Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
+20
Problema 89
Demostrar que si un triángulo tiene dos alturas iguales, entonces es isósceles.
pistasolución 1info
Pista. Haz intervenir el área del triángulo de alguna forma.
Solución. Podemos utilizar la fórmula que nos dice que el área del triángulo está dada por $S=\frac{1}{2}ah_a=\frac{1}{2}bh_b$, donde $h_a$ y $h_b$ son las alturas correspondientes a los lados $a$ y $b$, respectivamente. A la vista de esto, si $h_a=h_b$, entonces es evidente que $a=b$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 83
Probar que no existe ningún triángulo equilátero en el plano cuyos vértices sean puntos de coordenadas enteras. ¿Ocurre lo mismo si trabajamos en el espacio tridimensional?
pistasolución 1info
Pista. Utilizar números complejos para el problema en el plano.
Solución. Trabajando con números complejos, supongamos que \(a=a_1+ia_2\) y \(b=b_1+ib_2\) son puntos de coordenadas enteras con \(a\neq b\). Hay exactamente dos puntos del plano que forman con \(a\) y \(b\) un triángulo equilátero y estos puntos, que llamaremos \(c=c_1+ic_2\) y \(d=d_1+id_2\), se pueden construir girando \(b\) con centro en \(a\) un ángulo de \(\frac{\pi}{3}\) y \(\frac{-\pi}{3}\) respectivamente, es decir, \begin{eqnarray*} c&=&a+1_{\frac{\pi}{3}}\cdot(b-a)\ =\ a_1+ia_2+\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)(b_1-a_1+i(b_2-a_2))\\ &=&\left(\frac{1}{2}(b_1+a_1)+\frac{\sqrt 3}{2}(b_2-a_2)\right)+i\left(\frac{\sqrt 3}{2}(b_1-a_1)+\frac{1}{2}(a_1+a_2)\right)\\ d&=&a+1_{\frac{-\pi}{3}}\cdot(b-a)\ =\ a_1+ia_2+\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)(b_1-a_1+i(b_2-a_2))\\ &=&\left(\frac{1}{2}(b_1+a_1)-\frac{\sqrt 3}{2}(b_2-a_2)\right)+i\left(-\frac{\sqrt 3}{2}(b_1-a_1)+\frac{1}{2}(a_1+a_2)\right) \end{eqnarray*} Así, si \(c\) ó \(d\) tienen coordenadas enteras, los términos que van multiplicados por \(\frac{\sqrt 3}{2}\) tienen que anularse, es decir, \(b_1-a_1=0\) y \(b_2-a_2=0\), en cuyo caso \(a=b\), que es una contradicción. Por tanto, no hay triángulos equiláteros en el plano con coordenadas enteras.

En el espacio sí existen triángulos equiláteros de coordenadas enteras: por ejemplo, el que tiene por vértices \((1,0,0)\), \((0,1,0)\) y \((0,0,1)\), como puede comprobarse fácilmente.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 82
Sea \(ABCD\) un paralelogramo y supongamos que \(AC\) es su diagonal mayor. Desde \(C\) se trazan perpendiculares a las rectas \(AB\) y \(AD\), con pies en \(E\) y \(F\) respectivamente. Demostrar que: \[AB\cdot AE+AD\cdot AF=AC^2.\]
pistasolución 1info
Pista. Utilizar el teorema de Pitágoras a triángulos rectángulos y buscar otros triángulos semejantes.
Solución. Aplicando el teorema de Pitágoras a los triángulos rectángulos \(ACE\) y \(BCE\) y usando que \(BC=AD\), obtenemos que \begin{eqnarray*} AC^2&=&AE^2+EC^2=AE^2+BC^2-BE^2\\ &=&(AE+BE)(AE-BE)+AD^2=AB\cdot AE+AB\cdot BE+AD^2 \end{eqnarray*} Ahora bien, como los triángulos \(BCE\) y \(CDF\) son semejantes (es fácil ver que tienen dos ángulos iguales), tenemos que \(BE/BC=DF/CD\) y, teniendo en cuenta que \(CD=AB\), deducimos que \(BE\cdot AB=AD\cdot DF\). Sustituyendo esto último en la igualdad antes obtenida para \(AC^2\), la fórmula del enunciado queda probada.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 81
Demostrar que, al trazar las medianas de un triángulo cualquiera, éste queda dividido en seis triangulos que tienen la misma área.
pistasolución 1info
Pista. Observa que el área de un triángulo es la mitad del producto de un lado por la altura correspondiente y en este esquema hay varios triángulos con las mismas base y altura.
Solución. Llamemos \(M\), \(N\) y \(P\) a los puntos medios de los lados \(AB\), \(BC\) y \(AC\), respectivamente, y denotemos por \(G\) al baricentro del triángulo. Lo que se nos pide es demostrar que los triángulos \(AGM\), \(BGM\), \(BGN\), \(CGN\), \(CGP\) y \(AGP\) tienen la misma superficie. En primer lugar, \(AGM\) y \(BGM\) tiene la misma área por tener la misma base \(AM=MB\) y la misma altura (comparten el otro vértice) luego llamemos a este área \(A_1\). De la misma forma \(BGN\) y \(CGN\) tienen igual área \(A_2\) y \(CGP\) y \(AGP\) tienen igual área \(A_3\). Finalmente, observemos que \(ACM\) y \(BCM\) tiene igual área por tener la misma base y la misma altura sobre ella, de donde \(A_1+2A_2=A_1+2A_3\) y, por tanto, \(A_2=A_3\). Razonando de la misma forma con los otros lados, llegamos a que \(A_1=A_2=A_3\), como queríamos probar.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 80
Determinar qué condición han de cumplir las longitudes de los lados de un triángulo para que la recta que une el baricentro y el incentro sea paralela a uno de los lados, suponiendo que el triángulo no es equilátero (pues en este caso coinciden incentro y baricentro y dicha recta no está bien definida).
pistasolución 1info
Pista. Observar que, para que sea paralela a un lado, las distancias del incentro y el baricentro a ese lado han de ser iguales.
Solución. Sea $ABC$ un triángulo y denotemos por $a,b,c$ a sus lados. La recta que une el baricentro $G$ y el incentro $I$ del triángulo es paralela al lado $a$ cuando la distancia de $G$ y la distancia de $I$ al lado $a$ coincidan. La distancia de $I$ a al lado $a$ es $r$, el radio de la circunferencia inscrita, mientras que la distancia de $G$ al lado $a$ es $\frac{1}{3}h_a$, donde $h_a$ es la altura que parte del vértice $A$. Observemos ahora que $r=\frac{2S}{a+b+c}$ y $h_a=\frac{2S}{a}$, donde $S$ es el área del triángulo. Por tanto, la recta $IG$ es paralela al lado $a$ cuando \[\frac{2S}{a+b+c}=\frac{2S}{3a}\Leftrightarrow\frac{a+b+c}{2S}=\frac{3a}{2S}\Leftrightarrow a=\frac{b+c}{2}.\] Deducimos que la condición se cumple cuando uno de los lados es la media aritmética de los otros dos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre