Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 894
En una reunión entre cuatro países de la ONU, digamos A, B, C y D, el país A tiene el doble de representantes que el B, el triple que el C, y el cuádruple que el D. Se pretende distribuir a los representantes en mesas con el mismo número de personas en cada una. Sólo hay una condición: en cada mesa, cualquiera de los países debe estar en inferioridad numérica respecto de los otros tres juntos. ¿Cuántos representantes debe haber en cada mesa como mínimo?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 893
Halla todas las ternas $(x,y,z)$ de números reales que son soluciones del sistema de ecuaciones \[\left\{\begin{array}{l} 3\cdot 2^y-1=2^x+2^{-x},\\ 3\cdot 2^z-1=2^y+2^{-y},\\ 3\cdot 2^x-1=2^z+2^{-z}. \end{array}\right.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 892
Halla todas las ternas de números enteros positivos $a\leq b\leq c$ de forma que no hay ningún primo que divida a los tres y que cada uno de ellos divida a la suma de los otros dos.
pistasolución 1info
Pista. Demuestra que $abc$ divide a $a+b+c$ (pero $abc$ por lo general es mucho mayor que $a+b+c$).
Solución. Supongamos que $a\mid b+c$, $b\mid a+c$ y $c\mid a+b$. Si $p$ es un primo que divide a $a$ y $b$, entonces divide a $b+c$ luego también divide a $c$. Este razonamiento nos dice que, si ningún primo divide a los tres, entonces tampoco puede dividir a dos, es decir, $a$, $b$ y $c$ son primos relativos dos a dos. Además, tenemos que $a$, $b$ y $c$ dividen a $a+b+c$, luego $abc$ divide a $a+b+c$ (por ser primos relativos). En partiular, se tiene que $abc\leq a+b+c\leq 3c$, con lo que $ab\leq 3$. Esto nos deja muy pocas posibilidades para el par $(a,b)$:
  • Si $a=b=1$, las dos primeras condiciones $a\mid b+c$ y $b\mid a+c$ se cumplen siempre y la tercera $c\mid a+b=2$ nos dice que $c=1$ o $c=2$, luego tenemos las soluciones $(1,1,1)$ y $(1,1,2)$.
  • Si $a=1$ y $b=2$, tenemos que $c\mid a+b=3$, luego $c=3$ ya que debe ser $b\geq c$. Se comprueba que $(1,2,3)$ también es solución.
  • Si $a=1$ y $b=3$, entonces $c\mid a+b=4$ nos dice que $c=4$ para que sea $b\leq c$, pero no se cumple que $b\mid a+c$, luego no hay soluciones en este caso.

Deducimos así que la terna $(a,b,c)$ es $(1,1,1)$, $(1,1,2)$ o $(1,2,3)$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 891
En un hexágono regular de lado unidad se sitúan $19$ puntos. Demuestra que hay al menos un par de ellos separados por una distancia no mayor que $\frac{\sqrt{3}}{3}$.
pistasolución 1info
Pista. Descompón el hexágono en 18 regiones y utiliza el principio del palomar.
Solución. Consideramos la división del hexágono en 6 triángulos equiláteros de lado 1 indicada con líneas verdes en la figura y luego subdividimos cada triángulo en tres cometas uniendo su centro con los puntos medios de los tres lados, como se ha indicado con línea naranja. Esto nos da un total de 18 regiones y, por el principio del palomar, al menos 2 de los 19 puntos deben caer en una de ellas. Ahora bien, todas las regiones son congruentes entre sí y los puntos más distantes dentro de cada una de ellas son el centro y el vértice del triángulo equilátero en el que está contenida (véase la nota). Dicha distancia máxima es $\frac{2}{3}$ de la altura del triángulo, es decir, $\frac{2}{3}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{3}$.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 890
Demuestra que en un triángulo se verifica: si $r$ es una recta que pasa por su baricentro y no pasa por ningún vértice, la suma de las distancias a dicha recta de los vértices que quedan en un mismo semiplano es igual a la distancia del tercer vértice a dicha recta.
pistasolución 1solución 2info
Pista. Usa coordenadas y recuerda que las coordenadas del baricentro son la media aritmética de las coordenadas de los vértices.
Solución. En primer lugar, nos damos cuenta de que $r$ no es una mediana y deja un vértice a un lado y dos al otro. Supondremos que es el vértice $A$ el que deja a un lado y $B$ y $C$ al otro. Sea $M$ el punto medio de $BC$, $G$ el baricentro y $P$ y $Q$ los puntos de corte de $r$ con los lados $AB$ y $BC$, respectivamente, como se muestra en la figura. También trazamos segmentos perpendiculares a $r$ por $A$, $B$, $C$ y $M$, que tienen sus pies en $A'$, $B'$, $C'$ y $M'$, respectivamente.

Sabemos que el baricentro divide a la mediana $AM$ en dos segmentos tales que $AG=2GM$, luego el triángulo $AGQ$ tiene doble de área del triángulo $GQM$ (tiene la misma altura y base doble) y el triángulo $AGP$ tiene el doble de área que el triángulo $PGM$. Por tanto, el área de $APQ$ (en verde) es también el doble que la de $PQM$ (en azul). Podemos calcular el área de $APQ$ como $\frac{1}{2}AA'\cdot PQ$ y el área de $PQM$ como $\frac{1}{2}MM'\cdot PQ$. Ahora nos damos cuenta de que $MM'=\frac{1}{2}(BB'+CC')$ por el teorema de Thales ya que $BB',MM',CC'$ son paralelas que cortan a $r$ y $BC$ con $BM=CM$. Por lo tanto, el área de $PQM$ es $\frac{1}{4}(BB'+CC')PQ$, que debe ser la mitad de $\frac{1}{2}AA'\cdot PQ$, luego necesariamente $AA'=BB'+CC'$, que es lo que queríamos demostrar.

imagen
Solución. Vamos a trabajar en coordenadas, escribiendo los vértices del triángulo como $(x_1,y_1)$, $(x_2,y_2)$ y $(x_3,y_3)$. Las coordenadas del baricentro son la media aritmética, es decir, \[\left(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}\right).\] Por tanto, una recta que pasa por este punto tendrá ecuación $Ax+By+C=0$, siendo $A,B,C\in\mathbb{R}$ tales que $A^2+B^2\neq 0$ y \[A\frac{x_1+x_2+x_3}{3}+B\frac{y_1+y_2+y_3}{3}+C=0.\] Esto último puede reescribirse como \[\frac{Ax_1+By_1+C}{3}+\frac{Ax_2+By_2+C}{3}+\frac{Ax_3+By_3+C}{3}=0.\] Como las tres fracciones suman cero, habrá dos de ellas con un signo y otra con el signo opuesto (no pueden ser cero porque la recta no pasa por ningún vértice). Supondremos que las dos primeras son del mismo signo y la tercera del signo opuesto, luego tomando valores absolutos, dividiendo por $\sqrt{A^2+B^2}$ y multiplicando por $3$, tenemos \[\frac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}+\frac{|Ax_2+By_2+C|}{\sqrt{A^2+B^2}}=\frac{|Ax_3+By_3+C|}{\sqrt{A^2+B^2}}.\] Cada fracción es la distancia desde el vértice correspondiente a la recta, luego el resultado está probado. El hecho de que dos fracciones tengan el mismo signo y otra el signo opuesto refleja el hecho de que la recta deja a dos puntos a un lado y al tercero al otro.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre