Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 593
Dado un triángulo $ABC$ con baricentro G.
  1. Demostrar que, para cualquier punto $M$ del plano, se verifica que $$MA^2+MB^2+MC^2\geq GA^2+GB^2+GC^2,$$ obteniéndose la igualdad si y solamente si $M = G$.
  2. Fijado un número $k\gt GA^2+GB^2+GC^2$, hallar el lugar geométrico de los puntos $M$ del plano que cumplen $$MA^2+MB^2+MC^2=k.$$
pistasolución 1info
Pista. Usa coordenadas escribiendo $M$ como un punto arbitrario $(x,y)$ y ahora expresa la cantidad $MA^2+MB^2+MC^2$ en función de $x$ e $y$.
Solución. Vamos a escribir el problema con geometría analítica, de forma que los vértices tienen coordenadas $A=(x_A,y_A)$, $B=(x_B,y_B)$ y $C=(x_C,y_C)$ y consideramos el punto variable $M=(x,y)$. Tenemos entonces que el baricentro tiene coordenadas $G=(\frac{x_A+x_B+x_C}{3}, \tfrac{y_A+y_B+y_C}{3})$, luego podemos calcular \begin{align*}MA^2+MB^2+MC^2&=(x-x_A)^2+(y-y_A)^2+(x-x_B)^2+(y-y_B)^2+(x-x_C)^2+(y-y_C)^2\\ &=3x^2+3y^2-6x_Gx-6y_Gy+x_A^2+x_B^2+x_C^2+y_A^2+y_B^2+y_C^2\\ &=3\left((x-x_G)^2+\left(y-y_G\right)^2\right)+x_A^2+x_B^2+x_C^2+y_A^2+y_B^2+y_C^2-3x_G^2-3y_G^2 \end{align*} Sustituyendo $x=x_G$ e $y=y_G$ en la igualdad anterior, obtenemos directamente que \[GA^2+GB^2+GC^2=x_A^2+x_B^2+x_C^2+y_A^2+y_B^2+y_C^2-3x_G^2-3y_G^2,\] por lo que se tiene que \[MA^2+MB^2+MC^2=3MG^2+GA^2+GB^2+GC^2.\] De aquí se deduce que la desigualdad en el apartado (a) y que la igualdad se alcanza si y sólo si $MG=0$, es decir, cuando $M=G$. Más aún, si $MA^2+MB^2+MC^2=k\gt GA^2+GB^2+GC^2$, entonces la igualdad anterior nos dice que $MG$ es una constante positiva. Deducimos así que los puntos que cumplen (b) son los de una circunferencia centrada en $G$ de radio $\frac{1}{\sqrt{3}}\sqrt{k-GA^2-GB^2-GC^2}$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 590
Sean $ABC$ y $XYZ$ dos triángulos cuyos lados no son paralelos. En ambos triángulos los vértices $A, B, C$ y $X, Y, Z$ están etiquetados en el orden de las agujas del reloj. Si se cumple que $$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX}\quad \text{y} \quad AX = BY = CZ,$$ demostrar que $ABC$ y $XYZ$ tienen el mismo circuncentro.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 585
Sea $ABCD$ un cuadrilátero convexo tal que $AB\gt BC$, $CD = DA$ y $\angle ABD =\angle DBC$. Sea $E$ un punto de la recta $AB$ tal que $\angle DEB = 90^\circ$. Probar que $2AE = AB − BC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 582
En un triángulo $ABC$ con lado mayor $BC$, las bisectrices se cortan en $I$. Las rectas $AI$, $BI$ y $CI$ cortan a $BC$, $CA$, $AB$ en los puntos $D$, $E$ y $F$, respectivamente. Se consideran puntos $G$ y $H$ en los segmentos $BD$ y $CD$, respectivamente, tales que $\angle GID = \angle ABC$ y $\angle HID =\angle ACB$. Probar que $\angle BHE = \angle CGF$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 578
Sea $ABC$ un triángulo acutángulo y $D$ el punto de $AB$ que es el pie de la altura desde $C$. Sea $P$ un punto arbitrario en el lado $BC$. Las rectas $AP$ y $CD$ se cortan en el punto $E$, y las rectas $BE$ y $AC$ se cortan en el punto $Q$. Probar que $CD$ es la bisectriz del ángulo $\angle PDQ$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre