Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 874
Sea $f:\mathbb{N}_0\to\mathbb{Z}$ la función que a cada elemento $n\in\mathbb{N}_0$ le asocia como imagen el entero $f(n)$ definido por \[f(n)=-f\left(\left\lfloor\frac{n}{3}\right\rfloor\right)-3\left\{\frac{n}{3}\right\}.\] Determina el menor entero $n$ tal que $f(n)=2010$.

Nota. $\mathbb{N}_0$ el conjunto de los enteros no negativos y $\mathbb{Z}$ el conjunto de todos los enteros. Además, $\lfloor x\rfloor$ denota la parte entera de un número real $x$ y $\{x\}$ su parte decimal.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 873
Una sucesión pucelana es una sucesión creciente de dieciséis números impares positivos consecutivos cuya suma es un cubo perfecto. ¿Cuántas sucesiones pucelanas están formadas únicamente por números de tres cifras?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 872
Determinar los números de cuatro cifras significativas $\overline{abcd}$ (con $a\neq 0$), son iguales a $\overline{ab}^2+\overline{cd}^2-\overline{cd}$.

Nota. En este problema, la notación $\overline{xy}$ representa el número natural que tiene $x$ decenas e $y$ unidades, siendo $x,y\in\{0,1,2,3,4,5,6,7,8,9\}$.

pistasolución 1info
Pista. Plantea una ecuación que involucre a los números $r=\overline{ab}$ y $s=\overline{cd}$ y observa que $10\leq r\leq 99$ y $0\leq s\leq 99$.
Solución. La condición que nos dan se escribe como \[1000a+100b+10c+d=(10a+b)^2+(10c+d)^2-(10c+d).\] Si ahora escribimos $r=10a+b$ y $s=10c+d$, esto puede reescribirse como \[100r+s=r^2+s^2-s\ \Longleftrightarrow\ (r-50)^2+(s-1)^2=2501,\] donde lo único que hemos hecho es completar cuadrados. Ahora bien, como un cuadrado tiene cifra de las unidades igual a $0,1,4,5,6,9$, la ecuación $x^2+y^2=2501$ implica que las cifras de las unidades de $x^2$ e $y^2$ son $0$ y $1$ o bien $5$ y $6$ (en algún orden). Además, sólo tenemos que probar con $1\leq x\leq \sqrt{1250}\lt 36$, lo que nos dice que \[x\in\{1,4,5,6,9,10,11,14,15,16,19,20,21,24,25,26,29,30,31,34,35\}.\] Analizando los casos para los que $2501-x^2$ es cuadrado perfecto, nos queda solo $x=1$ y $x=10$ (hay más trucos para descartar casos; por ejemplo, $x$ no puede ser múltiplo de $3$, ¿sabrías justificar por qué?). Tenemos entonces las descomposiciones $1^2+50^2=10^2+49^2=2501$.

Por lo tanto, $|r-50|$ y $|s-1|$ son iguales a $1$, $10$, $49$ o $50$. Obviamente, no puede ser $|r-50|=50$ ni $r-50=-49$ porque no se cumpliría que $10\leq r\leq 99$. Tenemos así cinco soluciones (observemos que en cada una de ellas sólo hay un valor posible de $s$ porque el otro, para el otro signo en el valor absoluto, no cumple que $0\leq s\leq 99$):

  • Si $r=49$, entonces $s=51$, lo que nos da la solución $4951$.
  • Si $r=51$, entonces $s=49$, lo que nos da la solución $5149$.
  • Si $r=40$, entonces $s=50$, lo que nos da la solución $4050$.
  • Si $r=60$, entonces $s=50$, lo que nos da la solución $6050$.
  • Si $r=99$, entonces $s=11$, lo que nos da la solución $9911$.

Nota. Si permitimos que $a=0$, con el mismo razonamiento también tenemos las soluciones con $r=0$ (que implica $s=0$ o $s=2$) y con $r=1$ (que implica $s=11$), luego también tendríamos los números $0000$, $0002$ y $0111$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 871
Calcula las soluciones reales de la ecuación \[\sqrt[3]{1729-x}+\sqrt[3]{x}=19.\]
pistasolución 1info
Pista. Plantea un sistema de dos ecuaciones con las incógnitas $a=\sqrt[3]{1729-x}$ y $b=\sqrt[3]{x}$.
Solución. Llamamos $a=\sqrt[3]{1729-x}$ y $b=\sqrt[3]{x}$, luego podemos reescribir esa ecuación como el sistema de ecuaciones \[\left\{\begin{array}{l}a+b=19\\a^3+b^3=1729.\end{array}\right.\] Factorizando $a^3+b^3=(a+b)(a^2-ab+b^2)$, obtenemos que $a^2-ab+b^2=\frac{1729}{19}=91$. Restando a esta última expresión $a^2+2ab+b^2=(a+b)^2=361$, llegamos a que $-3ab=91-361=-270$, de donde $ab=90$. Tenemos, entonces que $a+b=19$ y $ab=90$, lo que nos dice que $a$ y $b$ son las soluciones de la ecuación $t^2-19t+90=0$. Usando la fórmula de la ecuación de segundo grado, se llega fácilmente a que $(a,b)=(9,10)$ o $(a,b)=(10,9)$. Como $x=b^3$, tenemos las posibles soluciones $x=1000$ y $x=729$ y se comprueba fácilmente que ambas efectivamente verifican la ecuación.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 870
Un jardinero tiene que plantar en una fila a lo largo de un camino tres robles, cuatro encinas y cinco hayas. Planta los árboles al azar siendo la probabilidad de plantar un árbol u otro la misma. Halla la probabilidad de que, una vez plantados todos los árboles, no haya dos hayas consecutivas.
pistasolución 1info
Pista. Para contar los casos favorables, impón que haya cuatro árboles que no sean hayas entre las 5 hayas y luego coloca los otros tres árboles libremente.
Solución. Para centrar el problema, vamos a pensar que el jardinero tiene los 12 árboles en macetas y va cogiendo una a una una maceta sin mirar de qué tipo de árbol es y la planta consecutivamente en 12 agujeros que previamente ha cavado. De esta forma, está claro que hay $12!$ formas posibles de plantar los árboles. Veamos cuántas de ellas tienen no tienen hayas consecutivas para hallar la probabilidad como casos favorables entre casos posibles.

Denotamos por $H$ a las hayas y por $A$ a los otros árboles (robles o encinas). Para que no estén consecutivas, tendremos que poner al menos un árbol entre cada haya: \[\_\ H\ A\ \_\ H\ A\ \_\ H\ A\ \_\ H\ A\ \_\ H\ \_\] aunque nos quden seis huecos marcados con $\_$ para poner otras tres $A$. Estas se podrán poner libremente en uno de los seis huecos, lo que nos da un total de $6^3$ configuraciones. Para cada una de ellas, podemos permutar las $H$ y permutar las $A$ libremente, lo que nos da un total de $5!\cdot 7!$ casos posibles por cada una de las $6^3$ configuraciones. La probabilidad que buscamos es, por lo tanto, \[\frac{6^3\cdot 5!\cdot 7!}{12!}=\frac{3}{11}.\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre