Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 822
Las diagonales $AC$ y $BD$ de un cuadrilátero convexo $ABCD$ se cortan en $E$. Denotamos por $S_1$, $S_2$ y $S$ a las áreas de los triángulos $ABE$, $CDE$ y del cuadrilátero $ABCD$, respectivamente. Prueba que \[\sqrt{S_1}+\sqrt{S_2}\leq\sqrt{S}.\] ¿Cuándo se alcanza la igualdad?
pistasolución 1info
Pista. El área de un triángulo es el la mitad del producto de dos de sus lados por el seno del ángulo que forman.
Solución. Por simplicidad, llamamos $a=AE$, $b=BE$, $c=CE$ y $d=DE$. También llamamos $\alpha=\angle AEB=\angle CED$, con lo que $\angle BEC=\angle DEA=180-\alpha$. Usando que el área de un triángulo es el la mitad del producto de dos de sus lados por el seno del ángulo que forman y que $\mathrm{sen}(180-\alpha)=\mathrm{sen}(\alpha)$, la desigualdad del enunciado se reescribe como \[\sqrt{ab}+\sqrt{cd}\leq\sqrt{ab+bc+cd+da}.\] Elevando al cuadrado esto a su vez equivale (porque todos son positivos) a \[2\sqrt{abcd}\leq ac+bd,\] que no es más que la desigualdad entre las medias aritmética y geométrica aplicada a los números $ac$ y $bd$. Se da la igualdad si y solo si $ac=bd$. Esto equivale a que los triángulos $ABE$ y $CDE$ sean semejantes (tienen además un ángulo común $\alpha$ opuesto por el vértice), lo que nos dice que la igualdad se alcanza si y solo si $AB$ es paralela a $CD$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 821
Sea $ABC$ un triángulo isósceles con $AB=AC$. Sea $P$ un punto cualquiera de la circunferencia tangente a los lados $AB$ en $B$ y a $AC$ en $C$. Llamamos $a$, $b$ y $c$ a las distancias desde $P$ a los lados $BC$, $AC$ y $AB$, respectivamente. Probar que $a^2=bc$.
pistasolución 1info
Pista. Si $X,Y,Z$ son los pies de las perpendiculares desde $P$ a los lados $BC,AC,AB$, respectivamente, demuestra que $XPZ$ y $XPY$ son semejantes (¡caza de ángulos!).
Solución. Sean $X,Y,Z$ los pies de las perpendiculares desde $P$ a los lados $BC,AC,AB$, respectivamente. Vamos a demostrar que $XPY$ es semejante a $ZPX$, probando que dos de sus ángulos son iguales. Esta semejanza nos dirá que $\frac{ZP}{PX}=\frac{PX}{PY}$, que equivale a $a^2=bc$. Vamos a distinguir dos casos, suponiendo previamente que $P\neq B$ y $P\neq C$ (en tal caso la igualdad $a^2=bc$ es cierta ya que queda $0=0$).

El primer caso es que $P$ sea interior al triángulo $ABC$. Los cuadriláteros $ZPBX$ e $YPXC$ son cíclicos ya que tienen dos ángulos rectos opuestos. La propiedad del arco capaz nos dice que $\angle XPY=180-\angle ACB$ y $\angle ZPX=180-\angle ABC$; como se tiene que $\angle ACB=\angle ABC$ por ser $ABC$ isósceles, se deduce que $\angle XPY=\angle ZPX$ y ya tenemos un ángulo igual. Para el segundo ángulo, calculamos de nuevo por arco capaz \begin{align*} \angle PXY-\angle ZPX&=\angle PCY-\angle PBX=\angle ACB-\angle PCX-\angle PBX\\ &=\angle ACB-180+\angle BPC. \end{align*} En el último paso hemos usado que los ángulos del triángulo $BPC$ suman $180$. Ahora bien, $\angle BOC=360-2\angle BPC$ por la propiedad del arco central, donde $O$ es el centro de la circunferencia tangente a los lados. Como en el cuadrilátero $ABCO$ los ángulos suman $360$ y dos de ellos son rectos, llegamos a que $\angle BOC=180-\angle BAC$ y, por tanto, $\angle BPC=90+\frac{1}{2}\angle BAC=180-\angle ACB$ (ya que $ABC$ es isósceles). Volviendo al cálculo anterior, tenemos que $\angle PXY-\angle ZPX=0$, lo que concluye la demostración de que $XPY$ es semejante a $ZPX$.

El segundo caso es que $P$ sea exterior al triángulo $ABC$, es decir, $P$ está en el arco mayor $BC$ de la circunferencia. La demostración se adapta pero los cálculos son ligeramente distintos. La igualdad $\angle XPY=\angle ZPX$ es cierta pero en este caso porque los dos ángulos son iguales a $180-\angle ABC$. Para la otra igualdad de ángulo, calculamos \begin{align*} \angle PXY-\angle ZPX&=\angle PCY-\angle PBX=180-\angle ACB-\angle PCX-\angle PBX\\ &=\angle ACB+\angle BPC=\angle ACB+\tfrac{1}{2}\angle BOC=\angle ACB+\tfrac{1}{2}(180-\angle BAC)=0. \end{align*}

imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 819
En un triángulo de lados $a,b,c$ el lado $a$ es la media aritmética de $b$ y $c$. Probar las siguientes afirmaciones:
  1. $0^\circ\leq A \leq 60^\circ$.
  2. La altura relativa al lado $a$ es tres veces el inradio $r$.
  3. La distancia del circuncentro al lado $a$ es $R-r$, siendo $R$ el circunradio.
pistasolución 1info
Pista. (a) Usa el teorema del coseno. (b) Usa que el área del triángulo es $\frac{1}{2}(a+b+c)r$. (c) Expresa $R-r$ y $OM$ en función de los lados del triángulo.
Solución. Para resolver el primer apartado, usaremos el teorema del coseno, del que podemos despejar el coseno del ángulo $A$ como \begin{align*} \cos(A)&=\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-\left(\frac{b+c}{2}\right)^2}{2bc}\\ &=\frac{3b^2+3c^2-2bc}{8bc}=\frac{3}{8}\left(\frac{b}{c}+\frac{c}{b}\right)-\frac{1}{4}\geq\frac{3}{8}\cdot 2-\frac{1}{4}=\frac{1}{2}, \end{align*} donde se ha usado que la suma de un número positivo y su inverso es siempre mayor o igual que $2$. Como $A$ es un ángulo entre $0^\circ$ y $180^\circ$, de la desigualdad anterior deducimos que $0\leq A\leq 60^\circ$.

En cuanto al apartado (b), calculamos el área del triángulo de dos formas distintas. Por un lado, $S=\frac{1}{2}(a+b+c)r$ y por otro $S=\frac{1}{2} ah_a$, siendo $h_a$ la altura relativa al vértice $A$. Sustituyendo $a=\frac{b+c}{2}$ en ambas expresiones e igualándolas, se llega directamente a que $h_a=3r$.

Finalmente, para el apartado (c) usaremos la fórmula $abc=4RS$ y la fórmula de Herón, de forma que \begin{align*} R-r&=\frac{abc}{4S}-\frac{2S}{a+b+c}=\frac{abc(a+b+c)-8S^2}{4(a+b+c)S}\\ &=\frac{abc(a+b+c)-\frac{1}{2}(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4(a+b+c)S}\\ &=\frac{2abc-(-a+b+c)(a-b+c)(a+b-c)}{8S}=\frac{(b+c)bc-\frac{b+c}{2}(\frac{-b+3c}{2})(\frac{3b-c}{2})}{8S}\\ &=\frac{(b+c)(3b^2-2bc+3c^2)}{64S}=\frac{abc\cos(A)}{4S}=R\cos(A). \end{align*} Si $O$ es el circuncentro y $M$ el punto medio de $BC$, entonces el triángulo $BOM$ es rectángulo y tiene $\angle COM=A$ ya que este es la mitad del ángulo central. Por tanto, en este triángulo rectángulo se cumple que $\cos(A)=\frac{OM}{OB}$, es decir, $OM=OB\cos(A)=R\cos(A)$ y hemos terminado.

Nota. Probablemente, la demostración del apartado (c) no sea la más elegante, pero es sistemática en el sentido de que expresamos $R-r$ en función únicamente de los lados $a,b,c$. Luego se puede expresar también $OM$ en términos de estos lados y usando la condición $a=\frac{b+c}{2}$ se tiene que conseguir probar el enunciado. En la solución propuesta, se ha introducido además el área y el coseno de $A$ como atajo para evitar más cálculos.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 817
Diremos que un triángulo es multiplicativo si el producto de las longitudes de dos de sus lados es igual a la longitud del tercer lado. Sean $A,B,C$ tres vértices consecutivos de un polígono regular de $n$ lados con todos sus lados de longitud $1$. Las $n-3$ diagonales que salen del vértice $B$ dividen al triángulo $ABC$ en $n-2$ triángulos más pequeños. Probar que cada uno de esos triángulos es multiplicativo.
imagen
pistasolución 1info
Pista. Fíjate en que los ángulos en el vértice $B$ de todos los triángulos son iguales, con lo que tienes un montón de bisectrices en la figura.
Solución. Llamamos $a_1,a_2,\ldots,a_{n-1}$ a los lados de los $n-2$ triángulos que parten de $B$ y llamamos $d_1,d_2,\ldots,d_{n-2}$ a los lados opuestos al vértice $B$, como se muestra en la figura. El ángulo en el vértice $B$ tiene el mismo valor para los $n-2$ triángulos ya que es el arco capaz que subtiende a un lado del polígono desde la circunferencia circunscrita al triángulo. Vamos a probar por inducción sobre $k$ que se cumple que $a_k\,a_{k+1}=d_k$ para todo $k$ desde $1$ hasta $n-2$, lo que demostrará que los triángulos son multiplicativos y habremos terminado.

Para $k=1$, está claro que $a_1=1$ (es un lado del polígono) y $a_2=d_2$ por simetría de este primer triángulo respecto de la mediatriz del lado $BC$. Supongamos entonces cierto que $a_{k-1}a_k=d_{k-1}$ para cierto $k$ y probemos que $a_ka_{k+1}=d_k$. Para ello, consideramos el triángulo que se obtiene al unir los triángulos $(k-1)$-ésimo y $k$-ésimo, que tiene por lados $a_{k-1}$, $a_{k+1}$ y $d_{k-1}+d_k$, de forma que $a_k$ es la longitud de una de sus bisectrices interiores. El teorema de la bisectriz (ver la nota) nos da entonces el resultado deseado: \[\frac{a_{k+1}}{d_k}=\frac{a_{k-1}}{a_{k-1}a_k}=\frac{1}{a_k}\ \Leftrightarrow\ a_ka_{k+1}=d_k.\]imagen

Nota. El teorema de la bisectriz nos dice que la bisectriz interior de un triángulo desde un vértice divide al lado opuesto en dos segmentos proporcionales a los lados correspondientes.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 815
Demostrar que, en un triángulo $ABC$, la circunferencia inscrita divide a la mediana desde $B$ en tres partes iguales si, y solo si, \[\frac{a}{5}=\frac{b}{10}=\frac{c}{13}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre