Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Inicio
—20
—5
Problema 1151
En el triángulo $ABC$ de área 100, $M$ es el punto medio del lado $AC$ y $P$ es un punto del lado $AB$ tal que el triángulo $AMP$ tiene área $36$. La paralela a $PM$ por $B$ corta al lado $AC$ en $Q$. Determinar el área del triángulo $MPQ$.
pistasolución 1info
Pista. Descompón $ABC$ en $AMP$, $BPM$ y $MBC$ y observa que $BPM$ y $MPQ$ tienen el mismo área.
Solución. El triángulo $ABC$ se puede descomponer en los triángulos $AMP$, $BPM$ y $MBC$. Sabemos que el área de $AMP$ es $36$ y la de $MBC$ es $50$ (por ser $M$ el punto medio de $AC$); como el área total es 100, deducimos que $BPM$ tiene área $100-50-36=14$. Finalmente, hay que darse cuenta de que $BPM$ y $MPQ$ tienen el mismo área ya que $BQ$ es paralela a $MP$. Por tanto, la respuesta es $14$.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1146
Los puntos $A=(a,11)$ y $B=(b,37)$ determinan, junto con el origen de coordenadas, un triángulo equilátero. Determinar el producto $ab$.
pistasolución 1info
Pista. La condición $OA=OB=AB$ te da un sistema cuadrático de dos ecuaciones con las dos incógnitas $a$ y $b$. Resuélvelo.
Solución. Usando el teorema de Pitágoras y teniendo en cuenta el origen $O=(0,0)$, las longitudes de los lados al cuadrado son \[OA^2=a^2+11^2,\qquad OB^2=b^2+37^2,\qquad AB^2=(a-b)^2+26^2.\] Por tanto, podemos resumir la condición de ser equilátero en un sistema de dos ecuaciones con las dos incógnitas $a$ y $b$: \begin{align*} OA=OB&\ \Longleftrightarrow\ a^2-b^2=1248\\ OA=AB&\ \Longleftrightarrow\ 2ab-b^2=555. \end{align*} Como cambiar ambas incógnitas de signo sigue produciendo una solución y no cambia el producto $ab$, podemos suponer que $a$ es positivo y despejar de la primera ecuación $a=\sqrt{1248+b^2}$. Sustituyendo esto en la segunda, obtenemos que \begin{align*} 2b\sqrt{1248+b^2}-b^2=555&\ \Longleftrightarrow\ 4b^2(1248+b^2)=(555+b^2)^2\\ &\ \Longleftrightarrow\ 3(b^4+3882 b^2-308025=0\\ &\ \Longleftrightarrow\ b^4+1294 b^2-102675=0. \end{align*} Esta ecuación se puede resolver como una bicuadrada, lo que nos da $b^2=75$ o bien $b^2=-1379$. Esta segunda solución hemos de descartarla ya que $b$ es un número real. Por tanto, de la ecuación original $2ab-b^2=555$, deducimos finalmente que \[ab=\tfrac{1}{2}(555+b^2)=\tfrac{1}{2}(555+75)=315.\]

Nota. No es difícil terminar el razonamiento y ver que las soluciones al problema son \[(a,b)=\left(21\sqrt{3},5\sqrt{3}\right)\qquad\text{y}\qquad (a,b)=\left(-21\sqrt{3},-5\sqrt{3}\right).\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1143
Decimos que un rectángulo de base $b$ y altura $h$ es áureo si se cumple la proporción \[\frac{b}{h}=\frac{h}{b-h}.\] Dado un rectángulo áureo, si trazamos una circunferencia que pase por todos sus vértices, ¿cuál es mayor: el área del rectángulo (representada en verde en la figura) o el área del trozo de círculo que es exterior al rectángulo (representada en rojo)?
imagen
pistasolución 1info
Pista. Calcula el área del círculo y del rectángulo en función de $b$ y $h$.
Solución. La condición de rectángulo áureo se puede reescribir como $b^2-bh-h^2=0$. Dividiendo por $h^2$, se tiene la ecuación de segundo grado $(\frac{b}{h})^2-\frac{b}{h}-1=0$ con incógnita $\frac{b}{h}$. Como el cociente de longitudes $\frac{b}{h}$ es positivo, sólo nos interesa la única solución positiva de esta ecuación, dada por \[\frac{b}{h}=\frac{1+\sqrt{5}}{2}.\qquad(\star)\] El área del rectángulo (representada en verde en la figura) es $A=bh$. Por otro lado, la circunferencia que pasa por los vértices tiene centro en el centro del rectángulo, luego su radio es la distancia entre dicho centro y uno de los vértices. El teorema de Pitágoras aplicado a un triángulo rectángulo de vértices el centro, un vértice y el punto medio de un lado nos dice que $r^2=(\frac{b}{2})^2+(\frac{h}{2})^2$. Por tanto, el área de la región roja es $A'=\pi r^2-A=\frac{\pi}{4}(b^2+h^2)-bh$. Tendremos que estudiar el signo de la diferencia $A-A'$. A la vista de la igualdad ($\star$), dividimos por $h^2$ y obtenemos \[\frac{A-A'}{h^2}=\frac{b}{h}-\frac{\pi}{4}\left(\!\left(\frac{b}{h}\right)^{\!2}\!\!+1\!\right)\!+\frac{b}{h}=\frac{1+\sqrt{5}}{2}-\frac{\pi}{4}\left(\!\left(\frac{1+\sqrt{5}}{2}\right)^{\!2}+1\!\right)\approx 0.19.\] Como este número es mayor que cero y $h^2>0$, deducimos que el área del rectángulo es mayor que la de la región restante del círculo.

Nota. Otra opción para finalizar el ejercicio es darse cuenta de que el siguiente cociente es mayor que $1$: \[\frac{A}{A'}=\frac{\frac{b}{h}}{\frac{\pi}{4}((\frac{b}{h})^2+1)-\frac{b}{h}}=\frac{\frac{1+\sqrt{5}}{2}}{\frac{\pi}{4}((\frac{1+\sqrt{5}}{2})^2+1)-\frac{1+\sqrt{5}}{2}}\approx 1.32,\] donde hemos dividido numerador y denominador por $h^2$ para poder aplicar ($\star$). Una alternativa a esto último es suponer a lo largo de todo el razonamiento que $h=1$ haciendo previamente una homotecia.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1128
Sea $ABC$ un triángulo escaleno y $P$ un punto interior tal que $\angle PBA=\angle PCA$. La recta $PB$ corta a la bisectriz interior del ángulo $A$ en el punto $Q$ y la recta $PC$ corta a la bisectriz exterior del ángulo $A$ en el punto $R$. Demostrar que $Q$, $R$ y $S$ están alineados.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1121
Calcular el área de un triángulo $ABC$, sabiendo que el ángulo $B$ es recto, que el ángulo $B$ mide $54^\circ$ y que el lado $C$ mide $4$.

Nota. No se puede expresar el resultado final en términos de funciones trigonométricas.

pistasolución 1info
Pista. Expresa el resultado en términos de razones trigonométricas de $54^\circ$ y luego calcúlalas en términos de radicales (por ejemplo, usando las relaciones entre el lado y la diagonal de un pentágono regular).
Solución. Los dos catetos del triángulo miden $4\,\mathrm{sen}(54)$ y $4\cos(54)$, luego el área será $8\,\mathrm{sen}(54)\cos(54)$ (la mitad del producto de los catetos, que actúan como base y altura en un triángulo rectángulo). Lo que sigue es un argumento conocido basado en las diagonales de un pentágono, donde aparece de forma natural el ángulo $54$, aunque existen multitud de formas de calcular sus razones trigonométricas.

En el pentágono regular de lado $1$ de la figura, los triángulos $ACD$ y $DEP$ son semejantes pues sus lados son paralelos. Si llamamos $d$ a la longitud de la diagonal del pentágono, la semejanza $\frac{AD}{CD}=\frac{DE}{PE}$ se escribe como $\frac{d}{1}=\frac{1}{d-1}$, de donde $d$ cumple la ecuación $d^2-d-1=0$, de la que nos quedamos con la única solución positiva $d=\frac{1+\sqrt{5}}{2}$, la razón áurea. Ahora bien, el triángulo $ABQ$ de la figura es rectángulo y cumple $\angle BAQ=54$, luego \begin{align*} \mathrm{sen}(54)&=BD=\frac{d}{2}=\frac{1+\sqrt{5}}{4},\\ \cos(54)&=AQ=\sqrt{1-BQ^2}=\sqrt{1-\left(\tfrac{1+\sqrt{5}}{4}\right)^2}=\frac{\sqrt{5-\sqrt{5}}}{2\sqrt{2}}. \end{align*} De esta forma, tenemos que el área del triángulo es \[8\,\mathrm{sen}(54)\cos(54)=8\frac{1+\sqrt{5}}{4}\cdot\frac{\sqrt{5-\sqrt{5}}}{2\sqrt{2}}=\sqrt{10+2\sqrt{5}}.\]imagen

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre