Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 470
Dadas cinco circunferencias, supongamos que cuatro cualesquiera de ellas tienen un punto en común. Demostrar que las cinco tienen un punto en común.
pistasolución 1info
Pista. Tres puntos distintos (no alineados) determinan una circunferencia.
Solución. Llamemos $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4,\Gamma_5$ a las circunferencias y supongamos por hipótesis que existen puntos $p_1,p_2,p_3,p_4,p_5$ tales que $p_i\in\Gamma_j$ siempre que $j\neq i$. Si dos de estos puntos son iguales, entonces hemos terminado (por ejemplo, si $p_1=p_2$, entonces este punto está en las cinco circunferencias puesto que $p_1$ está en todas menos en $\Gamma_1$, pero $p_2$ sí que está en $\Gamma_1$).

Supongamos entonces que los cinco puntos $p_1,p_2,p_3,p_4,p_5$ son distintos. En particular, $p_1,p_2,p_3$ son tres puntos distintos tanto en $\Gamma_4$ como en $\Gamma_5$. Como tres puntos distintos determinan una única circunferencia, deducimos que $\Gamma_4=\Gamma_5$, luego $p_5$ está también en $\Gamma_5$ y, por tanto, es un punto común a todas las circunferencias.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 469
Sean $a_0,a_1,\ldots,a_n\in\mathbb{R}$ números reales tales que $a_0 = a_n = 0$ y $a_{k-1}-2a_k+a_{k+1}\geq 0$ para $k=0,1,\ldots, n-1$. Demostrar que todos los números son negativos o cero.
pistasolución 1info
Pista. ¿Qué les ocurre a los números anterior y posterior al máximo de todos ellos?
Solución. Supongamos que el máximo de todos los números es $a_k$ para cierto índice $k$ distinto de $0$ y $n$ (si el máximo fuera $a_0=0$ o $a_n=0$ no habría nada que demostrar). Entonces, \[2a_k\leq a_{k-1}+a_{k+1}\leq a_k+a_k=2a_k,\] ya que $a_k$ es el máximo. Esto nos dice que $a{k-1}=a_k=a_{k+1}$, por lo que el máximo también se alcanza en $a{k-1}$. Repitiendo el argumento, el máximo también se alcanzará en $a_{k-2}$, en $a_{k-3}$,... y así sucesivamente. Por tanto, el máximo también se alcanza en $a_0=0$ y hemos terminado.

Nota. Lo que hemos probado realmente es que el máximo de la sucesión se alcanza estrictamente en $a_0$ y $a_n$ o bien la sucesión es constante cero. Más aún, no es difícil ver a partir de este argumento que si la sucesión no es constante cero, entonces tiene un único mínimo y es estrictamente decreciente hasta el mínimo y luego estrictamente creciente hasta el máximo

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 468
Dados tres números enteros distintos $x,y,z\in\mathbb{Z}$, demostrar que $(x-y)^5+(y-z)^5+(z-x)^5$ es divisible entre $5(x-y)(y-z)(z-x)$.
pistasolución 1info
Pista. Observa que los números $a=x-y$, $b=y-z$ y $c=z-x$ suman cero, luego puedes sustituir $c=-(a+b)$ para transformar $a^5+b^5+c^5$.
Solución. Consideremos los enteros $a=x-y$ y $b=y-z$, con lo que $z-x=-a-b$. Así, \begin{align*} (x-y)^5+(y-z)^5+(z-x)^5&=a^5+b^5-(a+b)^5\\ &=-5ab(a^3+2ab+2ab+b^3)\\ &=-5ab(a+b)(a^2+ab+b^2). \end{align*} Por tanto, el número dado es múltiplo de $-5ab(a+b)=5(x-y)(y-z)(z-x)$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 467
Sea $n$ un número natural con $1998$ cifras que es divisible entre $9$. Sea $x$ la suma de sus dígitos, $y$ la suma de los dígitos de $x$ y $z$ la suma de los dígitos de $z$. Hallar $z$.
pistasolución 1info
Pista. El resto módulo $9$ no se modifica en la suma. Halla cotas superiores para $x$, $y$ y $z$.
Solución. La mayor suma de cifras posible para números de 1998 cifras es que todas sean nueves, con lo cual podemos estimar $x\leq 9\cdot 1998=17982$. El número con mayor suma de cifras menor o igual que $17982$ es $9999$, lo que nos da la estimación $y\leq 9+9+9+9=36$. El número menor o igual que $36$ con mayor suma de cifras es $29$, que nos da $z\leq 2+9=11$. Ahora bien, la divisibildad entre $9$ se mantiene al sumar las cifras, luego $x$, $y$ y $z$ han de ser todos múltiplos de $9$. Esto nos deja con las posibilidades $z=0$ y $z=9$. Como $z=0$ no es posible (sólo sería posible si $n=0$), tenemos que $z=9$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 466
Dados cuatro números reales positivos $a, b, c, d$ tales que $abcd=1$, probar que \[a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd\geq 10.\]
pistasolución 1info
Pista. Usa la desigualdad entre las medias aritmética y geométrica.
Solución. Si le aplicamos la desigualdad entre las medias aritmética y geométrica a los diez sumandos del miembro de la izquierda, tenemos que \[\tfrac{a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd}{10}\geq\sqrt[10]{a^2b^2c^2abacadbcbdcd}=\sqrt[10]{a^5b^5c^5d^5}=1,\] de donde deducimos de forma inmediata la desigualdad propuesta.

Nota. Si se alcanza la igualdad, entonces $a^2=b^2=c^2=d^2$, luego $a=b=c=d$ por ser números positivos y, como su producto es $1$, los cuatro números tienen que ser iguales a $1$. Recíprocamente, si los cuatro números son iguales a $1$, la igualdad se alcanza, luego este es la única situación en la que se alcanza.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre