Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 105
Supongamos que $a,b,c,d\in\mathbb{R}$ son números positivos que satisfacen la condición $ab+bc+cd+da=1$. Demostrar que \[\frac{a^3}{b+c+d}+\frac{b^3}{a+c+d}+\frac{c^3}{a+b+d}+\frac{d^3}{a+b+c}\geq\frac{1}{3}\] y analizar en qué casos se alcanza la igualdad.
pistasolución 1info
Pista. Utilizar la desigualdad de Chebyshev para transformar la desigualdad del enunciado.
Solución. Supondremos sin perder generalidad que $a\geq b\geq c\geq d\gt 0$ y llamaremos $E$ al miembro de la izquierda de la desigualdad del enunciado. Si definimos \[x_1=a^3,\quad x_2=b^3,\quad x_3=c^3,\quad x_4=d^3,\] \[y_1=\frac{1}{b+c+d},\quad y_2=\frac{1}{a+c+d},\quad y_3=\frac{1}{a+b+d},\quad y_4=\frac{1}{a+b+c},\] se cumple que $x_1\geq x_2\geq x_3\geq x_4\gt 0$ e $y_1\geq y_2\geq y_3\geq y_4\gt 0$. Por tanto, podemos aplicar la desigualdad de Chebyshev a estos números y obtenemos que \[E\geq\frac{1}{4}(a^3+b^3+c^3+d^3)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right).\] La desigualdad entre las medias cúbica y aritmética aplicada a los $x_i$ nos dice que \[\frac{1}{4}(a^3+b^3+c^3+d^3)\geq\frac{1}{64}(a+b+c+d)^3\] y la desigualdad entre las medias aritmética y armónica aplicada a los $y_i$ que \[\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\geq\frac{16}{3(a+b+c+d)}.\] Usando estas dos últimas desigualdades, llegamos a que \[E\geq\frac{16(a+b+c+d)^3}{3\cdot 64(a+b+c+d)}=\frac{1}{12}(a+b+c+d)^2.\] Finalmente, usando que la condición del enunciado se escribe como $(a+c)(b+d)=1$ y usando la desigualdad entre las medias aritmética y geométrica, obtenemos \[(a+b+c+d)^2\geq 4(a+c)(b+d)=4,\] con lo que $E\geq\frac{1}{3}$ como queríamos probar. Si la igualdad se alcanza, entonces en la desigualdad entre las medias cúbica y aritmética para los $x_i$ se deduce que $a=b=c=d$ y , por la condición $ab+bc+cd+da=1$, estos cuatro números tienen que ser iguales a $\frac{1}{2}$, Se comprueba que, para esa elección, se alcanza la igualdad luego esa es la única solución.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 104
Partiendo de dos números naturales $a$ y $b$, repetimos el siguiente proceso: al mayor le restamos el menor y nos quedamos con el menor y con la diferencia. Demostrar que llegará un momento en el los dos números obtenidos serán iguales y determinar esos números.
pistasolución 1info
Pista. ¿Cómo podrías relacionar esto con el algoritmo de Euclides para calcular el máximo común divisor?
Solución. Si $a=b$, entonces está claro el resultado. Supongamos entonces que $a>b$ y dividamos $a$ entre $b$, obteniendo $a=bq+r$, donde $0\leq r\lt b$ es el resto de la división. Repitiendo el proceso del enunciado, pasaremos de $\{a,b\}$ a $\{a-b,b\}$, luego a $\{a-2b,b\}$ y así hasta $\{a-qb,b\}$, es decir, $\{b,r\}$. Otra forma de decir esto es que tras un número de pasos llegaremos a quedarnos con el menor de los números y el resto de la división. Repitiendo esto lo que estamos haciendo es el algoritmo de Euclides para el máximo común divisor, luego llegaremos a que uno de los números se acabará anulando. En el paso previo, los dos números serán iguales e iguales al máximo común divisor de $a$ y $b$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 103
Encontrar todos los números naturales \(n\in\mathbb{N}\) tales que \(3^n+5^n\) es múltiplo de \(3^{n-1}+5^{n-1}\).
pistasolución 1info
Pista. Demostrar que, si esto ocurre, entonces \(3^n+5^n=4(3^{n-1}+5^{n-1})\).
Solución. Observemos en primer lugar que \[3(3^{n-1}+5^{n-1})=3^n+3\cdot 5^n<3^n+5^n<5\cdot 3^{n-1}+5^n=5(3^{n-1}+5^{n-1})\] luego, si \(3^n+5^n\) es múltiplo de \(3^{n-1}+5^{n-1}\), entonces tiene que ser \(3^n+5^n=4(3^{n-1}+5^{n-1})\). Ahora bien, esto nos lleva a que \(5^n-4\cdot 5^{n-1}=4\cdot 3^{n-1}-3^n\), es decir, \(3^{n-1}=5^{n-1}\), igualdad que sólo se tiene para \(n=1\). Deducimos que el único natural para el que se cumple es \(n=1\) (observemos que, en tal caso, \(3^n+5^n=8\) y \(3^{n-1}+5^{n-1}=2\)).
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 102
La suma de las edades de los 120 estudiantes que participaron el año pasado en la fase final de la Olimpiada Matemática fue de 2002 años. Demostrar que existen 3 de ellos tales que la suma de sus edades no es menor de 51 años.
pistasolución 1info
Pista. Utiliza el principio del palomar.
Solución. Dividamos a los 120 alumnos en 40 grupos de 3 personas cada uno y supongamos que la suma de las edades de cada grupo es a lo sumo de 50 años. Entonces, todas las edades sumarían como mucho \(40\cdot 50=2000<2002\), lo cual es una contradicción que proviene de lo que se ha supuesto, es decir, hemos probado que habrá un grupo cuya suma de edades sea, al menos, de 51 años.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 101
Calcula todas las sucesiones de números naturales consecutivos cuya suma es $1999$.
pistasolución 1info
Pista. Observa que la suma de números naturales consecutivos es la suma de los términos de una progresión aritmética.
Solución. Supongamos que $\{a,a+1,a+2,\ldots,a+m\}$ es un conjunto de números naturales consecutivos tales que su suma $S$ es igual a $1999$. Usando la fórmula de los términos de una progresión aritmética, podemos calcular \begin{eqnarray} S=a+(a+1)+\cdots+(a+m)&=&(m+1)\cdot a+(1+2+\cdots+m)\\ &=&(m+1)\cdot a+\frac{m(m+1)}{2}. \end{eqnarray} Sacando factor común $m+1$ y quitando denominadores, llegamos a que $(m+1)(2a+m)=3998$. La descomposición en factores primos de $3998$ es $2\cdot 1999$ ya que $1999$ es primo. Además, $m+1$ es un número positivo, luego tenemos las siguientes posibilidades:
  • $m+1=1$ y $2a+m=3998$, en cuyo caso $m=0$ y $a=1999$.
  • $m+1=2$ y $2a+m=1999$, en cuyo caso $m=1$ y $a=999$.
  • $m+1=1999$ y $2a+m=2$, lo que nos lleva a un valor negativo de $a$.
  • $m+1=3998$ y $2a+m=1$, que también nos lleva a un valor negativo de $a$.
Deducimos que las únicas sucesiones que cumplen el enunciado son la que tiene por único elemento al número $1999$ y la formada por los números $999$ y $1000$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre