Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

Selector
La base de datos contiene 1154 problemas y 775 soluciones.
OME Local
OME Nacional
OIM
OME Andalucía
Retos UJA
Problema 829
Halla las soluciones reales de la ecuación \[x\left(\frac{6-x}{x+1}\right)\left(\frac{6-x}{x+1}+x\right)=8.\]
pistasolución 1info
Pista. Sustituye $y=\frac{6-x}{x+1}$ y crea así un sistema de ecuaciones que, en realidad, sólo depende de $x+y$ y $xy$.
Solución. Si llamamos $y=\frac{6-x}{x+1}$, podemos despejar \[y=\frac{6-x}{x+1}\ \Longleftrightarrow \ xy=6-(x+y).\] Además, la ecuación inicial se escribe como $xy(x+y)=8$, por lo que si llamamos $s$ y $p$ a la suma y producto de las dos incógnitas, tenemos que $p=6-s$ y $sp=8$. Sustituyendo la primera en la segunda ecuación llegamos a que $s(6-s)=8$ o equivalentemente $s^2-6s+8=0$, que tiene soluciones $s=2$ y $s=4$. Distinguimos los dos casos:
  • Si $s=2$, entonces $p=6-s=4$. Tenemos así que $x+y=2$ y $xy=4$, luego $x$ e $y$ son las soluciones de la ecuación $t^2-2t+4=0$. Esta ecuación no tiene raíces reales.
  • Si $s=4$, entonces $p=6-s=2$, luego $x+y=4$ y $xy=2$. Por tanto, $x$ e $y$ son las soluciones de la ecuación $t^2-4t+2=0$. Esto nos da dos posibles valores de $x$, que son $x=2\pm\sqrt{2}$ y se comprueba fácilmente que cumplen la ecuación inicial.

Hemos demostrado que las únicas soluciones son $x=2+\sqrt{2}$ y $x=2-\sqrt{2}$.

Nota. Si procedemos directamente simplificando la ecuación inicial, llegamos a la ecuación $x^4-4 x^3-26 x^2+20 x-8=0$. Esta se puede factorizar sobre los enteros como producto de dos polinomios de segundo grado $(x^2-4 x+2)(x^2-2 x+4)=0$, de donde también se deduce la solución.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 813
Tenemos un conjunto de $221$ números reales cuya suma es $110721$. Los disponemos formando una tabla rectangular de modo que todas las filas y la primera y última columnas son progresiones aritméticas de más de un elemento. Probar que la suma de los elementos de las cuatro esquinas vale $2004$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 808
Determinar la función $f:\mathbb{N}\to\mathbb{N}$ (siendo $\mathbb{N}=\{1,2,3,\ldots\}$ el conjunto de los números naturales) que cumple, para cualesquiera $s,n\in\mathbb{N}$, las siguientes condiciones:
  • $f(1)=f(2^s)=1$,
  • si $n\lt 2^s$, entonces $f(2^s+n)=f(n)+1$.
Calcular el valor máximo de $f(n)$ cuando $n\leq 2001$. Hallar el menor número natural $n$ tal que $f(n)=2001$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 806
Demostrar que no existe ninguna función $f:\mathbb{N}\to\mathbb{N}$ que cumpla $f(f(n))=n+1$ para todo $n\in\mathbb{N}$.
pista
Sin soluciones
info
Pista. Calcula $f(f(f(n)))$ de dos maneras distintas.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 800
Hallar las tangentes de los ángulos de un triángulo sabiendo que son números enteros positivos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2024. Esta página ha sido creada mediante software libre