Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 1005
Encontrar la solución entera más pequeña de la ecuación \[\left\lfloor\frac{x}{8}\right\rfloor+\left\lfloor\frac{x}{40}\right\rfloor+\left\lfloor\frac{x}{240}\right\rfloor=210.\]

Nota. $\lfloor x\rfloor$ denota la parte entera de un número real $x$.

pistasolución 1info
Pista. Escribe $x=240m+40n+8k+r$ con $m,n,k,r$ enteros adecuados dividiendo sucesivamente $x$ entre $240$, el resto entre $40$ y el resto entre $8$.
Solución. Si dividimos $x$ entre $240$, podemos escribir $x=240m+y$ con resto $0\leq y\lt 240$. Dividiendo $y$ entre $40$, podemos escribir $y=40n+z$ con resto $0\leq z\lt 40$. Dividiendo $z$ entre $8$ podemos escribir $z=8k+r$ con resto $0\leq r\lt 8$. Esto nos dice que $x=240m+40n+8k+r$ para ciertos enteros no negativos tales que $y=40n+8k+r\lt 240$, $z=8k+r\lt 40$ y $r\lt 8$, por lo que podemos calcular \begin{align*} \left\lfloor\frac{x}{8}\right\rfloor+\left\lfloor\frac{x}{40}\right\rfloor+\left\lfloor\frac{x}{240}\right\rfloor &=\left\lfloor\tfrac{240m+40n+8k+r} {8}\right\rfloor+\left\lfloor\tfrac{240m+40n+8k+r}{40}\right\rfloor+\left\lfloor\tfrac{240m+40n+8k+r}{240}\right\rfloor\\ &=\left\lfloor 30m+5n+k+\tfrac{r} {8}\right\rfloor+\left\lfloor 6m+n+\tfrac{z}{40}\right\rfloor+\left\lfloor m+\tfrac{y}{240}\right\rfloor\\ &=30m+5n+k+6m+n+m=37m+6n+k. \end{align*} Tenemos entonces que encontrar la solución de $37m+6n+k=210$ que minimiza $x=240m+40n+8k+r$. Esto nos lleva a elegir directamente $r=0$ ya que $r$ no interviene en la ecuación. Observemos que tenemos la restricción $0\leq n\leq 5$ y $0\leq k\leq 4$, luego $0\leq 6n+k\leq 34$. Así, dividiendo $210$ entre $37$, tenemos $210=5\cdot 37+25$ y deducimos que ha de ser $m=5$, lo que nos deja con $6n+k=25$. La única posible solución positiva con $0\leq k\leq 4$ es $n=4$ y $k=1$. Por tanto, el menor valor posible de $x$ es $240\cdot 5+40\cdot 4+8\cdot 1+0=1368$.

Nota. Esta demostración nos dice que el único grado de libertad que tenemos es $r$ entre $0$ y $7$, luego los únicos $x$ que cumplen esta ecuación son 1368, 1369, 1370, 1371, 1372, 1373, 1374 y 1375.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1002
Para pertenecer a un club cada nuevo socio debe pagar como cuota de inscripción a cada miembro del club la misma cantidad que él tuvo que pagar en total cuando ingresó más un euro. Si el primer socio pagó un euro, ¿cuánto deberá pagar en total el $n$-ésimo socio?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 997
Hemos empezado la Olimpiada Matemática puntualmente a las 9:00, como he comprobado en mi reloj, que funcionaba en ese momento correctamente. Cuando he terminado, a las 13:00, he vuelto a mirar el reloj y he visto que las manecillas se habían desprendido de su eje pero manteniendo la posición en la que estaban cuando el reloj funcionaba. Curiosamente las manecillas de las horas y de los minutos aparecían superpuestas exactamente, una sobre otra, formando un ángulo (no nulo) menor que $120^\circ$ con el segundero. ¿A qué hora se me averió el reloj?

Nota. Dar la respuesta en horas, minutos y segundos con un error máximo de un segundo; se supone que, mientras funcionaba el reloj, las manecillas avanzaban de forma continua.

pistasolución 1info
Pista. Calcula los tres instantes exactos en que las manecillas de las horas y los minutos están perfectamente superpuestas.
Solución. Simplemente imaginándonos unas manecillas de reloj nos damos cuenta de que estas están superpuestas tres veces en el intervalo de las 9:00 a las 13:00: la primera vez sobre las 9:50, la segunda sobre las 10:55 y la tercera exactamente a las 12:00. Esta última no puede ser la solución ya que a las 12:00 el segundero también está alineado con las otras manecillas.

Una forma muy ingeniosa de calcular los otros instantes de forma exacta es darse cuenta de que entre las 00:00 y las 12:00, las manecillas de las horas y los minutos se alinean exactamente 12 veces (contando las 00:00 y las 12:00) luego esto ocurre cada $\frac{12}{11}$ de hora. Podemos proceder como sigue:

  • La vez anterior a las 12 en que ocurre el alineamiento horas-minutos es a las $12-\frac{12}{11}=10+\frac{10}{11}$ horas. La fracción $\frac{10}{11}$ nos da $60\cdot\frac{10}{11}=\frac{600}{11}=54+\frac{6}{11}$ minutos y los $\frac{6}{11}$ minutos nos dan $60\cdot\frac{6}{11}=\frac{360}{11}=32+\frac{8}{11}$ segundos. El ángulo que forma el segundero con el minutero es de $6\cdot[(54+\frac{6}{11})-(32+\frac{8}{11})]=\frac{1440}{11}=130+\frac{10}{11}$ grados, que es mayor que $120^\circ$. Esta solución tenemos que descartarla pues.
  • La siguiente vez (hacia atrás) que ocurre el alineamiento es a las $12-\frac{24}{11}=9+\frac{9}{11}$ horas. La fracción $\frac{9}{11}$ nos da $60\cdot\frac{9}{11}=\frac{540}{11}=49+\frac{1}{11}$ minutos y los $\frac{1}{11}$ minutos nos dan $60\cdot\frac{1}{11}=\frac{60}{11}=5+\frac{5}{11}$ segundos. El ángulo que forma el segundero con el minutero es claramente menor que $120^\circ$ ya que las manecillas de las horas y minutos están aproximadamente en el 49 y las de los segundos en el 5 (puede calcularse el ángulo exacto como en el caso anterior).
Deducimos entonces que la hora exacta a la que se estropeó el reloj fue a las 9:49:05, con un error de $\frac{5}{11}\lt 1$ segundos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 996
Con baldosas cuadradas de lado un número exacto de unidades se ha podido embaldosar una habitación de superficie $18144$ unidades cuadradas de la siguiente manera: el primer día se puso una baldosa, el segundo dos baldosas, el tercero tres, etc. ¿Cuántas baldosas fueron necesarias?
pistasolución 1info
Pista. El problema equivale a la ecuación $(1+2+\ldots+k)n^2=18144=2^5\cdot 3^4\cdot 7$.
Solución. Supongamos que las baldosas cuadradas tienen dimensiones $n\times n$. El primer día se cubren $n^2$ unidades cuadradas, el segundo $2n^2$, el tercero $3n^2$, y así sucesivamente hasta el $k$-ésimo día en que se cubren $kn^2$. De esta forma, el problema equivale a la ecuación \[(1+2+\ldots+k)n^2=18144=2^5\cdot 3^4\cdot 7.\] Como $1+2+\ldots+k=\frac{1}{2}k(k+1)$, esto equivale a \[k(k+1)n^2=2^6\cdot 3^4\cdot 7.\] Vistos los exponentes y que $k$ o $k+1$ son pares, sólo hay unas pocas posibilidades para el factor $n^2$:
  • Si $n^2=1$, la ecuación queda $k^2+k=36288$.
  • Si $n^2=2^2$, la ecuación queda $k^2+k=9072$.
  • Si $n^2=2^4$, la ecuación queda $k^2+k=2268$.
  • Si $n^2=3^2$, la ecuación queda $k^2+k=4032$.
  • Si $n^2=2^2\cdot 3^2$, la ecuación queda $k^2+k=1008$.
  • Si $n^2=2^4\cdot 3^2$, la ecuación queda $k^2+k=112$.
  • Si $n^2=3^4$, la ecuación queda $k^2+k=448$.
  • Si $n^2=2^2\cdot 3^4$, la ecuación queda $k^2+k=112$.
  • Si $n^2=2^4\cdot 3^4$, la ecuación queda $k^2+k=28$.
De todas estas ecuaciones, la única que tiene solución entera es para $n^2=3^2=9$, en la que tenemos que $k=63$ es la única solución positiva. Por tanto, fueron necesarias $\frac{1}{2}k(k+1)=2016$ de tamaño $3\times 3$.

Nota. ¿Se te ocurre alguna forma de descartar alguno de los nueve casos sin tener que resolver la ecuación de segundo grado?

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 992
Sean $\alpha$ y $\beta$ raíces del polinomio $x^2-qx+1$, donde $q$ es un número racional mayor que $2$. Se define $s_1=\alpha+\beta$, $t_1=1$ y, para cada entero $n\geq 2$, \[s_n=\alpha^n+\beta^n,\qquad t_n=s_{n-1}+2s_{n-2}+\ldots+(n-1)s_1+n.\] Demuestre que, para todo $n$ impar, $t_n$ es el cuadrado de un número racional.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre