Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 1044
Sean $a\geq 1$ y $b\geq 1$ números naturales cuyo máximo común divisor y mínimo común múltiplo designamos por $D$ y $M$, respectivamente. Demostrar que \[D^2+M^2\geq a^2+b^2.\]
pistasolución 1info
Pista. Usa la relación $DM=ab$ para reescribir la desigualdad.
Solución. Usaremos la relación $DM=ab$ para escribir \begin{align*} D^2+M^2-a^2-b^2&=D^2-\frac{a^2b^2}{D^2}-a^2-b^2\\ &=\frac{D^4+a^2b^2-a^2D^2-b^2D^2}{D^2}\\ &=\frac{(a^2-D^2)(b^2-D^2)}{D^2}\geq 0. \end{align*} Aquí hemos usado que cualquier número es mayor o igual que un divisor suyo (en este caso, el máximo común divisor $D$ con el otro número). De la desigualdad anterior se deduce claramente la del enunciado.

Nota. La igualdad se alcanza sólo cuando $a=D$ o $b=D$, es decir, cuando $b$ es un múltiplo de $a$ o $a$ es un múltiplo de $b$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1043
Sean $ABC$ un triángulo acutángulo y $\Gamma$ su circunferencia circunscrita. Sea $D$ un punto en el segmento $BC$, distinto de $B$ y de $C$, y sea $M$ el punto medio de $AD$. La recta perpendicular a $AB$ que pasa por $D$ corta a $AB$ en $E$ y a $\Gamma$ en $F$, con el punto $D$ entre $E$ y $F$. Las rectas $FC$ y $EM$ se cortan en el punto $X$. Si $\angle DAE=\angle AFE$, demostrar que la recta $AX$ es tangente a $\Gamma$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1042
Sean $n\gt 2$ un entero positivo par y $a_1\lt a_2 \lt\ldots\lt a_n$ números reales tales que $a_{k+1}-a_k\leq 1$ para todo $k$ con $1\leq k\leq n-1$. Sea $A$ el conjunto de pares $(i,j)$ con $1\leq i\lt j \leq n$ y $j-i$ par, y sea $B$ el conjunto de pares $(i,j)$ con $1\leq i\lt j\leq n$ y $j-i$ impar. Demostrar que \[\prod_{(i,j)\in A}(a_j-a_i)=\prod_{(i,j)\in B}(a_j-a_i).\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1041
Dado un entero positivo $n$, se escriben todos sus divisores enteros positivos en una pizarra. Ana y Beto juegan el siguiente juego:

Por turnos, cada uno va a pintar uno de esos divisores de rojo o azul. Pueden elegir el color que deseen en cada turno, pero solo pueden pintar números que no hayan sido pintados con anterioridad. El juego termina cuando todos los números han sido pintados. Si el producto de los números pintados de rojo es un cuadrado perfecto, o si no hay ningún número pintado de rojo, gana Ana; de lo contrario, gana Beto. Si Ana tiene el primer turno, determinar para cada $n$ quién tiene estrategia ganadora.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1040
Sean $ABC$ un triángulo acutángulo con $AC\gt AB$ y $O$ su circuncentro. Sea $D$ un punto en el segmento $BC$ tal que $O$ está en el interior del triángulo $ADC$ y $\angle DAO+\angle ADB = \angle ADC$. Llamamos $P$ y $Q$ a los circuncentros de los triángulos $ABD$ y $ACD$, respectivamente, y $M$ al punto de intersección de las rectas $BP$ y $CQ$. Demostrar que las rectas $AM$, $PQ$ y $BC$ son concurrentes.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre