Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 1054
Se colocan $2n+1$ fichas, algunas de color blanco y otras de color negro, en una fila. Se dice que una ficha está equilibrada si el número de fichas blancas a su izquierda más el número de fichas negras a su derecha es $n$. Determinar razonadamente si el número de fichas que están equilibradas es par o impar.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1053
Determina todos los enteros positivos $x$ tales que $2x+1$ es un cuadrado perfecto pero entre los números $2x+2,2x+3,\ldots,3x+2$ no hay ningún cuadrado perfecto.
pistasolución 1info
Pista. Si ponemos $2x+1=n^2$ para cierto entero positivo $n$, la segunda condición se puede escribir como $3x+2\lt (n+1)^2$.
Solución. Escribamos $2x+1=n^2$ para cierto entero positivo $n$. El siguiente cuadrado perfecto es $(n+1)^2=n^2+2n+1=2x+2n+2$, luego la condición de que los siguientes $x+1$ números no contengan un cuadrado, se puede escribir como $3x+2\lt 2x+2n+2$, es decir, $x\lt 2n$. Por lo tanto, tenemos que $n^2=2x+1\lt 4n+1$, o equivalentemente $n^2-4n-1\lt 0$. Resolviendo la igualdad, se llega fácilmente a que esta inecuación equivale a que $2-\sqrt{5}\lt n\lt 2+\sqrt{5}\approx 4.2$. Como $n$ tiene que ser un número impar (su cuadrado es impar) y positivo, tenemos solo las posibilidades $n=1$ y $n=3$. Tenemos que descartar también $n=1$ puesto que nos daría $x=0$, que no es positivo.

Comprobamos finalmente que $n=3$ sí es válido ya que nos da $x=4$ y entre los números entre $2x+2=10$ y $3x+2=14$ efectivamente no hay cuadrados perfectos. De esta forma, hemos probado que $x=4$ es la única solución al problema.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1052
Se han coloreado 46 cuadrados unitarios de una cuadrícula $9\times 9$. ¿Hay necesariamente en la cuadrícula tres casillas del mismo color con la forma de la de la figura (no necesariamente con la misma orientación)?
imagen
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1051
Sean $a,b,c$ números naturales primos, distintos dos a dos. Demostrar que el número \[(ab)^{c-1}+(bc)^{a-1}+(ca)^{b-1}-1\] es múltiplo del producto $abc$.
pista
Sin soluciones
info
Pista. Solo hay que demostrar que el número es múltiplo de $a$ (por simetría, también lo será de $b$ y de $c$). Esto se reduce a ver que $(bc)^{a-1}-1$ es múltiplo de $a$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1050
Demostrar las siguientes afirmaciones
  1. La suma de las distancias desde un punto de la superficie de la esfera inscrita en un cubo a todas las caras del mismo no depende del punto elegido.
  2. Lo mismo es cierto para la suma de los cuadrados de las distancias.
  3. Lo mismo es cierto para la suma de los cubos.
pistasolución 1info
Pista. En coordenadas, puedes suponer que la esfera está dada por la ecuación $x^2+y^2+z^2=r^2$ y que los planos que contienen los lados del cubo son $x=\pm r$, $y=\pm r$ y $z=\pm r$.
Solución. Podemos elegir un sistema de coordenadas en el espacio para escribir la esfera mediante la ecuación $x^2+y^2+z^2=r^2$, de forma que las caras del cubo estén en los planos $x=\pm r$, $y=\pm r$ y $z=\pm r$. Tomando un punto $(x_0,y_0,z_0)$ de la esfera, vamos a suponer por simetría que está en el primer octante y, por tanto, cumple $0\leq x_0,y_0,z_0\leq r$. Con esto podemos responder fácilmente a las preguntas propuestas
  1. La suma de las distancias a las caras es \[(r-x_0)+(r+x_0)+(r-y_0)+(r+y_0)+(r-z_0)+(r+z_0)=6r,\] que no depende del punto (en realidad, esto es cierto para cualquier punto interior al cubo, no tiene ni por qué estar en la esfera).
  2. La suma de los cuadrados de las distancias es \begin{align*} (r-x_0)^2+&(r+x_0)^2+(r-y_0)^2+(r+y_0)^2+(r-z_0)^2+(r+z_0)^2\\ &=6r^2+2(x_0^2+y_0^2+z_0^2)=6r^2+2r^2=8r^2, \end{align*} que tampoco depende del punto.
  3. Finalmente, la suma de los cubos de las distancias es \begin{align*} (r-x_0)^3+&(r+x_0)^3+(r-y_0)^3+(r+y_0)^3+(r-z_0)^3+(r+z_0)^3\\ &=6r^3+3(x_0^2+y_0^2+z_0^2)=6r^3+3r^2=9r^3, \end{align*} donde hemos podido cancelar por parejas los términos de grado $1$ y $3$ en las variables $x_0,y_0,z_0$.

Nota. Lo mismo ya no es cierto para potencias de exponente $n\geq 4$. Por ejemplo, para $r=1$, el punto $(1,0,0)$ tiene suma de potencias $n$-ésimas de las distancias igual a $2^n+4$ y para punto $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ esta suma es $2(1-\frac{1}{\sqrt{2}})^2+2(1+\frac{1}{\sqrt{2}})^n+2$. Este último número no es entero para $n\geq 6$ y es igual a $19$ para $n=4$ y a $31$ para $n=5$, luego no coincide con $2^n+4$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre