Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 467
Sea $n$ un número natural con $1998$ cifras que es divisible entre $9$. Sea $x$ la suma de sus dígitos, $y$ la suma de los dígitos de $x$ y $z$ la suma de los dígitos de $z$. Hallar $z$.
pistasolución 1info
Pista. El resto módulo $9$ no se modifica en la suma. Halla cotas superiores para $x$, $y$ y $z$.
Solución. La mayor suma de cifras posible para números de 1998 cifras es que todas sean nueves, con lo cual podemos estimar $x\leq 9\cdot 1998=17982$. El número con mayor suma de cifras menor o igual que $17982$ es $9999$, lo que nos da la estimación $y\leq 9+9+9+9=36$. El número menor o igual que $36$ con mayor suma de cifras es $29$, que nos da $z\leq 2+9=11$. Ahora bien, la divisibildad entre $9$ se mantiene al sumar las cifras, luego $x$, $y$ y $z$ han de ser todos múltiplos de $9$. Esto nos deja con las posibilidades $z=0$ y $z=9$. Como $z=0$ no es posible (sólo sería posible si $n=0$), tenemos que $z=9$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 464
Demostrar que no existen enteros $a,b,c,d\in\mathbb{Z}$ tales que el polnomio $ax^3+bx ^2+cx+d$ vale $1$ para $x=19$ y vale $2$ para $x=62$.
pistasolución 1info
Pista. Si $r$ y $s$ son números enteros y $p(x)$ es un polinomio con coeficientes enteros, entonces $r-s$ divide a $p(r)-p(s)$.
Solución. Es bien conocido que si $r$ y $s$ son números enteros, entonces $r-s$ divide a $p(r)-p(s)$ (ver la nota). Esto nos dice que, si existe el polinomio propuesto, $62-19=43$ divide a $2-1=1$, lo cual es claramente imposible.

Nota. En realidad, la propiedad propuesta se deduce de que $r-s$ divide a $r^n-s^n$ para todo $n\in\mathbb{N}$, lo cual es a su vez consecuencia de la factorización \[r^n-s^n=(r-s)(r^{n-1}+r^{n-2}s+r^{n-3}s^2+\ldots+s^{n-1}).\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 457
Se llama parte entera de un número real $a$ al mayor número entero menor o igual que $a$. Si $n$ es un número natural, demostrar que la parte entera de $(4+\sqrt{11})^n$ es un número impar.
pistasolución 1info
Pista. Observa que $(4+\sqrt{11})^n+(4-\sqrt{11})^n$ es un entero par.
Solución. Consideremos el número \[a_n=(4+\sqrt{11})^n+(4-\sqrt{11})^n.\] Desarrollando por el binomio de Newton, tenemos que \[a_n=\sum_{k=0}^n\binom{n}{k}4^{n-k}11^{k/2}(1+(-1)^k),\] luego todos los términos en que $k$ es impar se anulan y el resto queda duplicado. Esto nos dice que $a_n$ es un número par para todo $n\in\mathbb{N}$. Otra forma de ver esto es comprobar que se cumple la relación $a_n=8a_{n-1}+5a_{n-2}$ y, como $a_0=2$ y $a_1=8$ son pares, se sigue que todos los $a_n$ son pares. Ahora bien, se cumple que $4-\sqrt{11}\approx 0.683375$, luego $(4-\sqrt{11})^n$ está entre $0$ y $1$ para todo $n\in\mathbb{N}$. En consecuencia, $(4+\sqrt{11})^n$ es igual al número par $a_n$ menos un número entre $0$ y $1$, luego su parte entera es impar.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 449
Hallar los valores de $n\in\mathbb{N}$ para los que $5^n+3$ es una potencia de $2$ de exponente natural.
Sin pistas
solución 1info
Solución. Es fácil encontrar las soluciones $n=1$ y $n=3$, para las que obtenemos $8=2^3$ y $128=2^7$, mientras que $n=2$ no es solución ya que $5^2+3=28$ no es potencia de $2$. Veremos que $5^n+3$ no puede ser múltiplo de $256=2^8$ para ningún valor de $n$, lo que nos dirá que $n=1$ y $n=3$ son las únicas soluciones.

Tomando restos módulo $256$, el teorema de Euler nos dice que que $5^{\varphi(n)}\equiv 1\ (\text{mod }256)$ y, elevando sucesivamente al cuadrado, tenemos que \begin{align*} 5^2&\equiv 25\ (\text{mod }256),& 5^4&\equiv 25^2\equiv 113\ (\text{mod }256),& 5^8&\equiv 113^2\equiv 225\ (\text{mod }256)\\ 5^{16}&\equiv 225^2\equiv 193\ (\text{mod }256),& 5^{32}&\equiv 193^2\equiv 129\ (\text{mod }256),& 5^{64}&\equiv 129^2\equiv 1\ (\text{mod }256). \end{align*} Esto nos dice que $64$ es el menor exponente al que hay que elevar $5$ para obtener un múltiplo de $256$.

Nota. Si se considera $n=0$ como número natural, habría que incluirlo como solución ya que en tal caso tenemos $5^0+3=2^2$, pero esto no afecta al resto del razonamiento.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 442
Un octógono tiene todos sus ángulos interiores iguales y las longitudes de sus lados son números enteros. Probar que los lados opuestos son iguales dos a dos.
pistasolución 1info
Pista. Prolonga los lados del octógono para producir rectángulos.
Solución. Llamemos $a_1,\ldots,a_8$ a las longitudes de los ocho lados del octógono, escritos de forma consecutiva. Vamos a demostrar que $a_1=a_5$ puesto que las otras igualdades $a_2=a_6$, $a_3=a_7$ y $a_4=a_8$ se demuestran de forma similar.

Para ello, vamos a tomar las rectas que contienen a los lados impares $a_1,a_3,a_5,a_7$. Como los ángulos interiores son iguales a $45º$, estas rectas son paralelas dos a dos y forman un rectángulo $R$. Además, si a $R$ le quitamos el octógono, quedarán cuatro triángulos rectángulos isósceles de hipotenusas $a_2,a_4,a_6,a_8$, por lo que sus catetos serán $\frac{a_2}{\sqrt{2}},\frac{a_4}{\sqrt{2}},\frac{a_6}{\sqrt{2}},\frac{a_8}{\sqrt{2}}$, respectivamente. Imponiendo ahora que los lados opuestos de $R$ deben tener igual longitud, nos quedan las relaciones $$\frac{a_4+a_6}{2}\sqrt{2}+a_5=\frac{a_8+a_2}{2}\sqrt{2}+a_1,\qquad \frac{a_2+a_4}{2}\sqrt{2}+a_3=\frac{a_6+a_8}{2}\sqrt{2}+a_7.$$ Si usamos finalmente que los lados tienen longitudes enteras, entonces los términos que multiplican a $\sqrt{2}$ deben ser iguales (ya que $\sqrt{2}$ es irracional, mientras que el resto de términos son racionales), lo que nos lleva a reformular las igualdades anteriores como $$\frac{a_4+a_6}{2}=\frac{a_8+a_2}{2},\qquad a_5=a_1,\qquad \frac{a_2+a_4}{2}\sqrt{2}=\frac{a_6+a_8}{2},\qquad a_3=a_7,$$ probando así la igualdad que queríamos.

Nota. ¿Es cierto el mismo resultado para un hexágono?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre