Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 70
Hallar los números primos \(p\) tales que \(p+10\) y \(p+14\) también son primos.
pistasolución 1info
Pista. Estudiar los restos módulo \(3\).
Solución. Tenemos que cada uno de los números \(p\), \(p+10\) y \(p+14\) tiene un resto distinto módulo \(3\) luego uno de ellos será multiplo de \(3\), es decir, será igual a \(3\) pues es primo. Tenemos los casos \(p=3\), \(p=-7\) y \(p=-11\). Los dos primeros son soluciones al enunciado como puede comprobarse, mientras que la última lleva a que \(p+10=-1\), que no es primo.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 69
Hallar el valor de \(\mathrm{mcd}(2n+3,n+7)\) en función del número entero \(n\in\mathbb{Z}\).
pistasolución 1info
Pista. Intentar una combinación de \(2n+3\) y \(n+7\) en la que se elimine \(n\) y usar la idea de que \(\mathrm{mcd}(a,b)=\mathrm{mcd}(a,b+ac)\) para cualesquiera enteros \(a,b,c\in\mathbb{Z}\).
Solución. Si \(d\) es un número que divide a \(2n+3\) y a \(n+7\), entonces también divide a \(11=2(n+7)-(2n+3)\), de donde \(d=\pm 1\) o bien \(d=\pm 11\). Como el máximo común divisor es positivo, deducimos que o bien es igual a \(11\) o bien es igual a \(1\). Además, es fácil ver que \(2n+3\) es múltiplo de 11 cuando \(n\equiv 4\ (\text{mod }11)\) y \(n+7\) es múltiplo de \(11\) también en la misma situación luego \(\mathrm{mcd}(2n+3,n+7)=11\) si \(n=11k+4\) para cierto \(k\in\mathbb{Z}\) y \(\mathrm{mcd}(2n+3,n+7)=1\) en caso contrario.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 68
Supongamos que \(p\) y \(p^2+2\) son números primos. Probar que \(p^3+5p^2+1\) es también primo.
pistasolución 1info
Pista. Probar que el único caso en que \(p\) y \(p^2+2\) son ambos primos es para \(p=3\).
Solución. Si \(p=3\), entonces \(p^2+2=11\) y \(p^3+5p^2+1=73\), luego este es un caso en que se cumple el enunciado. Si \(p>3\), entonces \(p\) no es múltiplo de \(3\) por ser primo luego \(p^2+2=3+(p-1)(p+1)\) es múltiplo de \(3\) ya que \(p+1\) o bien \(p-1\) será un múltiplo de \(3\) (otra forma de probar que \(p^2+2\) es múltiplo de \(3\) es usando congruencias). En particular, \(p^2+2\) no puede ser primo y esto prueba que \(p=3\) es el único número tal que \(p\) y \(p^2+2\) son primos, con lo que el enunciado está probado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 67
Demostrar que \(a^5-a\) es múltiplo de \(30\), para cualquier número entero \(a\in\mathbb{Z}\).
pistasolución 1info
Pista. Probar que \(a^5-a\) es múltiplo de \(2\), de \(3\) y de \(5\).
Solución. Como \(30=2\cdot 3\cdot 5\), bastará probar que \(a^5-a\) es múltiplo de \(2\), de \(3\) y de \(5\). Que es múltiplo de \(2\) y de \(3\) lo deducimos de que \(a^5-a=(a+1)a(a-1)(1+a^2)\) ya que \(a+1\), \(a\) y \(a-1\) son tres enteros consecutivos. Para ver que es múltiplo de \(5\), observemos que si \(a\) es múltiplo de \(5\) entonces es obvio, y si \(a\) no es múltiplo de \(5\), el teorema pequeño de Fermat nos asegura que \(a^4\equiv 1\ (\text{mod }5)\) luego \(a^4-1\) es múltiplo de \(5\) y \(a^5-a=a(a^4-1)\) también lo es.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 66
Sea \(n\) un número entero. Demostrar que \(8n+7\) no se puede escribir como suma de tres enteros cuadrados perfectos.
pistasolución 1info
Pista. ¿Qué restos puede tener un cuadrado módulo \(8\)?
Solución. Todo cuadrado perfecto es congruente con \(0\), \(1\) ó \(4\) módulo \(8\) luego, sumando tres de ellos, los únicos restos módulo \(8\) que puede tener un número que es suma de tres cuadrados son \(0=0+0+0\), \(1=1+0+0\), \(2=1+1+0\), \(3=1+1+1\), \(4=4+0+0\), \(5=4+1+0\) y \(6=4+1+1\), pero de ninguna combinación resulta \(7\). En consecuencia, ningún número congruente con \(7\) módulo \(8\) puede escribirse como suma de tres cuadrados perfectos, y esta afirmación es equivalente al enunciado.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre