Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 677
Un cristalero dispone de una pieza de vidrio de forma triangular. Usando sus conocimientos de geometría, sabe que podría cortar de ella un círculo de radio $r$. Demuestra que, para cualquier número natural $n$, de la pieza triangular puede obtener $n^2$ círculos de radio $\frac{r}{n}$ (suponiendo que se puedan hacer siempre los cortes perfectos).
pistasolución 1info
Pista. Subdivide el triángulo en $n^2$ triángulos iguales entre sí y semejantes al primero. Ahora repite la operación del cristalero en cada uno de los $n^2$ triángulos (a escala).
Solución. Subdividimos cada lado en $n$ segmentos iguales y los unimos mediante paralelas a los lados, como se muestra en la figura para $n=4$. Este proceso descompone el triángulo original en $n^2$ triángulos congruentes y semejantes al original con razón de semejanza $\frac{1}{n}$. En tal caso, puede repetir el corte que ha hecho sobre el triángulo grande a escala $\frac{1}{n}$ en cada triángulo pequeño; en particular, puede trazar círculos de radio $\frac{r}{n}$ si en el triángulo grande ha podido trazar círculos de radio $r$.imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 675
Las longitudes de los lados de un triángulo están en progresión geomética de razón $r$. Hallar los valores de $r$ para los que el triángulo es, respectivamente, acutángulo, rectángulo y obtusángulo.
pistasolución 1info
Pista. Si $a$ denota al lado mayor del triángulo y $b$ y $c$ son los otros dos, el teorema de Pitágoras $a^2=b^2+c^2$ se da cuando el triángulo es rectángulo, pero las desigualdades $a^2\lt b^2+c^2$ y $a^2\gt b^2+c^2$ se dan, respectivamente, cuando el triángulo es acutángulo y obtusángulo.
Solución. Supongamos que las longitudes de los lados son $a,ar,ar^2$ para $r\geq 1$. El triángulo en cuestión debe verificar la desigualdad triangular para existir. Como lados están ordenados de mayor a menor, también lo estarán los correspondientes lados opuestos, lo que nos lleva a que la desigualdad triangular equivale a $ar^2\gt a+ar$, es decir, $r^2-r-1\gt 0$. Esta desigualdad se resuelve fácilmente y nos dice que el dominio donde se mueve la variable $r$ es $1\leq r\lt\frac{1+\sqrt{5}}{2}$.

De vuelta al problema en cuestión, se trata de ver si el ángulo $\alpha$ opuesto a $ar^2$ es agudo, recto u obtuso. Por el teorema del coseno, este ángulo verifica \[(ar^2)^2=a^2+(ar)^2-2a(ar)\cos(\alpha)\ \Leftrightarrow\ \cos(\alpha)=\frac{1+r^2-r^4}{2r}\] y buscamos saber cuándo esta última cantidad es negativa (obtusángulo), cero (rectángulo) o positiva (acutángulo). Para ello, resolvemos la ecuación bicuadrada $1+r^2-r^4=0$, que nos da soluciones \[r^2=\frac{1\pm\sqrt{5}}{2}\ \Rightarrow\ r=\pm\sqrt{\frac{1+\sqrt{5}}{2}},\] donde hemos descartado las dos soluciones (complejas) en que $r^2$ era negativo. Deducimos que el polinomio $p(r)=1+r^2-r^4$ cambia de signo en estos dos valores (son raíces simples). Como el coeficiente de mayor grado es negativo, $p(r)$ pasa de negativo a positivo y luego a negativo. Tenemos así la solución al problema:

  • acutángulo: $1\leq r\lt \sqrt{\frac{1+\sqrt{5}}{2}}$,
  • rectángulo: $r=\sqrt{\frac{1+\sqrt{5}}{2}}$,
  • obtusángulo: $\sqrt{\frac{1+\sqrt{5}}{2}}\lt r\lt \frac{1+\sqrt{5}}{2}$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 671
Dos números enteros no negativos $a$ y $b$ son cuates si $a+b$ tiene solamente ceros y unos en su expresión decimal. Sean $A$ y $B$ dos conjuntos infinitos de enteros no negativos tales que $B$ es el conjunto de todos los números que son cuates de todos los elementos de $A$ y $A$ es el conjunto de todos los números que son cuates de todos los elementos de $B$. Demostrar que en uno de los dos conjuntos, $A$ o $B$, hay infinitos pares de números $x$ e $y$ tales que $x-y=1$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 670
Sean $P$ y $Q$ dos puntos distintos en el plano. Denotaremos por $m(PQ)$ la mediatriz del segmento $PQ$. Sea $S$ un subconjunto finito del plano, con más de un elemento, que satisface las siguientes propiedades:
  • Si $P$ y $Q$ están en $S$, entonces $m(PQ)$ corta a $S$.
  • Si $P_1Q_1$, $P_2Q_2$ y $P_3Q_3$ son tres segmentos diferentes cuyos extremos son puntos de $S$, entonces no existe ningún punto de $S$ en la intersección de $m(P_1Q_1)$, $m(P_2Q_2)$ y $m(P_3Q_3)$.
Determinar el número de puntos que puede tener $S$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 668
Demostrar que, para cualquier polígono convexo de área $1$, existe un paralelogramo de área $2$ que lo contiene.
pistasolución 1info
Pista. Toma el menor paralelogramo que contiene al polígono y con uno de sus lados paralelo al segmento que une los dos vértices más distantes.
Solución. Sean $A$ y $B$ los dos vértices más alejados entre sí del polígono y consideramos los dos vértices $C$ y $D$ más alejados de la recta $AB$ en sendos semiespacios definidos por $AB$. Trazamos por $A$ y $B$ perpendiculares $r_A$ y $r_B$ a $AB$ y por $C$ y $D$ paralelas $r_C$ y $r_D$ a $AB$. Estas cuatro rectas $r_A,r_B,r_C,r_D$ determinan un rectángulo $R$. Vamos a ver que $R$ (que es, en particular, paralelogramo) contiene al polígono y que tiene área menor o igual que $2$.
  • En primer lugar, tenemos que ningún vértice se puede salir de la banda determinada por $r_A$ y $r_B$ ya que en tal caso dicho vértice tendría distancia con $A$ o con $B$ mayor que $AB$ (¿por qué?), contradiciendo que $AB$ es el segmento entre vértices de longitud máxima. Por otro lado, ningún vértice se puede salir de la banda determinada por $r_C$ y $r_D$ ya que en tal caso dicho vértice distaría de $AB$ más que $C$ o $D$, contradiciendo que estos son los puntos más alejados. Por tanto, todos los vértices del polígono están en $R$ y, por convexidad, todo el polígono debe estar en $R$.
  • Finalmente, veamos que $\text{área}(R)\leq 2$. Para ello, observamos que los triángulos $ACB$ y $ADB$ están contenidos en el polígono (de nuevo, por convexidad), de donde \[1=\text{área}(\text{polígono})\geq\text{área}(ACB)+\text{área}(ADB)=\tfrac{1}{2}\text{área}(R).\]

Esto termina la demostración. Es importante observar que uno de los dos puntos $C$ o $D$ podría no estar definido porque no haya vértices a un lado de la recta $AB$. En tal caso, se razona de forma similar usando que $r_C=AB$ o $r_D=AB$.

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre