Zoll manifolds with boundary
Eduardo Longa Universidade de Sao Paulo
Zoll manifolds are Riemannian manifolds all of whose geodesics are closed and have the same length. Beyond the round sphere, nontrivial examples were constructed by Funk and Guillemin, initiating a rich line of research. In this talk, I introduce a free-boundary analogue of this notion. A compact Riemannian manifold with boundary is said to be Zoll with boundary if every geodesic issuing orthogonally from the boundary returns orthogonally and is nowhere tangent to it. I will show that such manifolds exhibit strong rigidity: all free-boundary geodesics have the same length and share the same Morse index. Using Morse index theory and algebraic topology, we obtain a complete geometric and topological classification. In particular, when the boundary is connected, the manifold is a tubular neighborhood of a closed embedded submanifold (the “soul”), and the boundary fibers over the soul either as a sphere bundle or as a nontrivial two-fold covering. This is joint work with Paolo Piccione and Roney Santos.
Visite nuestro canal