Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 1014
Determinar todos los números primos positivos $p,q,r,k$ tales que \[pq+qr+rp=12k+1.\]
pistasolución 1info
Pista. Trabaja módulo $4$ para demostrar que uno de los primos tiene que ser $2$. Luego trabaja módulo $3$.
Solución. Veamos en primer lugar que uno de los primos $p,q,r$ tiene que ser igual a $2$. Por reducción al absurdo, si los tres son impares, serán congruentes con $1$ o $3$ módulo $4$. Si los tres son congruentes con $1$ o los tres son congruentes con $3$, entonces $pq+qr+rp\equiv 1+1+1=3\ (\text{mod }4)$. También se tiene que si sólo uno o dos de ellos son congruentes con $1$, entonces $pq+qr+rp\equiv 1+3+3=3\ (\text{mod }4)$. Sin embargo, se tiene que $12k+1\equiv 1\ (\text{mod }4)$, lo cual es una contradicción.

Supongamos sin perder generalidad que $r=2$, luego la ecuación queda $pq+2p+2q=12k+1$. Vamos a probar ahora que uno de los primos $p,q$ es igual a $3$. De nuevo por reducción al absurdo, si $p$ y $q$ son congruentes con $1$ o con $2$ módulo $3$. Entonces, es fácil ver que $pq+2p+2q\equiv 0\ (\text{mod }3)$ si $p\equiv q\equiv 2$ o bien $pq+2p+2q\equiv 2\ (\text{mod }3)$ en caso contrario. No obstante, se tiene que $12k+1\equiv 1\ (\text{mod }3)$.

Podemos suponer entonces que $q=3$ sin perder generalidad y la ecuación original nos queda $5p+5=12k$. Como $k$ es primo y el miembro de la izquierda es múltiplo de $5$, tiene que ser $k=5$. Esto nos da $p=11$. Concluimos que las única posibilidad es que $p,q,r$ sean los primos $2,3,11$ (en cualquier orden) y $k=5$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1013
Sea $n\geq 2$ un entero. Determinar el menor número real positivo $\gamma$ que cumple el siguiente enunciado:

Para todos los reales $x_1,x_2,\ldots,x_n\gt 0$ y $0\leq y_1,y_2,\ldots,y_n\leq\frac{1}{2}$ tales que \[x_1+x_2+\ldots+x_n=y_1+y_2+\ldots+y_n=1,\] se tiene que \[x_1x_2\cdots x_n\leq\gamma(x_1y_1+x_2y_2+\ldots+x_ny_n).\]

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1012
¿Cuántas permutaciones $(a_1,\ldots,a_n)$ del conjunto $\{1,2,\ldots,n\}$ hay tales que $2(a_1+a_2+\ldots+a_m)$ es divisible por $m$ para todo $m\in\{1,\ldots,n\}$?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1011
Sea $m\geq 1$ un entero positivo y sean $a$ y $b$ enteros positivos distintos estrictamente comprendidos entre $m^2$ y $m^2+m$. Hallar todos los enteros $c$ estrictamente comprendidos entre $m^2$ y $m^2+m$ que dividen al producto $ab$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1010
Sea $A_1$ el punto diametralmente opuesto al vértice $A$ del triángulo $ABC$ en la circunferencia circunscrita y sea $A'$ el punto en el que la recta $AA_1$ corta al lado $BC$. La perpendicular a $AA'$ trazada por $A'$ corta a los lados $AB$ y $AC$ (o a sus prolongaciones) en $M$ y $N$, respectivamente. Demostrar que los puntos $A$, $M$, $A_1$ y $N$ están en una circunferencia cuyo centro se encuentra en la altura desde $A$ en el triángulo $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre