Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 1099
Sea $n$ un entero positivo. Calcular la siguiente suma: \[\frac{3}{1\cdot 2\cdot 4\cdot 5}+\frac{4}{2\cdot 3\cdot 5\cdot 6}+\ldots+\frac{n+2}{n\cdot (n+1)\cdot (n+3)\cdot (n+4)}.\]
pistasolución 1info
Pista. Observa que $\frac{n+2}{n(n+1)(n+3)(n+4)}=\frac{1}{6n(n+1)}-\frac{1}{6 (n+3)(n+4)}$ para todo entero positivo $n$.
Solución. Observamos en primer lugar que, para cualquier entero positivo $k$, se tiene que $\frac{k+2}{k(k+1)(k+3)(k+4)}=\frac{1}{6k(k+1)}-\frac{1}{6(k+3)(k+4)}$ (ver la nota más abajo). Por lo tanto, podemos expresar \begin{align*} \frac{3}{1\cdot 2\cdot 4\cdot 5}&=\frac{1}{6\cdot 1\cdot 2}-\frac{1}{6\cdot 4\cdot 5},\\ \frac{4}{2\cdot 3\cdot 5\cdot 6}&=\frac{1}{6\cdot 2\cdot 3}-\frac{1}{6\cdot 5\cdot 6},\\ \frac{5}{3\cdot 4\cdot 6\cdot 7}&=\frac{1}{6\cdot 3\cdot 4}-\frac{1}{6\cdot 6\cdot 7},\\ &\vdots\\ \frac{n+2}{n(n+1)(n+3)(n+4)}&=\frac{1}{6n(n+1)}-\frac{1}{6(n+3)(n+4)} \end{align*} Si sumamos todas estas igualdades, en el miembro de la derecha se simplifican casi todos los sumandos menos los tres primeros y los tres últimos. Con lo cual la suma del enunciado es igual a \[S=\frac{1}{6\cdot 1\cdot 2}+\frac{1}{6\cdot 2\cdot 3}+\frac{1}{6\cdot 3\cdot 4}-\frac{1}{6(n+1)(n+2)}-\frac{1}{6(n+2)(n+3)}-\frac{1}{6(n+3)(n+4)}\] Si hacemos todas las operaciones, esta suma puede simplificarse como \[S=\frac{n(n+5)}{8(n+1)(n+4)}.\]

Nota. Se trata de una suma telescópica en la que cada sumando se escribe como diferencia de dos términos, de forma que al sumar estos términos se cancelan casi todos. Una forma de hacer esto (que funciona con cualquier suma cuyo término general es racional y cuyo denominador tiene raíces enteras simples) es escribir \[\frac{n+2}{n(n+1)(n+3)(n+4)}=\frac{A}{n}+\frac{B}{n+1}+\frac{C}{n+3}+\frac{D}{n+4}\] y resolver las variables $A,B,C,D\in\mathbb{R}$ para que la igualdad sea cierta para todo $n$. En este caso, se tiene que $A=-B=C=-D=\frac{1}{6}$ y pueden agruparse los sumandos por parejas (aunque no es necesario hacerlo así en general). Al sumar en la igualdad anterior, salvo el factor $\frac{1}{6}$, se suman y restan inversos de enteros. Cancelándolos convenientemente se obtiene el resultado de arriba.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1098
Sea $ABC$ un triángulo acutángulo. Sean $D$ el pie de la altura correspondiente al lado $BC$; $M$ el punto medio del lado $BC$ y $F$ el punto de corte de la bisectriz interior del ángulo $\angle BAC$ con el lado $BC$. Determinar todos los triángulos $ABC$ para los cuales $F$ es el punto medio del segmento $DM$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1097
Demostrar que la suma de los divisores positivos de un número de la forma $3k+2$ siempre es un múltiplo de $3$.
pistasolución 1info
Pista. Agrupa cada divisor con su complementario.
Solución. Supongamos que $n\equiv 2\ (\text{mod }3)$ y $d$ es un divisor suyo. Como $d$ no puede ser múltiplo de $3$ (en tal caso, $n$ también lo sería), llegamos a que $d\equiv 1\ (\text{mod }3)$ o bien $d\equiv 2\ (\text{mod }3)$. Su divisor complementario $\frac{n}{d}$ tiene que cumplir $\frac{n}{d}\equiv 2\ (\text{mod }3)$ o bien $\frac{n}{d}\equiv 1\ (\text{mod }3)$, respectivamente, para que $d\cdot\frac{n}{d}=n\equiv 2\ (\text{mod }3)$. Por tanto, tenemos que $d+\frac{n}{2}\equiv 1+2\equiv 0\ (\text{mod }3)$.

De esta manera, en la suma de divisores, tras agrupar cada divisor con su complementario, tendremos una suma de múltiplos de $3$ y hemos resuelto el problema. Sin embargo, queda por ver que todos los divisores están emparejados, lo cual es cierto a no ser que $n$ sea un cuadrado perfecto (en cuyo caso $d=\sqrt{n}$ coincide con su complementario $\frac{n}{d}=\sqrt{n}$). Como todo cuadrado es congruente con $0$ o $1$ módulo $3$, este caso no se da nunca.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1096
Sea $O$ un punto interior del triángulo $ABC$ y sean $M$, $N$ y $P$ las intersecciones de $AO$ con $BC$, $BO$ con $CA$ y $CO$ con $AB$, respectivamente. Demostrar que de entre los seis triángulos que se forman, hay al menos dos cuya área es menor o igual que $\frac{1}{6}$ del área de $ABC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1095
Determinar para qué valores de $n$ existe un polígono convexo de $n$ lados cuyos ángulos internos, expresados en grados, son todos enteros, están en progresión aritmética y no son todos iguales.
Sin pistas
solución 1info
Solución. Pongamos que el polígono tiene $n$ lados y escribamos sus ángulos internos como $a,a+d,\ldots,a+(n-1)d$, siendo $d$ la diferencia de la progresión aritmética. Como la suma de los ángulos internos de un $n$-gono es $180(n-2)$ (ya que se puede triangularse en $n-2$ triángulos), deducimos que \[180(n-2)=a+(a+d)+\ldots+(a+(n-1)d)=na+\frac{n(n-1)}{2}d.\] Por tanto, tenemos que resolver la ecuación diofántica \[360(n-2)=2na+n(n-1)d\ \Leftrightarrow\ (360-2a-(n-1)d)n=720.\] Esto acota los valores de $n$ a los divisores de $720$ (mayores o iguales que $3$). Además, para que el polígono sea convexo, sus ángulos tienen que ser menores que $180$, lo que nos dice que el mayor ha de serlo, es decir, $a\lt 180-(n+1)d$. Sustituyendo en la ecuación diofántica, la convexidad se traduce en que $720=(360-2a-(n-1)d)n\gt n(n-1)d\geq n(n-1)$, donde hemos usado que $d\geq 1$ porque nos dicen que no todos los ángulos son iguales. Esto último se traduce en que $3\leq n\leq 27$.

La idea ahora es que, para cada divisor $3\leq n\leq 27$, estudiaremos si existe un par de enteros positivos $(a,d)$ verificando la ecuación diofántica lineal $2a+(n-1)d=360+\frac{720}{n}$. Distinguimos dos casos:

  • Si $n=2k$ es par, entonces $\mathrm{mcd}(2,n-1)=1$, luego la ecuación tiene soluciones enteras (no sabemos aún si positivas). De hecho, podemos expresar $1=2k-(2k-1)$, luego tenemos una solución particular de la ecuación dada por $a_0=k(360+\frac{720}{n})=180n+360$ y $d_0=-360-\frac{720}{n}$. Todas las soluciones serán, en términos de un parámetro entero $j$, \[a=180n+360-(n-1)j,\qquad d=-360-\frac{720}{n}+2j.\] Para que ambos sean positivos, tendremos que $180n+360-(n-1)j\gt 0$ y $-360-\frac{720}{n}+2j\gt 0$, lo que nos da la acotación \[180\frac{n+2}{n}\lt j\lt 180\frac{n+2}{n-1},\] que también se puede escribir como \[180+\frac{360}{n}\lt j\lt 180+\frac{540}{n-1}.\] Una condición suficiente para que haya una solución entera $j$ es si aseguramos que $\frac{540}{n-1}\gt\frac{360}{n}+1$, que equivale a $360 + 181 n - n^2\geq 0$. Esta última desigualdad se cumple siempre para $3\leq n\leq 27$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre