3-sphere under a low-energy assumption, and indicate how these solutions can be used to produce geometrically interesting eternal MCFs. This is joint work with Jingwen Chen (University of Pennsylvania).
Pedro Gaspar (Pontificia Universidad Católica de Chile) A Morse-theoretic glance at phase transitions approximations of mean curvature flows
On the topology of compact locally homogeneous plane waves
A compact flat Lorentzian manifold is the quotient of the Minkowski space by a discrete subgroup \(\Gamma\) of the isometry group, acting properly, freely and cocompactly on it. A classical result by Goldman, Fried and Kamishima states that, up to finite index, \(\Gamma\) is a uniform lattice in some connected Lie subgroup of the isometry group, acting properly and cocompactly, generalizing Bieberbach theorem to the Lorentzian signature. Such compact quotients are called "standard". More generally, a compact quotient of a homogeneous space \(G/H\) of a Lie group \(G\) is standard if the fundamental group action extends to a proper cocompact action of a connected Lie subgroup of \(G\). It turns out that looking for standard quotients is an easier problem when studying the existence of compact quotients of homogeneous spaces. This talk is about compact locally homogeneous plane waves. Plane waves can be thought of as a deformation of Minkowski spacetime, they are of great mathematical and physical interests. In this talk, we describe the isometry group of a 1-connected homogeneous non-flat plane wave, and show that compact quotients are “essentially" standard. As an application, we obtain that the parallel flow of a compact plane wave is equicontinuous. This is a joint work with M. Hanounah, I. Kath and A. Zeghib.
Lilia Mehidi (Universidad de Granada) On the topology of compact locally homogeneous plane waves
Translators in \(\mathbb{R}^3\) are solitons of the mean curvature flow for embedded 2-surfaces. In the semigraphical case, where the translators are allowed graphical as well as vertical components, Hoffman-Martín-White classified the surfaces into six types. They conjectured the uniqueness of the objects within two families contained in slabs, the "helicoids" and the "pitchforks," for any given width. We present the proof of the conjecture by combining an arc-counting argument motivated by Morse-Radó theory for translators with a rotational application of the maximum principle. We then discuss applications of this result to the classification of semigraphical translators in \(\mathbb{R}^3\) and their limits, related to the work of Hoffman-Martín-White and Gama-Martín-Møller. This is joint work with F. Martín and M. Sáez.
Raphael Tsiamis (Columbia University) Uniqueness of semigraphical translators
This workshop will bring together researchers at the frontiers of geometric analysis and Riemannian geometry, with a focus on recent advances on geometric flows, geometric problems in mathematical relativity, global Riemannian geometry, and minimal submanifolds. These areas have shown highly intriguing interactions in recent years and we expect this workshop will provide a unique opportunity to facilitate these emerging links.
Introduction Welcome to the Math SOMMa Junior Meeting 2024. This event is dedicated to early-career researchers, including predoctoral and postdoctoral researchers, and aims to enhance collaboration among the prestigious Severo Ochoa and Maria de Maeztu research institutions in mathematics; the Basque Centre for Applied Mathematics (BCAM), Instituto de Ciencias Matemáticas (ICMAT), Instituto de Matemáticas de la Universidad de Granada (IMAG), Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), and the Centre de Recerca Matemàtica (CRM). Our diverse program is designed to stimulate intellectual exchange and networking. It features a mix of plenary sessions, contributed talks, and a dynamic poster session. Alongside these, we have planned a series of complementary activities to foster networking and collaboration. We warmly invite you to be an active participant, whether by presenting your latest research, joining in enriching discussions, or simply immersing yourself in this engaging community. Join us in Barcelona for an unforgettable experience of learning, collaboration, and growth!
According to Felix Klein, geometry is the study of those properties in space that are invariant under a given transformation group. Intuitively, symmetry is the correspondence of shape at every point of a space. An interesting problem in geometry and many physical sciences is to determine the symmetries of a space from its shape. The aim of this conference is to gather experts in the study of symmetry in Differential Geometry, whilst we celebrate Eduardo García Río's 60th birthday. The conference will revolve around the study of curvature, homogeneous and symmetric spaces, Riemannian submanifold geometry, and other related topics in Differential Geometry and Geometric Analysis.
The Fall Workshops on Geometry and Physics have been held yearly since 1992, and bring together Spanish and Portuguese geometers and physicists, along with an ever increasing number of participants from outside the Iberian Peninsula. The meetings aim to provide a forum for the exchange of ideas between researchers of different fields in Differential Geometry, Applied Mathematics and Physics, and always include a substantial number of enthusiastic young researchers amongst the participants.
The conference continues a biennial series started in: - Leipzig, Germany (2016): http://www.math.uni-leipzig.de/~rademacher/Conferences/New-Methods-in-Finsler-Geometry.html - Pisa, Italy (2018) - in partnership with the Clay Mathematics Institute: https://crm.sns.it/event/415/ - Eindhoven, the Netherlands (2022), https://new-methods-in-finsler-geometry.win.tue.nl/; the 2020 edition was skipped because of pandemic reasons. The 2024 Brasov edition is organized in partnership with the Clay Mathematics Institute. It is cofunded by: - Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Centre / Transregio (CRC/TRR 191) on “Symplectic Structures in Geometry, Algebra and Dynamics”; - Dutch Research Council, project NWO KIC KICH1.ST03.21.004, "Key Enabling Technologies for Minimally Invasive Interventions in Healthcare: Bringing Tractography into Daily Neurosurgical Practice".
El Comité Organizador, en nombre de la Real Sociedad Matemática Española (RSME) y de la Sociedad Matemática Mexicana (SMM), se complace en invitar a la comunidad matemática a participar en el "VI Encuentro Conjunto RSME-SMM", que tendrá lugar en la Universitat Politècnica de València, València, España del 1 al 5 de julio de 2024.
This conference is an effort to gather researchers from Geometry, Algebra and Topology (GAT) and reinforce the growing interdisciplinarity between these fields of research. Geometry and Topology rely on increasingly advanced algebraic tools, while geometric and topological insights are becoming more and more important to structure the development of Algebra. The talks in the conference aim to show different aspects of such interactions and will be addressed to a wide mathematical audience.
It will be held online, without fees. The symposium is dedicated to the 60th birthday of Prof. Aysel TURGUT VANLI, a faculty member of Gazi University, Department of Mathematics. Invited speakers: Bang-Yen CHEN (Michigan State University, USA), Ryszard DESZCZ (Wroclaw University of Environmental and Life Sciences, Poland), Rajendra PRASAD (University of Lucknow, India), Zafar AHSAN (Aligarh Muslim University, India), Giulia DILEO (University of Bari Aldo Moro, Italy), Beldjilali GHERICI (University of Mascara, Algeria), Majid Ali CHOUDARY (Maulana Azad National University of Urdu, India).
The European school of Differential Geometryis an initiative to create a solid and resilient event targeting young researchers, as well as Master and Doctoral students involved in the area of Differential Geometry
We are happy to announce you the sixteenth edition of the International ICMAT Summer School on Geometry, Dynamics and Field Theory that will be held at Miraflores de la Sierra in Madrid, Spain, June 20-25, 2024. Participants are expected to arrive on Wednesday, June 19, and depart on Tuesday, June 25. The school is oriented to young researchers, Ph.D. and postdoctoral students in Mathematics, Physics and Engineering, in particular those interested in focusing their research on geometry, mathematical physics and numerical integrators. It is intended to present an up-to-date view of some fundamental issues in these topics and bring to the participants attention some open problems, in particular problems related to applications. The courses this year are: - Alexey Bolsinov (Loughborough University, UK) Course title: Nijenhuis geometry and its applications. (to be confirmed). - Christian Offen (University of Paderborn) Course title: Geometric Numerical Integration and Backward Error Analysis.
This is the third annual conference of Complex Analysis, Geometry, and Dynamics. The goal is to bring together leading researchers worldwide in these fields, with the aim of enhanced future collaboration. These fields are strongly interrelated, and in order to be able to solve deep challenging problems it is becoming necessary to pursue synergies among them to a bigger degree than in the past.
The purpose of this conference is to bring together several international experts on geometry and geometric analysis, including in topics such as mean curvature flow, singularity analysis in flows, minimal surfaces, constant mean curvature surfaces and geometric partial differential equations.
Este seminario de 10 horas está dirigido al alumnado del Programa Interuniversitario Matemáticas (UGR, UCA, UMA, UAL y UJA), aunque la participación está abierta a todo el mundo. Su objetivo es transmitir de manera clara y fluida avances en los problemas recientes de investigación básica en análisis geométrico, una de las líneas de investigación del programa de doctorado. El seminario consta de minicursos (de 2 horas de duración) y conferencias, todos ellos impartidos por profesorado experto en el área.
Lista de ponentes:
Antonio Alarcón (Universidad de Granada)
Alfonso Carriazo (Universidad de Sevilla)
Andrea Del Prete (Università degli Studi di Pavia)
David Moya (Universidad de Granada)
Cristina Rodríguez (Universidad de Jaén)
Magdalena Rodríguez (Universidad de Granada)
I Coloquio de Geometría y Topología Granada-Málaga
Universidad de Málaga (España)
»
Facultad de Ciencias, Aula M5. En este primer encuentro, impartirán charlas José Antonio Gálvez (UGR) y Aniceto Murillo (UMA).
The 18th Young Researchers Workshop in Geometry, Dynamics and Field Theory is a yearly event to promote young researchers in the field of differential geometry and its relations to dynamics and field theory. The 18th edition will take place in the University of Warsaw. This event offers researchers in the field, especially to the younger participants, a platform to share their latest results to an international audience and discuss current topics. The workshop will contain three mini-courses in key topics in the field, selected talks proposed by the participants, and a poster session.
The Meeting is intended for all kind of researchers interested in Lorentz Geometry and its applications to General Relativity. It provides an excellent opportunity to exhibit their latest results and to create new ways of collaboration. For PhD students the meeting will represent an ideal way to have their first contact with current research topics on the subject. Furthermore, the schedule includes an advanced course given by an expert in the field.
En este congreso Bienal RSME 2024 se darán a conocer los últimos avances en investigación en diferentes áreas de matemáticas y se facilitará el establecimiento de lazos de colaboración entre distintos grupos de investigación de nuestro país. Además de las habituales Conferencias Plenarias está prevista la celebración de Sesiones Especiales y exposición de pósteres. La asistencia al congreso permitirá disfrutar además de variadas actividades programadas en Pamplona y alrededores.
Iberian Strings 2024 is the 16th-installment of the annual meeting of the Spanish and Portuguese String Theory community, where recent developments in the field of supergravity, strings, branes and gauge theory are discussed.