Estás viendo actualmente el perfil de Francisco Martín. Vuelve al Historial para mostrar todas las conferencias o realiza una nueva búsqueda

Conferencias impartidas por Francisco Martín

Formation of Singularities in the MCF

IMAG

The Mean Curvature Flow (MCF) describes the evolution of hypersurfaces in Euclidean space, driven by their mean curvature, which tends to smooth out geometric irregularities over time. However, singularities inevitably develop during the flow, marking critical points where the smooth evolution ceases. In this talk, we will examine the formation of singularities in MCF, focusing on the crucial role of tangent flows in their analysis. Tangent flows, which emerge as blow-up limits near singularities, often exhibit self-similar structures. We will highlight how the mean curvature flow produces a specific type of tangent flow at the first singularity, preserving notable geometric and topological properties of the compact initial data. This presentation is based on an ongoing work with David Hoffman and Brian White.

Yeti doesn’t exist

IMAG

We complete the classification of semigraphical translators for the mean curvature flow in \(\mathbb{R}^3\), a study initiated by Hoffman, Martín, and White. Specifically, we demonstrate that no solutions exist to the translator equation on the upper half-plane with alternating positive and negative infinite boundary values—a configuration previously referred to as the "Yeti". Furthermore, we establish the uniqueness of pitchfork and helicoid translators. Our proofs use Morse-Radó theory for translators and an angular maximum principle. This is joint work with Mariel Sáez, Raphael Tsiamis, and Brian White.

A-23 (Facultad de Ciencias)

The Classification of Semigraphical Translators for Mean Curvature Flow

IMAG

We say that a surface is semigraphical if it is properly embedded, and, after removing a discrete collection of vertical lines, it is a graph. In this talk, we provide a nearly complete classification of semigraphical translators.

Seminario de la primera planta, IEMath

El teorema de Spruck y Xiao para solitones del flujo por la curvatura media

IMAG

Spruck y Xiao demostraron en 2018 que todo solitón por traslación del FCM en \( \mathbb{R}^3\) que sea un grafo completo tiene que ser convexo \(K \geq 0\). Nosotros daremos una demostración alternativa de ese teorema, basada en un trabajo conjunto con D. Hoffman y B. White.

Seminario 2ª planta, IEmath

Scherk-like translators for the Mean Curvature Flow

IMAG

We prove existence and uniqueness for a two-parameter family of translators for mean curvature flow. We get additional examples by taking limits at the boundary of the parameter space. Some of the translators resemble well-known minimal surfaces (Scherk's doubly periodic minimal surfaces, helicoids), but others have no minimal surface analogs. This is a joint work with D. Hoffman and B. White.

Seminario 1ª planta, IEMath-GR

Translating graphs of the mean curvature flow

IMAG

Algunos problemas clásicos de los solitones de traslación del FCM

IMAG

Seminario 1ª planta, IEMath

Uniqueness of the grim reaper cylinder

IMAG

In this article we prove that a connected, properly embedded translating soliton with uniformly bounded genus on compact sets which is \(C^1\)-asymptotic to two parallel planes outside a cylinder, must coincide with the grim reaper cylinder.

Seminario 1ª Planta, IEMath-GR

Topology of translating solitons of the mean curvature flow

IMAG

We use Morse theory and the Alexadrov reflection principle to obtain topological obstructions for the existence of translating solitons of the mean curvature flow in euclidean space. This is a joint work with K. Smoczyk and A. Savas-Halilaj.

Seminario 1ª Planta, IEMath-Gr

Gluing constructions for complete minimal surfaces with finite total curvature in $\mathbb{H}^2 \times \mathbb{R}$

IMAG

We construct the first examples of complete, properly embedded minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$ with finite total curvature and positive genus. These are constructed by gluing copies of the horizontal catenoid.
This is a joint work with Rafe Mazzeo and Magdalena Rodríguez.

Seminario Matemáticas. 1ª planta

Properly embedded area minimizing surfaces in hyperbolic three space

IMAG

We prove that, given S an open oriented surface, then there exists a complete, proper, area minimizing embedding $f:S→\mathbb{H}^3$. The main tool in the proof of the above result is a sort of bridge principle at infinity for properly embedded area minimizing surfaces in hyperbolic three space.
This is a joint work with Brian White.

Dominios de Calabi-Yau en 3-variedades

IMAG

Dado D un dominio en una 3-variedad y M una superficie abierta, se dice que D es un dominio de Calabi-Yau para M si no se puede construir una inmersión completa y propia de M en D que tenga curvatura media acotada. Nosotros veremos que si M tiene un final anular, entonces toda tres variedad admite un dominio de Calabi-Yau para M.

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Sobre la existencia de superficies minimales propias con topología arbitraria

IMAG

Discutiremos algunos resultados recientes relacionados con la conjetura de Calabi-Yau para superficies minimales embebidas de R^3

Seminario de Matemáticas. 2ª Planta, sección de Matemáticas.

Dominios universales para superficies minimales y el problema de Calabi-Yau

IMAG

M-1

Superficies minimales completas y propias en dominios del espacio

IMAG

M-23

El helicoide de género uno está embebido: Funciones periodo sobre un toro. El helicoide de género 1 simplemente periódico.

IMAG

G-12

El helicoide de género uno está embebido. Métricas cónicas y superficies minimales

IMAG

G-12

Superficies minimales y simetrías

IMAG

F-3

La aplicación de Gauss de una superficie minimal no orientable

IMAG

M-21

Francisco Martín

IMAG (España)

Conferencias impartidas
19
Página web personal

¿Los datos no son correctos? Por favor, contacta con nosotros para solucionarlo.

This activity is supported by the research projects EUR2024.153556, PID2023-150727NB-I00, PID2022-142559NB-I00, CNS2022-135390 CONSOLIDACION2022, PID2020-118137GB-I00, PID2020-117868GB-I00, PID2020-116126GB-I00.